
www.crownland.nsw.gov.au 

        

 

 

A predictive habitat model for Koalas 
Phascolarctos cinereus in north-east 
New South Wales: Assessment and 

field validation 
Brad Law1, Gabriele Caccamo1, Jason Wimmer2, Anthony 
Truskinger2, Anna McConville3, Traecey Brassil1, Matthew 
Stanton4, Leroy Gonsalves1 



 

 

 

 

 

 

Published by NSW Department of Industry—Lands and Forestry 

A predictive habitat model for Koalas Phascolarctos cinereus in north-east New South Wales: Assessment and field 
validation 

First published April 2017.  

ISBN/ISSN 978-1-74256-963-5 

More information 

Bradley Law, Forest Science Unit, Parramatta 

 

1. Department of Industry—Lands and Forestry, Forest Science Unit, NSW 
2. Queensland University of Technology, Qld 
3. Echo Ecology, NSW 
4. Niche Environment and Heritage, NSW 

 

www.crownland.nsw.gov.au  

www.industry.nsw.gov.au  

 

Acknowledgments 

This project was completed with funding via NSW Department of Primary Industries and NSW 

Environment Protection Authority 

Cover image: Brad Law 

 

 

 

 

© State of New South Wales through Department of Industry 2017.  
This publication is copyright. You may download, display, print and reproduce this material provided that the wording is reproduced exactly, the 
source is acknowledged, and the copyright, update address and disclaimer notice are retained. To copy, adapt, publish, distribute or 
commercialise any of this publication you will need to seek permission from the Department of Industry. 

Disclaimer: The information contained in this publication is based on knowledge and understanding at the time of writing (April 2017). However, 
because of advances in knowledge, users are reminded of the need to ensure that the information upon which they rely is up to date and to 
check the currency of the information with the appropriate officer of the Department of Industry or the user’s independent advisor. 

http://www.crownland.nsw.gov.au/
http://www.industry.nsw.gov.au/


2 | 65 

 

Executive summary 
Predictive models of habitat suitability have great potential to efficiently direct management 

actions for threatened species, especially for those that are rare or cryptic. We developed a 

model at a 250 m resolution for the Koala Phascolarctos cinereus in north-eastern New 

South Wales using ‘presence only’ records and MaxEnt modelling. We reduced substantial 

spatial clustering of records in coastal urban areas using a 2 km spatial filter and by 

modelling separately two sub-regions divided by the 500 m elevational contour. We used an 

average of 1086 occurrence records to develop our models. A bias file was prepared that 

accounted for variable survey effort, including the concentration of Koala records along 

sealed and unsealed roads. A reduced set of 14 variables was used in model building. The 

models were evaluated using a test set of 25 % of the records, with a resulting good fit for 

each model, as measured by AUC (0.74-0.80). Most importantly, there was good 

discrimination by different habitat suitability classes when compared with Koala records not 

used in modelling. Frequency of wildfire, Australian Soil Classification, floristic mapping and 

elevation had the highest relative contribution to the model, whilst a number of other 

variables made minor contributions. 

The combined MaxEnt model was ground-truthed at 65 sites using SongMeters to 

acoustically record the presence of Koalas in the mating season and via quantitative 

sampling of browse tree size and availability. Records of Koala bellows (n=276 bellows) 

were analysed in an occupancy modelling framework, while a site habitat quality index was 

constructed based on browse tree basal area and diversity. Koala bellows were recorded on 

29 % of ground-truth sites compared to Koala pellets that were recorded on 17 % of sites (13 

of 2,600 trees searched). Field validation of the continuous model output demonstrated a 

linear increase in estimated Koala occupancy with higher model output values. Similarly, the 

site habitat quality index was correlated positively with the model output. However, the 

model output provided a better fit to estimated Koala occupancy than the site-based habitat 

quality index, probably because many variables were considered simultaneously by the 

model rather than just browse species. We suggest that this provides strong evidence for 

using the MaxEnt model to guide management decisions for Koalas in forested habitat. 
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Introduction 
Predictive models of species distributions are a useful management tool for guiding and 

informing on-ground management, especially for threatened species (Liu et al. 2013). There 

has been much progress in recent years in developing habitat suitability models using ever 

more sophisticated statistical techniques and data layers with higher resolution (Latif et al. 

2015). MaxEnt is a powerful machine learning technique that models ‘presence only’ records 

with a validation procedure that leaves a portion of records aside for testing model goodness 

of fit (Elith et al. 2011). ‘Presence only’ modelling is particularly important for species where 

false absences are likely to occur due to the species being cryptic, having a low probability 

of detection or where sampling effort is not recorded. Such environmental niche models, 

alternatively known as species distribution models or hereafter predictive habitat suitability 

models, are based on the process of using computer algorithms to predict the distribution of 

species in geographic space using relationships between species records and environmental 

variables. The result is a map of predicted habitat suitability that should also correlate with 

likelihood of occurrence given the MaxEnt relationship is developed from species records. 

The Koala Phascolarctos cinereus is a vulnerable, iconic Australian species where a reliable, 

spatially explicit predictive model would benefit management (Sequeira et al. 2014). The 

species is listed as Vulnerable both federally and in NSW. It occurs in varying population 

densities across a broad range of forest types in NSW, Queensland, Victoria and South 

Australia. North-east NSW is considered to be a hot-spot for Koalas, but populations face a 

range of threats (Lunney et al. 2002; McAlpine et al. 2015). Being an obligate folivore, it is 

typically associated with particular forest types that provide primary browse species (Phillips 

et al. 2000; DECC 2008). However, certain tree species may be frequently browsed in one 

area and less so in another, probably because of differences in site productivity or because 

the availability of more desirable tree species varies (Phillips and Callaghan 2000; Crowther 

et al. 2009). Indeed, site productivity is well known to be an important driver of Koala habitat 

suitability (Moore et al. 2010). Mapping of Koala habitat based on relationships between 

Koala surveys and vegetation has proved successful at local scales (Callaghan et al. 2011). 

However, modelling of Koala habitat suitability over extensive areas by relying solely on 

vegetation mapping may provide unreliable predictions in areas where Koalas have not been 

surveyed, especially given the influence of site productivity on Koala occurrence. Other 

factors are also important, such as landscape context, patch size, fragmentation, 

connectivity and roads as well as the presence of individual preferred Eucalyptus species 

(McAlpine et al. 2006; McAlpine et al. 2008; Rhodes et al. 2008). Local landscape features 

are likely to be of most importance in rural areas where Koala habitat is now fragmented. 

https://en.wikipedia.org/wiki/Computer
https://en.wikipedia.org/wiki/Algorithm
https://en.wikipedia.org/wiki/Geography
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Recently, approaches that use a variety of data-layers have proved effective for regional 

modelling of Koala distribution, for example in South Australia (Sequeira et al. 2014).  

Current management of Koalas in public state forests is guided by the presence of ‘preferred 

forest types’, but management is ultimately triggered by the presence of a pre-existing Koala 

record or surveys for pellets prior to compartments being harvested. In private native forests, 

‘Core Koala habitat’ is the trigger for prescriptions and an existing Koala record increases 

the requirement for tree retention. A heavy reliance on scat surveys or past records to trigger 

management is limited by the fact that many areas are difficult to access or have been 

poorly surveyed for Koalas in the past and new pellet surveys, as specified under the 

Integrated Forestry Operations Approval (IFOA) 

(www.epa.nsw.gov.au/forestagreements/UNEagreement.htm), may not always be effective 

at detecting Koalas. For example, pellet surveys can be unsuccessful in detecting Koala 

high-use areas that require protection because dense understorey vegetation impedes 

detection of pellets, pellet deposition rates are not constant and a bias exists towards 

detection in dry habitats where pellets will persist for longer (Cristescu et al. 2012). 

Moreover, while pellet abundance is correlated with Koala density, pellet surveys are 

imprecise indicators of tree use (Ellis et al. 2013). A more effective approach could be to 

develop and use a high resolution spatially explicit model to identify areas of suitable habitat 

for Koalas across the landscape and use this to guide further habitat inspections and to 

trigger various management actions (Dickson et al. 2014; Latif et al. 2015).  

Field validation of Koala habitat model 
Implementation of predictive habitat suitability models for management purposes requires a 

high level of confidence in the model reliability. Field validation or ground-truthing to collect 

an independent data set is an essential part of that process. One of the difficulties of ground-

truthing is identifying varying quality of habitat and establishing whether it is occupied, or if 

unoccupied, whether the habitat quality is still suitable and maybe be recolonised at a later 

time. In particular, species occupancy (presence) is influenced by imperfect detection which 

can also vary with time or habitat type (Wintle et al. 2005). To overcome this, occupancy 

modelling has been developed to adjust site occupancy by first calculating detectability of a 

species (MacKenzie et al. 2002). Detectability is estimated by using multiple visits to a site to 

create detection histories. For example, a site could be visited for seven consecutive nights 

and the species may be detected on any number of nights (e.g. just a single night). 

Probability of occupancy contrasts with naïve occupancy, which is purely a measure of 

presence/absence without accounting for detectability. For the purposes of field validation of 

a habitat model, probability of occupancy is estimated by incorporating covariates for both 

http://www.epa.nsw.gov.au/forestagreements/UNEagreement.htm


5 | 65 

 

detectability and occupancy, such as the predictive habitat suitability model output at each 

ground truth site. Using model selection procedures, the fit of a range of potentially important 

site covariates can be compared against that of the model. Both the fit and relationship of 

predicted occupancy values against the model output provides the validation assessment of 

the ground-truthed data. 

An alternative approach for validation makes no assumption about occupancy of the 

predicted habitat suitability. Instead, it relies on an independent assessment of habitat 

quality based on the known habitat or dietary preferences of the focal species. This 

approach is limited by available knowledge on the importance of different browse species 

and how this varies across a species range or in association with co-occurring browse 

species, soil type, moisture, disturbance, etc. However, for Koalas a reasonable knowledge 

base exists concerning tree preferences (e.g. Phillips et al. 2000), bearing in mind limitations 

of recording pellets beneath trees as discussed above, and a scarcity of dietary studies in 

NSW. 

Project Aims 
We collated existing records of Koalas and used MaxEnt to model the potential habitat of the 

species in north-east NSW. A major determinant of the project boundaries was the extent of 

available vegetation mapping of sufficient resolution that Koala browse preference could be 

inferred for different forest types. In this study, the Crafti vegetation layer, which is a 

classification driven by the presence of canopy species, extends from the Port Stephens 

area in the south, to the Queensland border in the north and includes tablelands areas at 

higher elevations to the west. We also confined our modelling to this area because regional 

variation in habitat occupancy thresholds has been demonstrated (Rhodes et al. 2008; 

Crowther et al. 2009). Our aim was to develop a cross-tenure predictive habitat suitability 

model that would be useful for managing the species in the context of forest management, 

especially timber harvesting. To achieve this, our objective was to ensure the model’s 

resolution was fine enough to indicate habitat suitability for the species at a sub-

compartment scale (250 m grid cell). This would allow triggering of appropriate management 

actions for Koalas. While management triggers should be based on the best available 

knowledge as to how the species responds to disturbance, it should be acknowledged that 

this is limited for Koalas with respect to timber harvesting (see Roberts 1998; Smith 2004; 

Kavanagh et al. 2007). There are abundant Koala records available for modelling, however, 

they represent a highly biased data-set because of clustering of records close to roads and 

near coastal urban centres (e.g. Port Stephens, Port Macquarie and Coffs Harbour), even 

though such areas may represent true Koala hotspots (Lunney et al. 2009). As a result, care 
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needs to be taken to minimise the influence of this bias prior to modelling (Sequeira et al. 

2014). 

Field validation of the Koala MaxEnt models followed two different, though complementary, 

approaches. The first approach systematically recorded the presence of Koalas to calculate 

probability of occupancy at ground-truth sites. We then assessed whether the probability of 

occupancy was correlated with the MaxEnt model output. Probability of occupancy accounts 

for detectability of a species and it ranges from 0-1. When assessed across many sites we 

assume that the probability of occupancy is correlated with Koala habitat quality, although it 

is likely that occupied habitats could vary substantially in abundance (a much more difficult 

variable to quantify reliably at many sites than occupancy). The second approach produced 

an index of Koala habitat quality (e.g. browse species availability) at each ground-truth site. 

For model validation purposes we would expect an increase in habitat quality with model 

output scores across all ground-truth sites. Each of these approaches use a quantitative 

assessment of habitat quality or probability of occupancy to compare against the MaxEnt 

model output on a continuous scale for ground-truth sites.  

Data and Methods 
Study area and Koala occurrence records 
The analysis focused on north-eastern New South Wales. The study area (~8.5 million ha) 

consisted of two subregions: subregion 1 (areas below 500 m ASL) and subregion 2 (areas 

above 500 m ASL) (Figure 1). This subdivision was chosen because it was considered likely 

that different drivers of Koala habitat operated in coastal areas compared to uplands 

(McAlpine et al. 2008) and it assisted in dealing with a coastal bias in records (see below). 

Subdivisions based on 300m and 400m elevations were also tested but they were discarded 

because they produced models more biased towards the coast, including areas where there 

were no previous Koala records and the habitat is unsuitable. Using a higher elevation 

contour (500 m) reduced the coastal influence and improved predictions at certain known 

high elevation Koala habitat (e.g. Nowendoc; Krockenberger 1993) by including a second 

peak in records between 400 and 500 m in subregion 1 and providing a more even spread of 

records in subregion 2.  

We acquired a set of reliable locations (n=7997, < 100 m accuracy), ensuring duplicates 

were removed, where Koalas have been recorded in the last 25 years from the New South 

Wales National Parks and Wildlife Service Wildlife Atlas (accessed April 2015). All the 
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records located within cleared areas (e.g., farmland, residential areas, freshwater wetlands, 

industrial areas, etc.) and agricultural lands were removed because our study focused on 

forested environments. That reduced the number of suitable records to 5558 (4238 

in Subregion 1 and 1320 in Subregion 2). 

 

Figure 1. Map of north-east NSW indicating the locations of 5558 Koala records within the two 
sub-regions. 

Koala records were strongly clustered at a number of urban centres (e.g. Coffs Harbour, Port 

Macquarie) (Figure 1). In order to reduce pseudoreplication and spatial aggregation in our 

records (e.g., Penman et al., 2010; Parolo et al., 2008; Kramer-Schadt et al., 2013; 

Fourcade et al., 2014), we randomly selected Koala occurrences that were separated by a 

minimum distance of 2 km. Other spatial filters were also tested, including 1 km, 5 km and 

10 km; however 2 km was chosen as the best compromise between reducing spatial bias in 

records (in combination with splitting the study area and using a sample bias layer) and 

providing a large sample size for modelling. To ensure a larger variability in the records used 

in the analysis, we replicated the ‘thinning’ process five times and generated five random 

sets of records for each subregion (Figure 2). The number of records in the five sets ranged 

from 1078 to 1090 (mean = 1086). Records (n=3116) that were not included in the five 

random sets were retained and used for model evaluation (see section Model evaluation) 
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Figure 2. Example of a small area (~1km x ~1.5km) where each random set contains a different 
sample, capturing a larger portion of the pre-thinned record (n=21) variability. 

Environmental variables 
We selected 30 gridded environmental variables for their potential influence on Koala habitat 

suitability (Table 1). Variables included both biotic (e.g., floristic composition) and abiotic 

(e.g., slope) factors and were produced at 250 metre spatial resolution (i.e., pixel size = 250 

metre) for both subregions.   
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Table 1. List of the 30 environmental variables used in the MaxEnt predictive modelling 

 

Four topography-related variables were used (i.e., Digital elevation model, slope, 

topographic roughness and topographic position index) because terrain is expected to 

influence habitat suitability for Koalas (Van Dyck and Strahan, 2008). Digital elevation model 

(m) at 25 m resolution was resampled to 250 m by calculating the median elevation value 

within each 10 pixel-by-10 pixel neighbourhood. Slope (degree) was first generated at 25 m 

from the digital elevation model and then resampled to 250 m by calculating the median 

slope value within each 10 pixel-by-10 pixel neighbourhood. Topographic roughness (m) is 

an indicator of terrain complexity and was calculated as the standard deviation of slope 
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within each 10 pixel-by-10 pixel neighbourhood. Finally, topographic position index (data 

provided by Allen McIllwee, OEH) classifies the landscape into slope position (i.e., ridge top, 

valley bottom, mid slope, etc.). 

The density of sealed roads (m of road per km2) was included in the analysis to account for 

anthropogenic disturbance. Vegetation and browse trees are known to affect the distribution 

of Koalas (Sequeira et al., 2014). Consequently, four broad floristic categories (i.e., Class 1= 

primary browse species, Class 2=secondary browse species, Class 3=tertiary browse 

species and Class 4=unsuitable habitat) were derived from available Crafti floristic maps for 

the north coast (NSW National Parks and Wildlife Service, 2001a; 2001b) based on the 

importance of tree species to Koalas as listed in the NSW Koala Recovery Plan (DECC 

2008). A number of non-forest cover types (i.e., Cleared, Freshwater wetland, Saline 

wetland, etc.) were excluded from the analysis because they were considered unsuitable for 

Koalas. Additionally, we calculated the percentage cover of Class 1 and Class 2 combined 

within a 1 km radius of each 250 m pixel to account for the spatial distribution of primary and 

secondary browse species at a landscape scale. 

Soil properties can have an indirect influence on habitat suitability by affecting site 

productivity and vegetation characteristics. Soil types were derived from the National soil 

data provided by the Australian Collaborative Land Evaluation Program ACLEP, endorsed 

through the National Committee on Soil and Terrain NCST (www.clw.csiro.au/aclep, 

accessed September 2014). This map was based on the Atlas of Australian Soils (Northcote 

et al, 1960-68) and available at 250 m spatial resolution 

(www.asris.csiro.au/themes/NationalGrids.html, accessed April 2016). Additionally, we used 

soil depth (m), organic carbon (%), total Phosphorus (%) and available water capacity (%) 

grids at 80 m resolution acquired from The Soil and Landscape Grid of Australia 

(www.clw.csiro.au/aclep/soilandlandscapegrid/ProductDetails-SoilAttributes.html, accessed 

April 2016) to account for soil characteristics (Williams et al., 2010). All grids were resampled 

from 80 m to 250 m. 

We used the Normalized Difference Vegetation Index (NDVI, Rouse et al., 1974) because it 

has been found to relate to a range of vegetation properties such as leaf area index, 

biomass and net primary productivity (e.g., Coops et al., 1997, Chafer et al., 2004) that could 

influence habitat suitability for Koalas (Van Dyck and Strahan, 2008). We used 250 m 

resolution 16-day composite surface reflectance MODIS data (MOD13Q1, collection 5) 

acquired in January, April, July and October from 2000 to 2015. Those months were 

selected to provide average NDVI values in the middle of summer, autumn, winter and 

spring. Data anomalies (e.g., cloud, cloud shadow, fire and cirrus) were masked using 

http://www.clw.csiro.au/aclep
http://www.asris.csiro.au/themes/NationalGrids.html
http://www.clw.csiro.au/aclep/soilandlandscapegrid/ProductDetails-SoilAttributes.html
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MODIS quality assurance (QA) metadata (after Caccamo et al.2011). For each year, time-

series of NDVI were calculated from MODIS Band1 (620-670 nm) and Band2 (841-876 nm), 

using the following formula: 

NDVI = (Band2 – Band1) / (Band2 + Band1) 

Finally, all NDVI data (2000-2015) in January, April, July and October were averaged to 

produce long-term means. 

Three additional vegetation-related variables were included in the analysis. An estimation of 

above ground biomass (Mg Ha-1) at 50 m resolution was acquired from NSW Office of 

Environment and Heritage (ALOS Woody biomass, Lucas et al., 2010) and resampled to 250 

m. Foliage projective cover (%), providing an estimation of the fraction of the ground covered 

by vegetation, was acquired at 5 m resolution from NSW Office of Environment and Heritage 

(www.environment.nsw.gov.au/research/AncillaryVegetationProductsDataInventory.htm, last 

accessed April 2016) and resampled to 250 m. Net primary productivity (NPP, kg C/m2) grids 

were extracted from MODIS data (MOD17A3). MOD17A3 provides total annual NPP at 1km 

resolution. Annual data from 2000 to 2015 were averaged and resampled to 250 m to 

calculate the mean annual NPP per pixel within the study area. 

A number of bioclimatic factors were investigated for their potential influence on the 

distribution of Koalas. Bioclim (Houlder et al., 2009) was used to produce 10 bioclimatic 

parameters at 250 m resolution based on long-term meteorological data and DEM. Bioclim 

has been extensively discussed in the literature (e.g., Busby, 1991) and full details of the 

model are given in Houlder et al. (2009). 

We used wildfire history data (1970-2015) acquired from NSW Rural Fire Service for the 

potential influence of this disturbance on Koala habitat suitability. Fire data were rasterized 

at 250 m resolution and, for each cell, the total number of fires recorded from 1970 to 2015 

was calculated. A fire frequency map was then calculated by classifying the data into four 

categories: Class 0: Areas with zero records of burning and that are considered not 

flammable (e.g., rainforests); Class 1 – Areas with zero records of burning; Class 2 – Areas 

recorded to have burned 1 to 3 times; Class 3: Areas recorded to have burned more than 3 

times. We included Class 0 because many rainforest areas are shown by the layer as having 

been burnt. However, we consider this to be a limitation of the fire history layer where often 

the broad extent of wildfires were mapped, ignoring smaller internal areas such as gullies 

and rainforest that were likely to be unburnt. It should also be noted that our approach does 

not map number of wildfires prior to a Koala being recorded at a site. Rather it is an index of 

wildfire frequency estimated over a longer period of time, which we considered to be more 

reliable given the interval between fires was often > 10 years.  

http://www.environment.nsw.gov.au/research/AncillaryVegetationProductsDataInventory.htm
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Finally, we explored the use of forest successional stage mapping as an input variable, but 

concluded an adequate and current data layer was not available for reliable modelling (see 

Appendix A for test results). 

Bias file 
Koala records were biased toward roads (Figure 3). MaxEnt assumes that occurrence 

records are unbiased, therefore a bias file was created to account for sampling effort. Ideally, 

bias files should be based on actual sampling intensity (Fourcade et al. 2014) to distinguish 

between areas that are unsuitable and areas that are subject to low sampling effort. 

Following Predavec et al. (2015), we created a bias file (pixel size = 250 m) by estimating 

sampling intensity using the aggregation of occurrences for arboreal mammal species 

(taxonomic groups: Petauridae, Phalangeridae, Phascolarctidae and Pseudocheiridae) that 

are likely to reflect detectability of the Koala (Phillips et al. 2009). A Gaussian Kernel Density 

map of Koala and arboreal mammals' occurrences was generated and rescaled to 1 – 30 

(similar to Elith et al. (2010) and Fourcade et al. (2014)). Values in the resulting map were 

higher in densely sampled areas indicating higher sampling effort (Figure 4). Koala 

distribution in north east NSW is not closely correlated to other arboreal mammal species 

(Kavanagh et al. 1995). 

 

Figure 3. The majority (~90%) of Koala records were within 250 m of roads.  
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Figure 4. In the bias file, densely sampled areas indicate higher sampling effort. 

MaxEnt modelling 
Koala habitat suitability in subregion 1 and subregion 2 were modelled separately using 

Maximum Entropy Species Distribution Modelling Software (MaxEnt version 3.3.3k; 

www.cs.princeton.edu/~schapire/maxent, last accessed April 2016, Phillips et al., 2006). 

MaxEnt is a widely used machine learning model that uses the principle of maximum entropy 

to predict the spatial distribution of suitable conditions for species based on presence only 

data (e.g., Elith et al., 2006). For each run, hinge feature type was used (after Phillips and 

Dudik, 2008), and maximum number of iteration, convergence threshold, regularization 

multiplier, maximum number of background points were set to 1 000, 10-5, 2 and 10 000, 

respectively. 

To minimize multicollinearity, the number of continuous variables was reduced by eliminating 

highly correlated (Pearsons’ R > 0.75) predictors and retaining the variable with the most 

interpretable biological response (Kramer-Schadt et al., 2013). For each of the five random 

sets (Figure 2), models were built on 75 % of the occurrences, whilst the remaining 25 % 

was used as test sample. For each of the sets, we ran 20 replicates (i.e., random partitions 

https://www.cs.princeton.edu/%7Eschapire/maxent/
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of training and testing data) and retained the mean habitat suitability predicted. Finally, we 

averaged the mean habitat suitability predicted for each of the five sets to generate the final 

Koala habitat suitability map.  

Model evaluation 
We used the Receiver Operating Characteristics (ROC) curve on test data to evaluate the 

models performance. ROC curves indicate the relationship between the percentage of 

presences correctly predicted and 1 minus the percentage of absences correctly predicted 

(e.g., Parolo et al., 2008). The area under the ROC curve (AUC) provides a single indicator 

of model performance (Philips et al., 2006). Models with AUC > 0.7 have good discriminatory 

power (Hosmer and Lemeshow, 1989). AUC on test data was calculated for each of the five 

sets of Koala records in both subregions. 

MaxEnt allows users to produce three different spatially-explicit habitat suitability maps (i.e., 

raw, cumulative and logistic). The logistic output was selected because it is the easiest to 

interpret. Each pixel (250m) is assigned with a value ranging from 0 to 1 which represents 

the probability of presence of suitable environmental conditions for the target species (i.e., 

higher values indicate higher suitability).  

As a model evaluation step, we analysed the relationship between the Koala records 

(n=3116) that were not used in the MaxEnt analysis (see section “Study area and species 

occurrence records”) and the predictive habitat suitability model output. These records were 

neither filtered nor adjusted based on survey effort.  

Finally, we analysed the response curves of the predictor variables to assess their influence 

on the prediction. Response curves show how the predicted suitability of a model built using 

only one variable changes as the variable is varied.  

Model validation 

Site Selection 
To ground-truth the Koala MaxEnt Model, we established 65 sites on the north coast of NSW 

between Port Stephens in the south, and the border with Queensland in the north (Appendix 

B). Sites extended from the coast to over 1000 m in altitude to account for our high and low 

elevation subregions (Figure 5). Sites were equally distributed between three broad regions: 

1. at the southern end of the north coast region (Port Stephens to Wauchope), 2. Coffs 

Harbour region (Wauchope to Grafton) and, 3. Inland of far north coast (Grafton to border). 
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In each of these regions, sites were located at both higher and lower elevations. The target 

areas for validation were forested and subject to timber harvesting, especially State forests, 

as the primary purpose for implementation of the model was for improved identification of 

Koala habitat in areas planned for logging. As such, key coastal sites for Koalas (e.g. far 

north coastal strip) were not sampled. Sites with a recent history of logging or fire (< five 

years) were avoided. 

Allocation of sites was stratified using four habitat quality classes (very high, high, moderate, 

low) derived from a preliminary version of the Koala habitat suitability model (Law et al. 

2014). Where possible, a cluster of sites was allocated in a local area (~10 km radius) with 

one site in each habitat class (minimum distance between sites = 1 km; average distance = 

166 km). In practice, this was often not possible due to local absence of a particular class. In 

these circumstances, the missing class was replaced by a locally available class. 

 

Figure 5. Distribution of 65 Koala ground truth sites in northern New South Wales. 



16 | 65 

 

Koala Occupancy 
Koala males emit loud bellows during the breeding season. This behaviour has great 

potential for estimating occupancy across a variety of landscapes now that sophisticated 

acoustic recorders are widely available and sound analysis software has been developed to 

process recorded calls. For example, a novel remote sound detection network has been 

used to monitor Koala bellowing while simultaneously collecting Koala behavioural data 

using collar-mounted GPS units (Bercovitch et al. 2011). This study found that the number of 

bellow vocalizations recorded during an annual period mirrored breeding activity, with nearly 

all male bellows recorded during peak mating season (September-December). The distance 

travelled by Koalas and the occurrence of Koala bellows both peaked around midnight. The 

study concluded that male bellows function to attract females rather than to repel males. 

At each site we deployed one SongMeter (SM2 – Wildlife Acoustics) to record Koala 

bellows. SongMeters were programmed to record from one hour before sunset until sunrise 

for seven consecutive nights. This equates to 455 nights of sampling. The recordings were 

processed by newly developed software (Towsey et al. 2012), which has been used to 

develop reliable recognisers for a select group of fauna, including Koalas. The distance at 

which Koala calls can be detected is likely to vary with environmental conditions, but bellows 

are considered to be detectable by SongMeters up to at least 100 m (W. Ellis pers. comm.). 

All SongMeter sampling was undertaken in the Koala mating season across three trips; one 

trip in October/November, one in late November and one in December 2015. 

Koala pellet searches were also undertaken to compare with occupancy recorded by 

SongMeters, given that pellet searches are a standard survey technique for recording Koala 

presence (e.g. Phillips and Callaghan 2011) while use of SongMeters is relatively novel. 

Scat searches were undertaken for 1 minute within a 1 m radius of each tree measured in 

the browse tree availability searches outlined below (see ‘Habitat Availability’). This resulted 

in 40 trees being surveyed per site. This method represents a slight departure from the SAT 

method of Phillips and Callaghan (2011) in that 40 not 30 trees are measured, and the 

location of these trees is not determined from a focal tree. Our method is consistent with the 

Koala Rapid Assessment Method of Woosnem-Merchez et al. (2012). The method yields 

data on the proportion of trees per site at which a Koala scat has been recorded. Browse 

trees are not targeted to ensure sampling effort is even across sites where browse tree 

density varies; as was the case with field validation across a range of model qualities. Scats 

searches and identification was carried out by Matthew Stanton and Larissa Potter (Niche 

Environment and Heritage) for NSW DPI as part of tree transects at each site. 
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Analysis of Koala Calls 
Recordings were sent to Queensland University of Technology (QUT) for processing by 

acoustic software and a Koala recogniser previously developed and tested by QUT. Various 

indices were output by the QUT acoustic software and were available for manually reviewing 

matches by the Koala recogniser, including visualising spectrograms of the audio (Figure 6) 

and the capability of listening to the recordings. Manual checking of Koala calls and data 

collation was carried out by Anna McConville (Echo Ecology). 

Each event trigger was visually checked. The checking process was as follows for each site: 

1. Visually inspect the spectrogram (Figure 6) for activity at the Koala frequency 

(0–3 kHz) and listen to any potential Koala calls using quality headphones and 

adjusting volume as required. 

2. Visually scan the spectrogram to any sequential events and repeat as required. 

3. Enter ‘yes’ or ‘no’ in the “Validation Koala?” column of a spreadsheet and make any 

notes about the recording. 

Once all events had been inspected, we then summarised the results. A single Koala call 

was made up of multiple event triggers. We defined a Koala call as sequential event triggers 

that were < 60 s apart. We visually inspected the spectrogram for any event triggers that 

were close to the 60 s cut-off to identify any calls that extended past the last event trigger 

and may be within the 60 s cut-off. 

Some sites had no event triggers recognised by the QUT acoustic software. We checked the 

original recording files to determine which sites were sampled and for how long. We checked 

whether the last night of recording was incomplete due to battery failure etc. The number of 

Koala calls was then manually tallied to give the total Koala calls per site per night. 

 

Figure 6. Spectrogram of Koala bellow repeated multiple times 
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Site Habitat Quality 
The second approach for field validation was a site based assessment of habitat potential for 

Koalas. To quantitatively assess browse tree availability at each site a 200 m transect was 

established to correspond with the 250 m pixel resolution of the MaxEnt model. The transect 

followed the contour and at every 20 m interval the Point-Quarter technique (Pollard 1971) 

was employed to measure the distance to the nearest tree (>20 cm diameter at breast 

height, dbh) in each quadrant. Although Koalas also use trees < 20 cm dbh, there is some 

evidence that larger trees are preferred (Callaghan et al. 2011). Each tree was identified 

where possible and its diameter was measured and height estimated. This resulted in data 

on 40 trees from 10 points along the transect. The Point Quarter technique was then used to 

estimate stem density and when multiplied by the % occurrence of different species and their 

mean diameter, we were able to calculate the basal area for the different species measured 

(i.e. account for tree size of different species). Transects and tree identification were carried 

out by Matthew Stanton and Larissa Potter (Niche Environment and Heritage) for NSW DPI. 

An index of habitat quality for Koalas at each ground-truth site was calculated based on 

browse tree basal area and diversity. First, species of Koala browse trees were classified 

into four classes of varying quality, based on literature reporting primary, secondary and 

supplementary browse species, and expert opinion (Table 2). Class 1 and Class 2 species 

generally refer to those browse species that represent high food quality for Koalas and would 

represent high quality breeding habitat. Class 3 represents species of lower quality, although 

they are still likely to support some Koala breeding habitat and low density populations. 

Class 4 species are likely to represent marginal habitat, but may be important for Koala 

movement and dispersal (McAlpine et al. 2006). Species rarely used by Koalas are those not 

classed as browse species in our classification.  

Allocation of tree species to quality class was often difficult given incomplete knowledge of 

Koala diet and uncertainty related to assessing the importance of tree species when based 

on scat deposits beneath trees as scats can accumulate under both shelter and diet species 

(Ellis et al. 2013). One example of uncertainty is the Sydney Blue Gum Eucalyptus saligna, 

which was categorised as Class 3, whereas an alternative could have been Class 2. 

In addition to browse tree basal area, browse tree diversity is also likely to contribute to 

habitat quality at a site, because different browse species could provide different nutrients 

and a more diverse stand of browse trees is likely to provide a more resilient food base at 

times of habitat disturbance or stress (e.g. drought) (Smith 2004). Browse tree diversity was 

calculated using the Shannon-Wiener Index for counts of tree species in Class 1, 2 and 3. 

Class 4 was omitted from diversity calculations as they were considered to have lower value. 
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Other aspects of the local landscape can influence habitat suitability for Koalas, such as 

patch size, fragmentation, connectivity and roads (McAlpine et al. 2006). However, these 

were generally considered to be of lesser importance for the more extensive forest 

landscapes that we sampled. 

Browse tree basal area and diversity were combined into a site scale index of habitat quality 

using the following formula:  

Site Habitat Quality = [(0.8*basal area of Class 1 trees) + (0.6*basal area of Class 2 

trees) + (0.25*basal area of Class 3 trees) + (0.1*basal area of Class 4 species) + 

(0*basal area of all other trees)] 0.6 * [site Class 1, 2 & 3 browse tree diversity] 0.4 

We used strike rates of use for different browse trees derived from pellet counts beneath 

trees across a range of local studies as a guide to select weights for browse tree classes. 

For example, E. tereticornis is a Class 1 species and it has strike rates of 0.7 at Noosa 

(Callaghan et al. 2011). We weighted browse tree availability higher than browse tree 

diversity because Koala habitat quality can still be high when browse diversity is low. We 

also experimented with alternative weightings and settled on values that yielded a higher r2 

to optimise the relationship prior to comparing against the MaxEnt model output. 

Table 2. Classification of tree species into 5 different browse qualities for Koalas based on 
literature and expert opinion (as an example see NSW Koala Recovery Plan 2007) 

Class 1 Class 2 Class 3 Class 4 Class 5 
E. acaciiformis E. biturbinata  E. globoidea C. gummifera all other 
E. microcorys E. canaliculata  A. torulosa C. intermedia  
E. robusta E. glaucina  E. agglomerata  E. acmenoides  
E. tereticornis E. largeana  E. cameronii  E. pilularis  
E. viminalis E. moluccana  E. eugeniodes Ironbark spp.  
E. amplifolia  E. propinqua  E. grandis M. quinquenervia  
Red Gum E. punctata  E. laevopinea Stringybark spp.  
 E. radiata E. nobilis E. williamsiana  
 E. seeana  E. obliqua   
  E. quadrangulata    
  E. resinifera    
  E. rummeryi    
  E. saligna   
  E. siderophloia   
  E. signata   
  E. tindaliae    
  E. caliginosa   
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Site Field Assessment 
A field assessment of site attributes included topographic position (1 – summit to 12 – 

swamp), logging history and fire history. Site elevation was extracted from GIS. Logging 

history was assessed in the field and recorded as extensive (even age regrowth, with few 

large (>80 cm dbh, hollow-bearing trees remaining), moderate (even-aged regrowth with a 

scattering of hollow trees), light (uneven age regrowth with plentiful hollow trees) and 

unlogged (uneven aged forest with abundant large hollow trees). Note that logging history 

does not necessarily equate to logging intensity if multiple rotations of light intensity have 

reduced large, tree density over time. However, dominance of even age regrowth in the 

“extensive” category suggests that high intensity operations were likely. Time since logging 

was based on an assessment of regenerating tree height and diameter as well as stump 

characteristics and was classified into decades: 1 (0-10 years), 2 (11-20 years), 3 (21-30 

years) and 4 (> 30 years or unlogged). Fire severity was classified based on charcoal height 

on rough barked trees while time since fire was based on the distribution of charcoal 

(including presence on smooth barked trees) and signs of post-fire regeneration. Fire 

classifications, especially the effects of low severity fires, were difficult to assign beyond 

about five years and were not suitable for comparing to the wildfire history layer. All field 

assessments were completed by B. Law (NSW DPI). 

Occupancy Analysis and Validation Method 
We used an occupancy modelling framework to account for imperfect detection of Koala 

bellows at sites and used this to estimate the probability of site occupancy (MacKenzie et al. 

2002). We used seven consecutive nights of sampling to estimate the probability of detection 

and used this to calculate probability of occupancy in PRESENCE version 10.5 (Hines 

2006). For the validation of the MaxEnt model, probability of occupancy per site was 

estimated by incorporating the MaxEnt model output for each ground truth site as a covariate 

(predictor) in a regression relationship. The fit of this relationship against Koala occupancy 

was compared, via model selection procedures, with other potentially important site 

covariates. Competing models were ranked using Akaike Information Criterion (AIC), which 

measures the trade-off between model complexity (number of parameters) and precision (fit) 

of the models. The difference between each model’s AIC value and the best-fitting model 

were calculated, with models of delta AIC < 2 considered to have substantial support. 
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Modelling followed a multi-staged process.  

1. We identified the importance of possible covariates for Koala detectability to improve 

the accuracy of occupancy estimates. Daily rainfall (p(rainfall)), month of sampling 

trip (p(trip)) and topographic position (p(topo)) were compared against a null model 

with constant detectability (p(.)). 

2. Using results for detectability from Step 1, MaxEnt model scores for each ground-

truth site were validated against Koala occupancy for that site. We compared MaxEnt 

model outputs with different spatial scales to identify the best scale for predicting 

occupancy. For instance, more extensive areas of higher habitat suitability than a 

250 m pixel may be better predictors of Koala occupancy. Spatial scales varied from 

250 m (pixel), to surrounding buffers of 500 m, 1000 m and 2000 m. All models were 

compared to a null model where occupancy was held constant across sites (Psi(.)).  

3. From Step 2, the MaxEnt model using the best spatial scale was compared against 

our habitat quality index derived from browse tree availability at each site and a null 

model with occupancy held constant across sites (Psi(.)). This allowed us to compare 

the performance of the MaxEnt model against tree availability data (habitat quality 

index). 

4. Finally, we compared the strength of the relationship between Koala occupancy, the 

MaxEnt model output and the site habitat quality index with a small selection of other 

potential predictors of Koala habitat, including those that were used in the MaxEnt 

model (NPP, topographic position, elevation and wildfire frequency). These were 

extracted for the 250 m pixel for each of the ground-truthed sites. 

Simple validation of the MaxEnt model using the site habitat quality index was undertaken 

using a scatterplot of Index scores against model output scores (0-1) for each ground-truth 

site. An r2 value was calculated for this relationship.  
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Results 
MaxEnt analysis 
Pearson’s correlation analysis showed that a large number of continuous variables were 

highly correlated (R>0.75) and were therefore excluded from this study (Appendix C). For 

example, NDVI_su, NDVI_au, NDVI_wi and NDVI_sp were strongly correlated with each 

other (R values ranging from 0.83 to 0.93) and with Fpc (R values ranging from 0.75 to 

0.80). The continuous variables initially retained were: Awc, Bio14, Bio28, Biomass, Cra%, 

DEM, Dep, Fpc, NPP, Oc, Sea, Slo, Top, Tp and Tor (Table 1). However, Awc, Oc, Sea 

and Tp were also discarded after exploratory analysis showed their response curves lacked 

realism and ecological sense. For example, Koalas showed a positive correlation with the 

density of sealed roads in coastal regions due to the high concentration around urban 

centres. Therefore, the models for subregion 1 and subregion 2 were built on a total of 14 

predictors: three categorical variables (Asc, Cra and Fire) and 11 continuous variables 

(Bio14, Bio28, Biomass, Cra%, DEM, Dep, Fpc, NPP, Slo, Top and Tor). We also 

checked for an association between two categorical variables: wildfire frequency and Crafti. 

We found that the two were not closely associated as % cover of the four fire frequency 

classes had a similar distribution within each Crafti floristic group, except for fire frequency 

class 0, which was only present in Crafti floristic group 4 because it is represented by 

rainforest types. The lack of association between these two variables was supported by a 

Cramer’s V = 0.45, and accordingly, we included both variables into the model. 

AUC on training data ranged from 0.736 to 0.752 (n=5, average=0.741±0.006) for subregion 

1 and from 0.786 to 0.801 (n=5, average=0.796±0.006) for subregion 2. For both 

subregions, Asc, Cra, DEM and Fire provided the greatest contribution to the model 

(Figure 7). 
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Figure 7. Percent contribution of the 14 predictor variables in (a) subregion 1 and (b) 
subregion 2. Fire= Wildfire Fire frequency (1970-2015); Cra = Classification of browse species 
based on Crafti floristic groups; Asc = Australian Soil Classification; DEM = Digital elevation 
model (m); Top = Topographic position index; Slo = Slope (degree); Bio28 = Annual Mean 
Moisture Index; Cra% = Percentage cover of primary and secondary Crafti-based browse 
species; Biomass = Above ground biomass (Mg Ha-1); Dep = Soil depth (m); NPP = Net primary 
productivity (kg C/m2); Tor = Topographic roughness (m); Fpc = Foliage projective cover (%); 
Bio14 = Precipitation of Driest Period (mm). 

The response curves of Asc, Cra, Fire and DEM (Figure 8a-b) showed some differences 

between the two subregions. Predicted suitability of Asc was higher for Class 10 (Podosols) 

in subregion 1 and Class 12 (Sodosols) in subregion 2, whilst Class 13 (Tenosols ) and 

Class 11 (Rudosols) showed the lowest probability values for subregion 1 and subregion 2, 

respectively. Predicted suitability of Cra was higher for Class 1 and decreased gradually 

from Class 2 to Class 4 in both subregions. Predicted suitability of Fire showed similar 

values for Class 0, Class 1 and Class 2 (~36%, ~53% and ~44%, respectively) in both 

subregions. However, Class 3 showed a markedly higher predicted suitability (~49%) when 

compared to subregion 1 (~24%). Frequency of wildfire was similar across the four major 

Crafti floristic groups that were classified for Koala prevalence, except that Class 4 

(unsuitable Koala habitat) had a much small area of forest types that had never burned and 
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Class 3 had slightly more area that had experienced high wildfire frequency (Appendix D). In 

addition, Class 4 was the only group where there was an extensive area of Crafti types that 

were not expected to burn (rainforest). The response curve of DEM showed a similar pattern 

in both subregions as predicted suitability decreased for higher values. High predicted 

suitability <100 m and between 500-600m elevation, reflect a concentration of Koala records 

at those elevations.  

Habitat suitability values ranged from 0 to 0.88 (average=0.39±0.15) and were classified into 

nine categories corresponding to 0.1 increments (Figure 9). Most of the areas characterised 

by high frequency of Koala records (Figure 10) were correctly modelled and assigned with 

High or Very High Suitability class. Koala records less frequently fell in areas modelled as 

Moderate Suitability and rarely in Low Suitability habitat. 
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Figure 8 (on the previous two pages). Response curves for (a) subregion 1 and (b) subregion 
2: Asc (Australian Soil Classification; Class1=Anthroposols; Class2=Calcarosols; 
Class3=Chromosols; Class4=Dermosols; Class5=Ferrosols; Class6=Hydrosols; 
Class7=Kandosols; Class8=Kurosols Class9=Organosols; Class10=Podosols; 
Class11=Rudosols; Class 12=Sodosols; Class13=Tenosols; Class14=Vertosols); Fire (Fire 
frequency 1970-2015; Class 0=Areas that never burned and that are considered not flammable; 
Class 1= Areas that never burned; Class 2= Areas that burned 1 to 3 times; Class 3=Areas that 
burned more than 3 times ); Cra (Classification of browse species based on Crafti floristic 
groups; Class 1=primary browse species, Class 2=secondary browse species, Class 3=tertiary 
browse species; Class 4=unsuitable habitat); DEM (Digital elevation model); Bio 14 
(Precipitation of driest period); Bio28 (Annual mean moisture index); Biomass (Above ground 
biomass); Cra% (Percentage cover of primary and secondary Crafti-based browse species); 
Dep (Soil depth); Fpc (Foliage projective cover); NPP (Net primary productivity); Top 
(Topographic position index); Slo (Slope); Tor (Topographic roughness). 
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Figure 9. Koala habitat suitability map. 
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Figure 10. Koala habitat suitability map in four areas characterized by high record density 

We analysed the frequency of the 3116 Koala records that were excluded from MaxEnt 

analysis (see section Study area and Koala occurrence records and Model evaluation) within 

the nine suitability classes. The frequency of the nine classes was unimodal with over 75% 

of the study area recording habitat suitability values lower than 0.5 (Figure 11). The 

distribution was unequal across the classes and ~50% of the records were located in areas 

with habitat suitability > 0.6, representing ~8 % of the study area. The highest frequency of 
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records (~34%) was recorded between 0.6 and 0.7. Only ~7% of the records were located in 

areas with suitability <0.4, yet this constituted ~51 % of the study area.  

 

Figure 11. Distribution of area coverage (percentage) and Koala records (percentage) within 
nine habitat suitability classes. 

When the number of Koala records was displayed separately for each subregion (Figure 

12a,b), a different distribution is apparent. It is evident that the model for subregion1has a 

pattern where there are proportionally more records than expected for the area available for 

model output values >0.5. While this is also the case for subregion2, the discrimination 

ability of this model, based on the ratio of records to area, is better than in subregion1 for 

output values >0.6. The models for both subregions have few Koala records below model 

values <0.4.  

  



31 | 65 

 

 

 

Figure 12. Distribution of area coverage (percentage) and Koala records (percentage) within 
nine habitat suitability classes for (a) subregion1 and (b) subregion2. 

Field Validation of Habitat Model  
Ground-truth sites were evenly spread between lower slopes (n=28) and upper slopes 

(n=32) with a small sample from mid-slopes (n=5). Most sites were located in regrowth aged 

11-30 years (noting we avoided sites recently logged < 5 years ago) (Figure 13). Two of the 

65 SongMeters failed to record data, leaving us with occupancy data for 63 sites.  
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Figure 13. Distribution of sites across different logging histories. Years since logging were 
estimated in the field.  

Model Validation Using Koala Occupancy 
A total of 276 Koala bellows were recorded on 46 out of 441 nights of sampling at 29 % of 

sites. In comparison, Koala pellets were recorded at just 13 of 2,600 trees searched, 

representing 17 % of sites. No accumulations of pellets were found, with just a one or two 

being recorded beneath a tree. Moreover, 22 % of sites recorded a bellow, but no pellet and 

just 12 % of sites recorded a pellet, but no bellow. One individual Koala was observed at 

each of two sites (Maria River State Forest and Braemar State Forest). Interestingly, no 

Koala calls were recorded at Maria River State Forest, but Braemar State Forest yielded the 

highest number of calls of any site (Appendix B). No pellets were visible directly beneath the 

Koalas observed. Just a single pellet was found at Braemar State forest and none were 

found at Maria River State Forest (Appendix B). A high number (>20) of Koala calls were 

recorded at the following sites: Braemar State Forest, Wild Cattle Creek State Forest, 

Chichester State Forest, Pine Creek State Forest and Yabbra State Forest. These sites have 

a long history of logging, while just a single pellet and zero calls were recorded from 

unlogged sites (n=10, Appendix B).  

Validation of the MaxEnt model using occupancy data followed a number of steps. Modelling 

of detection probability indicated that constant detection was the best supported model 

(Table 3), with a low probability of detection per night of 0.32. However, varying detectability 

by trip fell within 2 AIC points of the top model and so was also supported (though with half 

the AIC weight). Koala detectability declined slightly from 0.43 in October/November to 0.36 

in late November to 0.30 in December. While different sites were sampled in each trip, a 

similar distribution of modelled habitat quality was sampled as per the sampling stratification 
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for ground-truthing. There was no indication that daily rainfall influenced bellow detectability, 

though it is possible that using rainfall just for the nocturnal recording period may have 

altered this result. The site-based, topographic position index had the least support for 

influencing detectability. 

Table 3: Model selection results for comparing Koala bellow detectability with rainfall, trip and 
topographic position in comparison to the null model with constant detection. 

Model AIC Delta AIC AIC 
weight 

Model 
Likelihood 

No. 
parameters 

-2*Log 
Likelihood 

psi(.),p(.) 238.74 0.00 0.6657 1.0000 2 234.74 

psi(.),p(trip) 240.22 1.48 0.3176 0.4771 2 236.22 

psi(.),p(rainfall) 246.12 7.38 0.0166 0.0250 2 242.12 

psi(.),p(topo) 253.2 14.46 0.005 0.0007 2 249.2 

 

Modelling of occupancy per site against the MaxEnt model values calculated at different 

spatial scales surrounding each ground-truthed site revealed most support for the 250 m 

pixel scale, with detectability either held constant or allowed to vary by trip (Table 4). All 

other models, including constant occupancy, were not supported. The plot of fitted values of 

occupancy per site demonstrates a near linear relationship with the MaxEnt model output 

(Figuer 14). In other words, an increase in model output was correlated positively with Koala 

occupancy (df=62, r=0.681, P<0.001). The data were considered to be a good fit to this 

model as assessed by the Pearson Chi-squared statistic (Chi-square=338.349, P=0.10, c-

hat = 1.5781). The probability of Koala occupancy ranged from <0.1 to just over 0.5. Low 

detectability of Koalas meant that occupancy could still be estimated for many sites where 

Koalas were not detected, albeit this ‘probability of occupancy’ was typically low. A similar 

positive relationship was evident when Koala occupancy and modelled output from each 

subregion were treated separately in the occupancy modelling framework (Sub-region 1 

(<500m ASL): df=36, r=0.622, P<0.001; Sub-region 2 (>/=500m ASL): df=25, r=0.704, 

P<0.001; Figure 15 a, b). Wider confidence intervals were especially evident for subregion 1 

at low MaxEnt model values and these are indicative of few ground-truthed sites sampled at 

low model values of < 0.29. For example, a red bloodwood and blackbutt dominated site on 

sandy soil at Banyabba SCA had the lowest model output score for subregion 1 (0.11) and it 

also had the lowest predicted Koala occupancy value (0.06). Yet confidence intervals were 

high because no other sites were sampled with such low model output scores. The outcome 

of few sites sampled at very low model output scores partly resulted from rainforest sites 

having higher than expected MaxEnt model values and some occupancy by Koalas (see 
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Model Validation Using the Site Habitat Quality Index). In addition, clearly unsuitable habitat 

such as heath or swamp was not ground-truthed. 

Table 4. Model selection results for comparing Koala occupancy with MaxEnt model output 
calculated for each ground-truth site at four different spatial scales. Detectability was held 
either constant (p(.)) or allowed to vary by trip (p(trip). 

Model AIC Delta AIC AIC 
weight 

Model 
Likelihood 

No. 
parameters 

-2*Log 
Likelihood 

psi(250m),p(.) 236.25 0 0.3928 1 3 230.25 

psi(250m),p(trip) 237.84 1.59 0.1774 0.4516 3 231.84 

psi(.),p(.) 238.74 2.49 0.1131 0.2879 2 234.74 

psi(500m),p(.) 239.04 2.79 0.0973 0.2478 3 233.04 

psi(1000m),p(.) 239.62 3.37 0.0728 0.1854 3 233.62 

psi(2000m),p(.) 240.5 4.25 0.0469 0.1194 3 234.5 

psi(500m),p(trip) 240.61 4.36 0.0444 0.113 3 234.61 

psi(1000m),p(trip) 241.18 4.93 0.0334 0.085 3 235.18 

psi(2000m),p(trip) 242.03 5.78 0.0218 0.0556 3 236.03 

 

Figure 14: Validation results from 63 ground-truth sites. The graph shows the relationship 
between the fitted probability of Koala occupancy (after accounting for detectability) against 
the MaxEnt model output at a 250 m pixel scale. Values are the mean fitted values + 95 % 
confidence intervals (i.e. predicted from the MaxEnt model). Model Fit: Chi-square=338.349, 
P=0.10, c-hat = 1.5781.  
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a. Subregion 1 (< 500 m elevation) 

 

b. Subregion 2 (> 500 m elevation) 

 

Figure 15. Validation results calculated separately for two subregions (subregion 1 (a), n = 38 
ground-truth sites; subregion 2 (b), n = 27 ground-truth sites). The graphs show the 
relationship between the fitted probability of Koala occupancy (after accounting for 
detectability) against the MaxEnt model output (250 m pixel scale). Values are the mean fitted 
values + 95 % confidence intervals (i.e. predicted from the MaxEnt model). 

Model Validation Using the Site Habitat Quality 
Index 
We used a site habitat quality index for model validation in addition to Koala occupancy to 

consider the possibility that the MaxEnt model was predicting habitat potential rather than 

occupancy. The site habitat quality index increased positively with the 250 m pixel MaxEnt 

output in both subregions (Subregion 1: r=0.537; P=0.0039; Subregion 2: r=0.384, P=0.017) 

(Figure 16). The relationship was weaker, though still significant, for the high elevation 

subregion 2, where there was more scatter and fewer ground-truth sites. On average, for a 

given model output, habitat quality was slightly higher in subregion2 than subregion1. Some 
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of the scatter can be attributed to a group of rainforest sites that are potentially over-

predicted by the model (Figure 16). These were typically small patches in close proximity to 

eucalypt forest. We also assessed the fit of alternative weightings for browse quality class, 

but these performed more poorly. 

Model Output Vs Site Habitat Quality
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Figure 16. The relationships between a habitat quality index based on browse tree availability 
and diversity with each MaxEnt model output for two subregions across 65 ground-truth sites. 
The blue oval highlights a group of rainforest sites that may be over-predicted by the model.  

How does the habitat quality index and other site attributes compare with the MaxEnt model 

for predicting Koala occupancy? We assessed this in the occupancy modelling framework 

and found that the MaxEnt model was strongly supported over the site habitat quality index, 

indicating that the MaxEnt model, which incorporates a range of explanatory variables, is a 

better predictor of Koala occupancy than a site based index based on browse tree 

availability and diversity (Table 6). When assessed individually, other site attributes including 

NPP, topographic position, elevation and the frequency of wildfires were also poorer 

predictors of Koala occupancy compared to the MaxEnt model,. To illustrate this, occupancy 

was not related to site elevation, although it was most variable at high elevations (Figure 17). 
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Figure 17. The relationship between fitted probability of Koala occupancy (after accounting for 
detectability) against elevation at 63 ground-truthed sites. 

 

Table 6. Model selection results comparing Koala occupancy with the 250 m scale MaxEnt 
model output, the habitat quality index and other site attributes calculated for each ground-
truth site, plus a null model with constant occupancy. Detectability was held constant. 

Model AIC Delta AIC AIC 
weight 

Model 
Likelihood 

No. parameters -2*Log 
Likelihood 

psi(250m),p(.)  236.25  0.00 0.5152  1.0000  3 230.25 

psi(.),p(.)  238.74  2.49 0.1483  0.2879  2 234.74 

psi(npp),p(.) 239.76 3.51 0.0891 0.1729 3 233.76 

psi(topo),p(.) 240.07 3.82 0.0763 0.1481 3 234.07 

psi(elevation),p(.) 240.55 4.3 0.06 0.1165 3 234.55 

psi(fire),p(.) 240.69 4.44 0.056 0.1086 3 234.69 

psi(habitat 
quality),p(.)  

240.07  3.82 0.0551  0.1481  3 234.07 

Finally, we also examined the accuracy of the Crafti layer to predict browse species present 

at ground-truth sites to assess the reliability of this predictor as an input variable for 

modelling. We found a good match between the dominant trees species present at ground 

truth sites and mapped Crafti type, with only 15 % of sites (n=10) being incorrectly typed. 

These were most frequently typed as New England Blackbutt (n=4), but often a mix of 

Messmate, Brown Barrel, Ribbon Gum or Sydney Blue Gum was present with no dominant 
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New England Blackbutt. Or alternatively, a site was incorrectly mapped as rainforest (n=3) 

where Brushbox and Sydney Blue Gum dominated. Seventy-one per cent of sites were 

classified correctly and a further 14 % contained species consistent with the Crafti forest 

type, but with one or more typical species absent. 

Discussion 
Koala Habitat Suitability Model 
Predictive models of habitat suitability have great potential to efficiently direct management 

actions for threatened species, especially for those that are rare or cryptic. The aim of our 

modelling approach was to produce a spatially explicit map of predicted Koala habitat 

suitability at a resolution suitable for management implementation. It corrected for the high 

spatial bias in the distribution of Koala records and was evaluated statistically as a good fit to 

existing Koala records, both for independent test sets (AUC) and the suite of records 

extracted from the National Parks Wildlife Atlas, but not used in modelling. Most importantly, 

there was good discrimination by each of the habitat suitability classes when compared with 

the Koala records not used by MaxEnt as well as its relative area of extent; i.e. 

proportionately more records per area with increasing suitability. 

The model used a suite of predictor variables that reflect vegetation productivity, soils, forest 

type, topography, climate and disturbance from wildfire. Other regional maps of Koala 

distribution in NSW focus on hot-spots of records and do not predict Koala occurrence in 

areas that have not been surveyed (Predavec et al. 2015). These maps are also produced at 

a much coarser resolution of 5 km2 or 10 km2. In comparison, fine-scale maps of Koala 

distribution have been produced at local scales and are based on associations between 

pellet counts and floristic associations (e.g. Lunney et al. 1998). Our modelling extends 

these approaches to the whole of forested north-east NSW at a fine resolution (250 m grid 

cell) and predicts habitat suitability in areas not surveyed. Another important advantage of 

the predictive regional model is that it contextualises the importance of particular areas for 

Koalas in a local-regional context or LGA scale such as for individual forests used for timber 

harvesting. This could be useful when considering cross-tenure protection or major projects 

such as urban development or highway upgrades. 

The predictive map derived for Koalas identifies areas of high habitat suitability (and 

likelihood of occurrence) as those with a low wildfire frequency over the past 45 years. There 

was weak support for a correlation between wildfire frequency and preferred Koala forest 
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types, suggesting that a small part of the fire effect could be due to a contribution from 

preferred Koala forest types being less prone to wildfires. High-intensity fires burn the 

canopy and can cause death or injury to Koalas and a reduction in the availability of foraging 

habitat (Lunney et al. 2004; Lunney et al. 2007). Existing studies on the impacts of wildfire 

on Koalas have mostly investigated small scale burns < 10,000 ha, suggesting that the scale 

of wildfires warrants further investigation. The model response curves showed that wildfire 

frequency had a more extreme response in sub-region 1 (elevation < 500 m). This is 

consistent with the north coast region recording the second highest number of fires of any 

region in the state (behind Sydney) (Bryant 2008), though it is unknown whether fire severity 

is higher in that region. Fire severity is likely to be a key factor threatening Koalas as the 

response of arboreal mammals to fire in Victorian forests was most strongly influenced by 

fire severity, with gullies and unburnt forest serving as key refuges (Chia et al. 2015). One 

implication of the importance of wildfires is that while an area may support a suitable suite of 

conditions for Koalas (e.g. browse species), such habitat may be unoccupied due to 

mortality from fire. Other historical factors or current threats including fragmentation by 

urbanisation, predation pressure (e.g. dogs) or extreme climatic events (e.g. drought and 

heat waves- Lunney et al. 2014; Briscoe et al. 2016) may similarly reduce Koala occupation 

levels. In addition, other forms of disturbance could also affect occupancy. The effect of 

logging disturbance on habitat suitability for Koalas warrants further investigation (e.g. 

Kavanagh et al. 1995; Smith 2004; Roberts 2008), though including logging history as an 

additional disturbance layer in future modelling of Koala habitat is not straightforward 

(Appendix A). 

Koalas also had a lower likelihood of occurrence on Tenosol and Rudosol soils. Tenosols 

are generally sandy with very low productivity and chemical fertility, poor structure and low 

water-holding capacity (Northcote et al., 1960-68). Rudosols tend to be shallow with little soil 

development and are often gravely or rocky. Podosols and Sodosols were predicted to have 

higher suitability for Koalas and these soils have high organic matter and occur either in 

coastal areas (Podosols) or areas with poor drainage (Sodosols), yet both are considered to 

be relatively infertile. As an example, many Koala records in the Port Stephens area occur 

on Podosol soils, which are likely to be associated with Swamp Mahogany Eucalyptus 

robusta, a preferred browse species in this and other coastal areas (Phillips et al. 2000). A 

direct measure of soil fertility was not supported during model building, possibly because 

much of the better quality soils have been cleared for agriculture and these were masked 

from our modelling process.  

Floristic composition was the third important variable contributing to the Koala model. 

Occurrence was more likely on areas mapped with primary browse species, including red 



40 | 65 

 

gum species (e.g. Eucalyptus tereticornis), Tallowwood (E. microcorys) and Swamp 

Mahogany (E. robusta) and least likely in areas mapped as unsuitable habitat (e.g. banksia 

heath, rainforest with no eucalypt emergents). The two intermediate floristic classes for 

Koala suitability had less discriminating ability, probably because many of these types are 

broad classifications of forest that support varying frequencies of browse species. For 

example, Blackbutt Eucalyptus pilularis and Spotted Gum Corymbia variegata types are 

widespread and not considered highly suitable for Koalas (e.g. Phillips et al. 2000), although 

the frequency of Tallowwood and Grey Gum E. punctata, two primary browse species, are 

highly variable in these types. 

Elevation was the fourth important variable in the Koala model. Habitat suitability was 

predicted to be higher at low elevations in sub-region one, but it was also predicted to be 

high at 500-600 m in sub-region 2. Elevations of 200-500 m and > 800 m were predicted to 

have lower suitability, though with other factors modifying this effect. This pattern of a low 

and mid-elevation peak for Koalas is probably driven to a large extent by the extensive 

number of records in coastal areas and in the Dorrigo plateau (e.g. Wild Cattle Creek State 

Forest) and adjacent to Comboyne plateau (Bulga State Forest). An association with low 

elevations has long been known (e.g. Kavanagh et al. 1995; Phillips et al. 2000; Smith 

2004), however, high habitat suitability at mid-elevation and even some high elevations such 

as Nowendoc appears to be less widely appreciated (but see Krockenberger 1993; 

Kavanagh and Stanton 1995; Braithwaite 1996; Roberts 1998). Interestingly, Koala 

occupancy at ground-truth sites was not related to elevation. It is also important to note that 

the New England Tablelands (and the north coast NSW) are predicted to provide climate 

refugia under climate change scenarios (Briscoe et al. 2016). One outcome of splitting our 

study region into two subregions based on the 500 m contour was a discontinuity between 

the subregions at this elevation, rather than a seamless transition. This could represent a 

limitation for management implementation of the model that could be addressed via setting 

different thresholds for classes of habitat suitability in the two subregions to a better 

transition between the subregions. 

Other variables made minor contributions to the Koala model, such as a greater likelihood of 

Koalas on flatter terrain and where soil depth, primary productivity, biomass and Fpc were 

higher. The contributions of variables differed somewhat between regions, such as a greater 

importance in sub-region1 than sub-region2 for precipitation in the driest quarter. A 

landscape effect of the surrounding area of preferred forest types had less influence in sub-

region1 where there were many Koala records in fragmented forest and a negative response 

to the surrounding area of preferred forest types was observed. 
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The major challenge in developing the MaxEnt model for Koalas was the highly biased 

dataset of records. There were two sources of bias that we corrected for. The first was major 

clusters of records at urban centres along the coast. Spatial aggregation was minimised 

(e.g., Parolo et al., 2008; Kramer-Schadt et al., 2013) by only using records that were 2 km 

apart and by splitting regional records into two sub-regions using the 500 m elevation 

contour. The second source of bias was the concentration of records along roads where 

people are most likely to encounter Koalas. We minimised the influence of roads and 

surveying bias by producing a bias file that increased weighting away from areas with more 

records of arboreal mammals. There were also many records that we excluded from our 

model-building in semi-cleared/urban areas, which (based on records) can provide important 

habitat for Koalas. Thus it is important to remember that the model output only covers 

forested areas, albeit with minimum vegetation patch sizes of ~6.5 ha. 

Further improvements to the model should be possible in the future. Perhaps the most 

significant would be more systematic surveys of Koalas in areas remote from major 

population centres to reduce the effect of record bias. An updated vegetation map for 

northeastern NSW with accurate data on canopy tree species, especially in farmland with 

scattered tree cover, would allow extension of the model into additional important Koala 

habitat. Theoretically, it could be possible to model to a finer resolution of 25 m with the 

data-layers used. However, use of such fine resolution needs to be balanced with an 

appreciation of the species ecology. For example, Koalas move over large areas and 

sightings recorded in a data-base are likely to include transient individuals making little use 

of that point in space. This suggests that there is value in maintaining a larger grid size that 

incorporates environmental conditions surrounding point records (see also Ream 2013). 

However, pixels larger than 250 m have the disadvantage of requiring excessive averaging 

over the fine scale variation in forest types and complex topography that occurs on the north 

coast of NSW. The current pixel size is considerably less than Koala home range size, which 

can vary from 59 ha for males to 26 ha for females, with considerable dispersal distances (> 

20km) (Matthews et al. 2016). 

Field validation 
Ground-truthing of MaxEnt predicted Koala habitat suitability provided strong support for the 

reliability of the model. Koala occupancy was found to increase in a near linear pattern as 

model output values increased. The same relationship was evident for each subregion when 

analysed separately, though the consequent reduction in the sample size of ground truth 

sites yielded wider confidence intervals for these relationships. The model output at a 250 m 

scale was the strongest performer when a number of spatial scales was considered, 
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indicating more extensive areas of higher habitat suitability than a 250 m pixel were not 

better predictors of Koala occupancy. This is consistent with the fact that the landscape 

variable, percentage cover of primary and secondary Crafti forest types, was a minor 

contributor to the Koala habitat suitability model. Such a result contrasts with local studies in 

fragmented rural areas that have identified the importance of landscape context, patch size, 

fragmentation and connectivity (McAlpine et al. 2006), though variations in threshold values 

for landscape variables vary with region (Rhodes et al. 2008).  

The MaxEnt model clearly outperformed a site based habitat quality index calculated from 

browse tree availability and diversity when predicting Koala occupancy that had been 

adjusted for detectability. This is not surprising, given that the determinants of Koala habitat 

are likely to include a range of features including tree species, soil fertility, moisture, 

topography, elevation and especially disturbance variables like wildfire frequency, all of 

which are accounted for by the model. In addition, there was considerable uncertainty in how 

to allocate tree species into different classes of browse quality. More quantitative data on 

Koala diet would be required to more reliably allocate tree species to different classes and to 

set appropriate weights in developing such a habitat quality index. This has implications for 

directing conservation actions or management mitigations for Koalas. Identification of sites 

based solely on browse tree species is likely to be relatively inaccurate, whereas habitat 

models that consider a suite of potential important variables should be more successful. 

MaxEnt models have not only been used to predict Koala habitat suitable at large scales 

(Briscoe et al. 2016), they been recommended for general use to guide habitat conservation 

and restoration efforts (Latif et al. 2015). 

It is important to note that models are not a perfect representation of the real world and, 

despite strong support, our MaxEnt model has limitations. In particular, the process of 

ground-truthing identified that patches of rainforest (especially at low elevation) are likely to 

be over-predicted by the model. Poor classification of rainforest is most apparent for smaller 

patches surrounded by otherwise suitable eucalypt forest. As an example, site 7L was a 

patch of rainforest in Cascade National Park, which in some areas contained emergent E. 

saligna and the patch itself was also in close proximity to eucalypt forest. Koalas were 

recorded calling at this site (Appendix B). It is possible that small rainforest patches are used 

for shelter by Koalas, especially during hot weather. This potential limitation of the model 

could be addressed by overlaying mapped rainforest over the model to highlight their low 

suitability. However, such a limitation is not likely to influence the implementation of the 

model given that rainforests are protected in NSW and cannot be harvested. Nevertheless, 

we recommend that model implementation for management purposes should be 
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accompanied by field inspections, especially to identify the local presence of browse trees, in 

combination with using the model output. 

Another key result of our ground-truthing was confirmation of the effectiveness of acoustic 

recorders, in conjunction with occupancy modelling, for quantitatively surveying Koalas 

based on detecting male mating bellows. SongMeters clearly outperformed pellet searches 

in detecting Koalas. Koala calls are considered to be detectable by SongMeters up to at 

least a 100 m radius (W. Ellis pers. comm.). More distant, faint calls may sometimes be 

recorded suggesting that acoustic recorders could have a larger sampling area than the 250 

m transect pellet search area in our study. However, topographic position was not related to 

Koala bellow detectability, indicating Koala detection did not vary greatly between ridges and 

gullies as would be expected if bellows are detectable over large distances. The Koala pellet 

survey not only yielded limited returns, it was not possible to account for pellet detectability 

based on a single visit and this prevented its use for model validation. Difficulty in identifying 

Koala habitat from pellet searches in some forest types (e.g. moist forests or where a dense 

understorey and litter is present) was one of the drivers for developing a model of Koala 

habitat. It is well known that Koala pellet detectability depends on ground layer complexity 

and that pellet decay rates vary within and among vegetation communities, being notably 

faster in moist types (Cristescu et al. 2012).  

Koalas were recorded acoustically on 29 % of ground-truth sites (42 % using all methods – 

acoustics, scats and sightings). However, it should be noted that a number of these sites 

were selected to test model performance in areas of low habitat quality, indicating true 

occupancy in better quality habitat would be higher. At areas of higher predicted quality, the 

estimated probability of occupancy is just over 0.5 (95 %CI: 0.28-0.77), suggesting that 

about half of the better quality forested habitat for Koalas in northern NSW is occupied. 

Further comparisons of occupancy would be valuable, such as against additional known and 

unknown populations or those predicted to be of very high quality by the latest version of the 

MaxEnt model. Some of these could be in coastal areas (e.g. far north coast), which were 

not a focus for ground-truthing. Previous surveys for Koalas in northern NSW have recorded 

them at much lower levels than our survey, including a regional survey of northern NSW (12 

% of sites – playback and spot-lighting; Kavanagh et al.1995), Grafton/Casino forests (4 % 

of sites - spotlighting and scat searches; Smith et al.1994), Urunga-Coffs Harbour forests (13 

% of sites- spotlighting and scat searches; Smith et al.1995) and Dorrigo forests (24 % of 

sites - playback and spotlighting; Kavanagh and Stanton 1995). More localised surveys have 

had more success. For example, Koala pellet searches detected Koalas at 79 % of a small 

number of random sites (n=14 sites) in the Dorrigo forests (Roberts 1998) and 49 % of 

survey sites in Pine Creek State Forest (Smith 2004). 
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Conclusions 
A predictive habitat model for northeastern NSW was developed for Koalas at a 250 m 

resolution based on spatially filtered and bias-corrected records. The model provided good 

discrimination ability for Koala records not used in model building. Field validation of the 

continuous model output using acoustic detectors to record male bellows demonstrated a 

linear increase in estimated Koala occupancy with higher model output values. The model 

output provided a better fit to Koala occupancy than site-derived estimates of habitat quality 

based on browse tree availability, though the latter was also correlated positively with the 

model output. We suggest that this provides strong evidence for using this model to guide 

management decisions for Koalas in forested habitat. One approach for doing this would be 

to derive thresholds for Koala habitat suitability that trigger different management actions, 

such as different degrees of browse tree retention. For example, one approach might be to 

set a small total area as ‘High Suitability’ (e.g. probability of occupancy >0.7) and allow this 

to trigger either exclusion areas or strict browse tree retention and to have reduced browse 

tree retention for a ‘moderate suitability’ class. Another approach would be to set the area of 

‘High Suitability’ more broadly and allow this to trigger a less rigid protection for browse 

trees. This approach would have the advantage of being less sensitive to prediction errors 

and in effect would spread the risk of failing to predict High Suitability habitat. A further 

alternative could combine both approaches. 

Finally, acoustic recorders represent an innovative opportunity to develop a robust and 

efficient method for monitoring trends in Koalas over time. This has traditionally been a 

difficult task that has led to an absence of reliable estimates of Koala trends. Combining 

acoustic recorders with an occupancy modelling framework would be a powerful method for 

monitoring Koalas across many sites at a landscape scale (MacKenzie et al. 2002). 

Acknowledgements 
Model development and ground-truthing was funded by NSW DPI (via Treasury CSO funds) 

and NSW EPA (via the NSW Environmental Trust). We thank M. Dobson, B. Faulkner, M. 

Fisher, M. Predavec, C. Slade, J. Williams and J. Willoughby for numerous discussions on 

Koala habitat. M. Predavec kindly provided search effort data on arboreal marsupials that 

formed the basis of our bias file. A. McIllwee shared additional data layers of potential 

relevance to Koalas. Pat Tap lent SongMeters to the project. We thank J. Brown, K. Harvey, 

and P. Law for assistance in retrieving SongMeters. L. Potter assisted with collection of all 

systematic tree data and undertook scat searches. A. Kathuria and P. Law provided 



45 | 65 

 

statistical advice in relation to designing the ground-truthing and developing the habitat 

suitability index. Floristic associations in the Crafti vegetation layer was originally coded for 

Koala suitability by C. Slade and this was later refined using a data-layer prepared by OEH 

and provided by J. Turbill. G. Bonsen assisted with data compilation. Valuable comments on 

preliminary draft models and the report were provided by B. Faulkner, R. Kavanagh, C. 

McAlpine, C. McLean, T. Penman, M. Predavec, J. Rhodes, C. Slade and C. Stone. 

Reference List  
Araujo, M. B. and Guisa, A. (2006), Six (or so) research priorities for species 
distribution modelling. Journal of Biogeography, 33, 1677–1688. 

Braithwaite, L. W. (1996), Conservation of arboreal herbivores: the Australian scene. 

Australian Journal of Ecology, 21, 21–30. 

Briscoe, N. J., Kearney, M. R., Taylor, C. A. and Wintle, B. A. (2016), Unpacking the 
mechanisms captured by a correlative species distribution model to improve 
predictions of climate refugia. Glob Change Biol, 22, 2425–2439. 

Bryant, C. (2008), Understanding bushfire: trends in deliberate vegetation fires in 
Australia. Technical and Background paper No.27. Canberra: Institute of Criminology. 

Busby, J. R. (1991), BIOCLIM – a bioclimatic analysis and prediction system. Nature 

conservation (ed. By C.R. Margules and M.O. Austin), pp. 64–68. CSIRO, Canberra. 

Caccamo, G., L. A. Chisholm; R. A. Bradstock and M. L. Puotinen (2011), Assessing the 
Sensitivity of Modis to Monitor Drought in High Biomass Ecosystems. Remote Sensing 

of Environment, 115, 2626–39. 

Callaghan, J., McAlpine, C., Mitchell, D., Thompson, J., Bowen, M., Rhodes, J., de Jong, C., 

Sternberg, R. And Scott, A. (2011), Ranking and mapping Koala habitat quality for 
conservation planning on the basis of indirect evidence of tree-species use: a case 
study of Noosa Shire, south-eastern Queensland. Wildlife Research, 38, 89–102. 

Chafer, C. J., M. Noonan and E. Macnaught (2004), The Post-Fire Measurement of Fire 
Severity and Intensity in the Christmas 2001 Sydney Wildfires. International Journal of 

Wildland Fire, 13, 227–40. 

Coops, N., A. Delahaye and E. Pook (1997), Estimation of Eucalypt Forest Leaf Area 
Index of the South Coast of New South Wales Using Landsat Mss Data. Australian 

Journal of Botany, 45, 757–69. 



46 | 65 

 

Cristescu, R. H., Goethals, K., Banks, P. B., Carrick, F. N., and Frère, C. (2012) 

Experimental Evaluation of Koala Scat Persistence and Detectability with Implications 
for Pellet-Based Fauna Census. International Journal of Zoology, 2012, 12 pages. 

doi:10.1155/2012/631856. 

Crowther, M. S., McAlpine, C. A., Lunney, D., Shannon, I., & Bryant, J. V. (2009), Using 
broad-scale, community survey data to compare species conservation strategies 
across regions: A case study of the Koala in a set of adjacent ‘catchments’. Ecological 

Management & Restoration, 10, 88–96. 

Department of Environment and Climate Change (2008), Recovery Plan for the Koala 
(Phascolarctos cinereus). Sydney, NSW. 

Dickson, B. G., Sisk, T. D., Sesnie, S. E., Reynolds, R. T., Rosenstock, S. S., Vojta, C. D., 

Ingraldi, M. F., Rundall, J. M. (2014) Integrating single-species management and 
landscape conservation using regional habitat occurrence models: the northern 
goshawk in the Southwest, USA. Landscape Ecology 29, 803–15. 

Elith, J., Graham, H. C., Anderson, P. R., Dudík, M., Ferrier, S., Guisan, A., Hijmans, R. J., 

Huettmann, F., Leathwick, J. R., Lehmann, A., Li, J., Lohmann, L. G., Loiselle, B. A., 

Manion, G., Moritz, C., Nakamura, M., Nakazawa, Y., Overton, J. McC. M., Townsend 

Peterson, A., Phillips, S. J., Richardson, K., Scachetti-Pereira, R., Schapire, R. E., Soberón, 

J., Williams, S., Wisz, M. S. and Zimmermann, N. E. (2006), Novel methods improve 
prediction of species’ distributions from occurrence data. Ecography, 29: 129–151. 

doi: 10.1111/j.2006.0906-7590.04596.x. 

Ellis, W., Bercovitch, F., FitzGibbon, S., Roe, P., Wimmer, J., Melzer, A., and R. Wilson 

(2011), Koala bellows and their association with the spatial dynamics of free-ranging 
koalas. Behavioral Ecology 2011, 1–6. 

Ellis, W., FitzGibbon, S., Melzer, A., Wilson, R., Johnston, S., Bercovitch, F., Dique, D., 

and Carrick, F. (2013). Koala habitat use and population density: using field data to test 
the assumptions of ecological models. Australian Mammalogy, 35, 160–165. 

http://dx.doi.org/10.1071/AM12023  

Hines J. E. (2006), PRESENCE2: software to estimate patch occupancy and related 
parameters. U.S. Geological Survey, Patuxent Wildlife Research Center, Laurel, Maryland, 

USA. www.mbr-pwrc.usgs.gov/software/presence.html 

Houlder, D., Hutchinson, M., Nix, H., McMahon, J. (2009), ANUCLIM 5.1 – User’s Guide. 

The Australian National University, Centre for Resource And Environmental Studies. 

http://dx.doi.org/10.1071/AM12023
http://www.mbr-pwrc.usgs.gov/software/presence.html


47 | 65 

 

Kavanagh, R. P., Debus, S, Tweedie, T, and Webster, R (1995), Distribution of nocturnal 
forest birds and mammals in north-eastern New South Wales: relationships with 
environmental variables and management history. Wildlife Research 22, 359–377. 

Kavanagh, R. P. and Stanton, M. A. (1995), Nocturnal birds and non-flying mammals of 
the Dorrigo three-year environmental impact statement area, Northern region, New 
South Wales. Forest Resources Series 26, State Forests of NSW, West Pennant Hills. 

Kavanagh, R. P., Stanton, M. A., and Brassil, T. E. (2007), Koalas continue to occupy their 
previous home-ranges after selective logging in Callitris–Eucalyptus forest. Wildlife 

Research 34, 94–107. 

Kramer-Schadt, S., Niedballa, J., Pilgrim, J. D., Schröder, B., Lindenborn, J., Reinfelder, V., 

Stillfried, M., Heckmann, I., Scharf, A. K., Augeri, D. M., Cheyne, S. M., Hearn, A. J., Ross, 

J., Macdonald, D. W., Mathai, J., Eaton, J., Marshall, A. J., Semiadi, G., Rustam, R., 

Bernard, H., Alfred, R., Samejima, H., Duckworth, J. W., Breitenmoser-Wuersten, C., Belant, 

J. L., Hofer, H., Wilting, A. (2013), The importance of correcting for sampling bias in 
MaxEnt species distribution models. Diversity and Distributions, 19, 1366–1379. 

doi: 10.1111/ddi.12096. 

Krockenberger, A. (1993), Energetics and nutrition during lactation in the koala, 
Phascoarctos cinereus. PhD Thesis, University of Sydney. 

Kumar, S. and Stohlgren, T. J., (2009) Maxent modelling for predicting suitable habitat 
for threatened and endangered tree Canacomyrica monticola in New Caledonia. 

Journal of Ecology and Natural Environment, 1(4), 94–98. 

Latif, Q. S., Saab, V. A., Mellen-Mclean, K. and Dudley, J. G. (2015), Evaluating habitat 
suitability models for nesting white-headed woodpeckers in unburned forest. The 

Journal of Wildlife Management 79, 263–273. doi: 10.1002/jwmg.842. 

Lei Ji, Peters, A. J. (2003), Assessing vegetation response to drought in the northern 
Great Plains using vegetation and drought indices. Remote Sensing of Environment 87, 

85–98. 

Liu, C., White, M., Newell, G., Griffioen. (2013) Species distribution modelling for 
conservation planning in Victoria, Australia. Ecological Modelling, 249: 68–74. 

Lunney, D., Phillips, S., Callaghan, J. and Coburn, D. (1998) Determining the distribution 
of Koala habitat across a shire as a basis for conservation: a case study from Port 
Stephens, New South Wales. Pacific Conservation Biology 4(3): 186–196. 



48 | 65 

 

Lunney D., O’Neill L., Matthews A. and Sherwin W. B. (2002) Modelling mammalian 
extinction and forecasting recovery: Koalas at Iluka, NSW, Australia. Biological 

Conservation 106: 101–113. 

Lunney D., Gresser S. E. O'neill L., Matthews A., Rhodes J. (2007), The impact of fire and 
dogs on Koalas at Port Stephens, New South Wales, using population viability 
analysis. Pacific Conservation Biology 13, 189–201.  

Lunney, D., Crowther, M. S., Shannon, I., and Bryant, J. V. (2009). Combining a map-
based public survey with an estimation of site occupancy to determine the recent and 
changing distribution of the koala in New South Wales. Wildlife Research 36, 262–273. 

Lunney, D., Stalenberg, E., Santika, T., and Rhodes, J. R. (2014) Extinction in Eden: 
identifying the role of climate change in the decline of the Koala in south-eastern 
NSW. Wildlife Research 41, 22–34. http://dx.doi.org/10.1071/WR13054  

MacKenzie D. I., Nichols J. D., Lachman G. B., Droege S., Royle J. A. & Langtimm C. A. 

(2002), Estimating site occupancy rates when detection probabilities are less than 
one. Ecology 83, 2248–2255. 

McAlpine, C. A., Rhodes, J. R., Bowen, M. E., Lunney, D., Callaghan, J. G., Mitchell, D. L. 

and Possingham, H. P. (2008) Can multiscale models of species’ distribution be 
generalized from region to region? A case study of the koala. Journal of Applied 

Ecology 45, 558–567. doi: 10.1111/j.1365-2664.2007.01431.x. 

Matthews, A., Lunney, D., Gresser, S., and Maitz, W. (2016) Movement patterns of koalas 
in remnant forest after fire. Australian Mammalogy 38, 91–104. 

http://dx.doi.org/10.1071/AM14010  

Moore, B. D., Lawler, I. R., Wallis, I. R., Beale, C. M., & Foley, W. J. (2010). Palatability 
mapping: a Koala's eye view of spatial variation in habitat quality. Ecology, 91, 3165–

3176. 

NSW National Parks and Wildlife Service (2001a). Completion of GIS Products for the 
upper north east CRAFTI floristic layer: Upper north east RFA region. 

NSW National Parks and Wildlife Service (2001b). Completion of GIS Products for the 
upper north east CRAFTI floristic layer: Lower north east RFA region. 

http://dx.doi.org/10.1071/WR13054
http://dx.doi.org/10.1071/AM14010


49 | 65 

 

Northcote, K. H. with Beckmann, G. G., Bettenay, E., Churchward, H. M., Van Dijk, D. C., 

Dimmock, G. M., Hubble, G. D., Isbell, R. F., McArthur, W. M., Murtha, G. G., Nicolls, K. D., 

Paton, T. R., Thompson, C. H., Webb, A. A. and Wright, M. J. (1960-1968). Atlas of 
Australian Soils, Sheets 1 to 10. With explanatory data (CSIRO Aust. and Melbourne 

University Press: Melbourne). 

Parolo, G., Rossi, G. and Ferrarini, A. (2008), Toward improved species niche 
modelling: Arnica montana in the Alps as a case study. Journal of Applied Ecology, 

45: 1410–1418. doi: 10.1111/j.1365-2664.2008.01516.x 

Penman, T. D., Pike, D. A., Webb, J. K. and Shine, R. (2010), Predicting the impact of 
climate change on Australia's most endangered snake, Hoplocephalus bungaroides. 

Diversity & Distributions, 16: 109–118. 

Pettorelli, N., Ryan, S. J., Mueller, T., Bunnefeld, N., Jedrzejewska, B., Lima, M. and 

Kausrud, K. (2011), The Normalized Difference Vegetation Index (NDVI): unforeseen 
successes in animal ecology. Climate Research 46: 15–27. 

Phillips, S. J., Anderson, R. P., Schapire, R. E. (2006), Maximum entropy modeling of 
species geographic distributions. Ecological Modelling, Volume 190, Issues 3–4, 25 

January 2006, Pages 231–259. 

Phillips, S. J. and Dudik, M. (2008), Modeling of species distributions with MaxEnt: new 
extensions and a comprehensive evaluation. Ecography 31: 161175, 2008 

Phillips, S. and Callaghan, J. (2000) . Tree species preferences of Koalas (Phascolarctos 
cinereus) in the Campbelltown area south-west of Sydney, New South Wales. Wildlife 

Research 27, 509–516. 

Phillips, S., Callaghan J. and Thompson V. (2000). The tree species preferences of 
Koalas (Phascolarctos cinereus) inhabiting forest and woodland communities on 
Quaternary deposits in the Port Stephens area, New South Wales. Wildlife Research, 

27, 1–10. 

Phillips, S., and Callaghan, J. (2011), The Spot Assessment Technique: a tool for 
determining localized levels of habitat use by koalas Phascolarctos cinereus. 

Australian Zoologist 35(3): 774–780. 

Pollard, J. H. (1971), On distance estimators of density in randomly distributed forests. 

Biometrics 27, 991–1002. 

https://scholar.google.com.au/scholar?oi=bibs&cluster=302136547677342020&btnI=1&hl=en
https://scholar.google.com.au/scholar?oi=bibs&cluster=302136547677342020&btnI=1&hl=en


50 | 65 

 

Predavec, M., Lunney, D., Scotts, D., Turbill, J. and Shannon, I. (2015). A preliminary map 
of the likelihood of Koalas within NSW For use in Private Native Forestry applications. 
Office and Environment and Heritage. 

Ream, B. (2013) Mapping Eucalypts in South-West Queensland: Answering the 
question can fine resolution satellite remote sensing be used to map eucalypt 
composition. M. Phil. Thesis, University of Queensland. 

Roberts, P (1998), Associations Between Koala Faecal Pellets and Trees at Dorrigo. 

M.Sc. Thesis, University of New England. 

Rhodes, J. R., Callaghan, J. G., McAlpine, C. A., De Jong, C., Bowen, M. E., Mitchell, D. L., 

Lunney, D. and Possingham, H. P. (2008). Regional variation in habitat–occupancy 
thresholds: a warning for conservation planning. Journal of Applied Ecology, 45 549–

557. 

Rouse, J. W., R. H. Haas, J. A. Schell, D. W. Deering (1974), Monitoring vegetation 
systems in the Great Plains with ERTS. Proc. Third Earth Resources Technology 

Satellite-1 Symposium, SP-351, Greenbelt, MD (1974), pp. 309–317. 

Sequeira, A. M. M., Roetman, P. E. J., Daniels, C. B., Baker, A. K., and Bradshaw, C. J. A. 

(2014). Distribution models for Koalas in South Australia using citizen science-
collected data. Ecology and Evolution, 2103–2114. 

K. Soudani, G. Hmimina, N. Delpierre, J.-Y. Pontailler, M. Aubinet, D. Bonal, B. Caquet, A. 

de Grandcourt, B. Burban, C. Flechard, D. Guyon, A. Granier, P. Gross, B. Heinesh, B. 

Longdoz, D. Loustau, C. Moureaux, J.-M. Ourcival, S. Rambal, L. Saint André, E. Dufrêne, 

Ground-based Network of NDVI measurements for tracking temporal dynamics of 
canopy structure and vegetation phenology in different biomes. Remote Sensing of 

Environment, Volume 123, August 2012, Pages 234–245, ISSN 0034-4257. 

http://dx.doi.org/10.1016/j.rse.2012.03.012  

Smith, A. P., Andrews, S. A., Moore, D. M. (1994), Description and assessment of 
forestry impacts on the terrestrial fauna of the Grafton and Casino State Forests. In 

EIS for Proposed Forestry Operations in the Grafton Management Area; supporting 

document 1., pp. 135, State Forests of NSW. 

Smith, A. P., Andrews, S. A., Gration, G., Quin, D., & Sullivan, B. (1995), Description and 
assessment of forestry impacts on fauna of the Urunga-Coffs Harbour management 
areas. In EIS for Proposed Forestry Operations in the Coffs Harbour/Urunga Management 

Areas; supporting document 4., pp. 160, State Forests of NSW. 

http://dx.doi.org/10.1016/j.rse.2012.03.012


51 | 65 

 

Smith, A. P. (2004) Koala conservation and habitat requirements in a timber production 
forest in north-east New South Wales. In Conservation of Australia's Forest Fauna 

(Second Edition edn) (Lunney, D, ed), pp. 591–611, Royal Zoological Society of New South 

Wales. 

Towsey, M., Planitz, B., Nantes, A., Wimmer J. & Roe P. (2012) A toolbox for animal call 
recognition. Bioacoustics: The International Journal of Animal Sound and its Recording 

21:2, 107–125. 

Tucker, C. J., Sellers, P. J. (1986). Satellite remote sensing of primary production. 

International Journal of Remote Sensing, 7, 1396–1416. 

Van Dyck, S., Strahan, R. and Queensland Museum. (2008), The mammals of 
Australia. Sydney: New Holland Publishers. 

Williams, K. J., et al. (2010), Harnessing continent-wide biodiversity datasets for 
prioritising national conservation investment. Canberra: CSIRO Ecosystem Sciences, A 

report prepared for the Department of Sustainability, Environment, Water, Population and 

Communities, Australian Government, Canberra. 

Wintle, B. A., R. P. Kavanagh, M. A. McCarthy, and Burgman, M. A. (2005) Estimating and 
dealing with detectability in occupancy surveys for forest owls and arboreal 
marsupials. Journal of Wildlife Management 69: 905–917. 

Woosnam-Merchez, O., Cristescu, R., Dique, D., Ellis, B., Beeton, R. J. S., Simmonds, J. 

and Carrick, F. (2012), What faecal pellet surveys can and can’t reveal about the 
ecology of koalas Phascolarctos cinereus. Australian Zoologist 36: 192–200. 

doi:10.7882/AZ.2012.030  

Yost, A. C., Petersen, S. L., Gregg, M., Miller, R. (2008), Predictive modeling and 
mapping sage grouse (Centrocercus urophasianus) nesting habitat using Maximum 
Entropy and a long-term dataset from Southern Oregon. Ecological Informatics, Volume 
3, Issue 6, 375–386  



52 | 65 

 

Appendix A 
Forest successional stage data-layers were explored for use as input variables to MaxEnt 
modelling of Koala habitat suitability. We followed two approaches to assess the usefulness 
of such layers. 

High Conservation Value Old Growth layer 
High Conservation Value Old growth was mapped in the 1990s for the North East CRAFTI 
Structural and Floristic Layers project as part of the CRA process. We assumed old growth 
had not dramatically changed in extent since that time because old growth is not harvested 
in northern NSW. This allowed us to model with the entire sample of Koala records from 
1990 to 2016. This layer was used in conjunction with the same predictors, Koala samples, 
bias layer and parameters as those used for our previous best model. Five random sets of 
Koala records were run to produce five separate models. All pixels within Old Growth were 
classified as 1 and all other pixels 0.  

The model predicted that Koala habitat suitability was lower in old growth than non-old 
growth (Figure A1), with similar patterns observed in both sub-regions. However, this data 
layer made only a minor contribution to the model compared to other variables, ranging from 
0.1-0.5 % contribution in sub-region 1 and 0.6-3.7 % in sub-region 2 (range in contribution 
reflects variability in the five random sub-sets of Koala records modelled). Inspection of the 
map output from this model indicated little difference between our previous best model and 
the model including old growth as an input. Given the minor contribution to the model and 
the need to minimise the total number of variables for parsimony in modelling, we excluded 
this layer from the final model. 

 
Figure A1. Example response curve for predicted Koala habitat and the old growth layer from 
one random data set from sub-region 1. The red bar represents the mean response whilst the 
two shades of blue represents the mean +/- one standard deviation. 1= old growth and 0=non-
old-growth.  
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Forest Successional Stage Layer 
This layer was mapped in conjunction with the old growth layer in the 1990s for the North 
East CRAFTI Structural and Floristic Layers project (CRA process) using aerial photography 
between 1991 and 1997 and various other disturbance information inputs. It is an update of 
the original Successional Stages layer produced during the U/LNE Comprehensive Regional 
Assessment (CRA) process in 1998, being completed in 2001. Although the mapping 
extended across all land tenures, a major issue with including it in Koala modelling is that the 
layer provides a snapshot of successional changes in the 1990s, which is likely to have 
dramatically changed since then. For example, a considerable proportion of the ‘mature 
forest’ is likely to have been harvested since then and much of the ‘recently disturbed forest’ 
could have transitioned to ‘young forest’. Rather than include Koala records from our entire 
data-set (1990-2015) we explored the usefulness of this layer with Koala records extracted 
from the same time period as the successional mapping(1990-2000). 

The successional stage layer was acquired from:  

data.environment.nsw.gov.au/dataset/successional-stages-for-cra-lower-north-east-vis_id-
3892bbee9  

data.environment.nsw.gov.au/dataset/successional-stages-for-cra-upper-north-east-vis_id-
389302b97  

The layer was used in conjunction with the same predictors, bias layer and parameters as 
those used for our previous best model, though Koala samples were restricted to 1990-2000. 
Five random sets of Koala records were run to produce five separate models. The layer was 
reclassified as follows: Non forest = 0, Candidate old growth = 1, Disturbed Mature Forest = 
2, Disturbed Old Growth = 3, Mature forest = 4, Rainforest = 5, Recently Disturbed = 6, 
Young = 7. 

The model predicted that Koala habitat suitability was lowest in old growth and rainforest and 
highest in recently disturbed, young and disturbed mature forest (Figure A2), with similar 
patterns observed in both sub-regions. This data layer made a moderate contribution to the 
model, ranging from 7.6-13.1 % contribution in sub-region 1 and 8.8-15.1 % in sub-region 2 
(range in contribution reflects variability in the five random sub-sets of Koala records 
modelled). Inspection of the map output from this model indicated some important 
differences from our previous best model. Notably, the coastal strip of the far north coast 
was no longer modelled as very high quality, while new areas were modelled as very high 
quality such as forests immediately south of the Bellinger River. Much of the Tablelands 
were predicted to be of lower quality than indicated by the previous best model. Other areas 
such as the broader Dorrigo plateau continued to be modelled as very high quality habitat. 

While the results from modelling this input layer suggest there is some merit in considering 
forest successional stage in modelling Koala habitat, there are a number of reasons why we 
considered that this layer was inappropriate for inclusion in our best model. First, a previous 
preliminary field validation of its accuracy for the Upper North East assessment found 41% 
of 56 sites indicated agreement with the API growth stage, while 59 % showed 
disagreement1. Such uncertainty was considered problematic. Second, because the layer 
described forest succession in the 1990s, we were limited to using Koala records only from 
that decade. Finally, and most importantly, any model produced from this snap shot of forest 
succession in the 1990s necessarily provides a snap-shot of Koala habitat, as influenced by 
this layer, for that time period. These successional stages have now changed in many areas 

http://data.environment.nsw.gov.au/dataset/successional-stages-for-cra-lower-north-east-vis_id-3892bbee9
http://data.environment.nsw.gov.au/dataset/successional-stages-for-cra-lower-north-east-vis_id-3892bbee9
http://data.environment.nsw.gov.au/dataset/successional-stages-for-cra-upper-north-east-vis_id-389302b97
http://data.environment.nsw.gov.au/dataset/successional-stages-for-cra-upper-north-east-vis_id-389302b97
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(as described above), so there is little value in using this layer to predict Koala habitat 
suitability in 2016.  

Derivation of an up to date successional stage layer that spans across tenure has the 
potential to improve modelling of Koala habitat suitability, but this was beyond the scope of 
this project. It would also always have the limitation of applying to a narrow window of time 
given dynamic changes to forest successional ages. Derivation of a new layer quantifying 
the frequency of logging events also could be of potential value for modelling logging 
disturbance history and Koalas. However, given the rotation lengths of logging, this would 
need to be derived over a considerable time period and on public and private tenure. The 
extended window needed for classifying number of logging events is an important distinction 
from wildfires, which can burn in relatively close succession if conditions are suitable, and it 
was this characteristic that allowed us to classify frequency of wildfires within the last 45 
years from an existing fire layer. 

 
Figure A2. Example Successional Stage response curve for Sub-region 1. The red bar 
represents the mean response whilst the two shades of blue represent the mean +/- one 
standard deviation. Non forest = 0, Candidate old growth = 1, Disturbed Mature Forest = 2, 
Disturbed Old Growth = 3, Mature forest = 4, Rainforest = 5, Recently Disturbed = 6, Young = 7. 

Reference 
1 UNE - LNE CRAFTI ACCURACY ASSESSMENT REPORT (1998). Unpublished report, 
NSW Government. 
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Appendix B 
Sixty-five ground truth sites in northern NSW. Fire and logging descriptions were based on field assessments by B. Law. Number of Koala calls 
were those recorded by SongMeters over a seven night period after manually checking software generated ‘matches’ with a Koala call 
recogniser. Number of Koala scats refers to the total number recorded within a 1 m search area at the base of 40 trees (> 20 cm dbh) per site. 

Site Reserve Topographic 
position 

Elevation Fire 
Severity 

Estimated time 
since last fire 

(yrs) 

Logging 
History 

Estimated 
time since 

last 
harvesting 
event (yrs) 

Number 
of Koala 

scats 

Number 
of Koala 

calls 

Dominant tree 
species 

1H  WALLAROO SF flat 25 light 10-15 Moderate 20 1 0 Small-fruited 
Grey Gum, 
Tallowwood 

1L PORT 
STEPEHENS 

swamp 2 none  None  0 0 Swamp Oak, 
Swamp 
Mahogany 

1M WALLAROO SF flat 17 light 10 None  0 0 Rough-barked 
Apple, Red 
Mahogany 

1VH TILLIGERRY 
SCA 

swamp 10 moderate 10 none  1 0 Broad-leaved 
Paperbark, 
Blackbutt 

2H BULLS GROUND 
SF 

mid slope 153 light 5-10 heavy 30 0 0 Blackbutt, 
Grey Ironbark 

2L  COMBOYNE upper slope 702 none  none >50 0 0 Rainforest spp.  
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Site Reserve Topographic 
position 

Elevation Fire 
Severity 

Estimated time 
since last fire 

(yrs) 

Logging 
History 

Estimated 
time since 

last 
harvesting 
event (yrs) 

Number 
of Koala 

scats 

Number 
of Koala 

calls 

Dominant tree 
species 

2M BAGO BLUFF 
NP 

lower slope 246 none  none >50 0 0 Blackbutt, 
Tallowwood 

2VH COWARRA SF flat 44 moderate 10-15 none  0 0 Narrow-leaved 
Red Gum, 
Rough-barked 
Apple 

3H ENFIELD SF flat 1159 light 10 light 10-15 1 0 Messmate, 
Ribbon Gum 

3L COTTAN-
BIMBANG NP 

mid slope 1091 none  none  0 0 Rainforest spp. 

3M DOYLES RIVER 
SF 

upper slope 1063 light 10 light 10 0 0 Sydney Blue 
Gum, eucalypt  

3VH ENFIELD SF flat 1134 light 15 light 10 2 0 Messmate, 
Brown Barrel 

4H1 CHICHESTER 
SF 

ridge 326 none 10 moderate 20 0 40 Large-fruited 
Grey Gum, 
Tallowwood 

4Ha BARRINGTON 
TOPS NP 

ridge 841 none  none  0 0 White-topped 
Box, Silver-top 
Stringybark 



57 | 65 

 

Site Reserve Topographic 
position 

Elevation Fire 
Severity 

Estimated time 
since last fire 

(yrs) 

Logging 
History 

Estimated 
time since 

last 
harvesting 
event (yrs) 

Number 
of Koala 

scats 

Number 
of Koala 

calls 

Dominant tree 
species 

4M CHICHESTER 
SF 

ridge 490 none 20 heavy 30 0 0 Tallowwood, 
Sydney Blue 
Gum 

4Ma CHICHESTER 
SF 

upper slope 845 none  heavy 30 1 0 Sydney Blue 
Gum, Silver-
top Stringybark 

5H BALLENGARRA 
SF 

upper slope 151 light 10 heavy 20 0 0 White 
Mahogany, 
Small-fruited 
Grey Gum 

5Ha MARIA RIVER 
SF 

creek 25 light 10 moderate 15 0 0 Blackbutt, 
Ironbark 

5M MARIA RIVER 
SF 

flat 21 moderate 5-10 moderate 15 0 0 Blackbutt, 
Stringybark 

5VH BALLENGARRA 
SF 

upper slope 178 light 3-4 moderate 10 0 0 Tallowwood, 
Blackbutt 

6H GLENUGIE SF mid slope 82 light 5-10 heavy 20 0 0 Spotted Gum, 
Narrow-leaved 
Ironbark 
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Site Reserve Topographic 
position 

Elevation Fire 
Severity 

Estimated time 
since last fire 

(yrs) 

Logging 
History 

Estimated 
time since 

last 
harvesting 
event (yrs) 

Number 
of Koala 

scats 

Number 
of Koala 

calls 

Dominant tree 
species 

6L BARCOONGERE 
SF 

flat 22 none  heavy 10 0 0 Blackbutt  

6M GLENUGIE SF simple slope 53 light 5-10 heavy 20 0 0 Red Ironbark, 
Spotted Gum 

6VH WEDDING 
BELLS SF 

ridge 172 none  heavy 30 0 0 Blackbutt, 
Tallowwood 

7H WILD CATTLE 
CREEK SF 

gully 570 none  heavy 30 0 0 Sydney Blue 
Gum, Forest 
Oak 

7Ha WILD CATTLE 
CREEK SF 

lower slope 656 none  moderate 30 0 44 Flooded Gum, 
Tallowwood 

7L CASCADE NP upper slope 808 none  heavy 40 0 3 Rainforest 
spp., Sydney 
Blue Gum 

7M CASCADE NP upper slope 742 none  heavy 30 1 0 Brush Box, 
Sydney Blue 
Gum 

8H CLOUDS CREEK 
SF 

upper slope 859 none  light 30 1 1 Sydney Blue 
Gum, 
Tallowwood 
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Site Reserve Topographic 
position 

Elevation Fire 
Severity 

Estimated time 
since last fire 

(yrs) 

Logging 
History 

Estimated 
time since 

last 
harvesting 
event (yrs) 

Number 
of Koala 

scats 

Number 
of Koala 

calls 

Dominant tree 
species 

8Ha CLOUDS CREEK 
SF 

ridge 862 light 10 light 30 0 6 New England 
Blackbutt, 
Tallowwood 

8VH CLOUDS CREEK 
SF 

upper slope 817 none  light 30 0 0 Sydney Blue 
Gum, Brush 
Box 

8VHa CLOUDS CREEK 
SF 

 800 none 10-15 light 5 0 0 Sydney Blue 
Gum, 
Tallowwood 

9H PINE CREEK SF lower slope 26 light 10 heavy 30 0 22 Tallowwood, 
Blackbutt 

9VH PINE CREEK SF lower slope 30 light 10 heavy 30 0 1 Blackbutt, 
Tallowwood 

9VHA BONGIL BONGIL 
NP 

ridge 51 none 20 heavy 30 0 0 White 
Mahogany, 
Grey Ironbark 

9VHb PINE CREEK SF mid slope 62 none 20 heavy 40 0 3 Flooded Gum, 
Turpentine 

10H INGALBA SF ridge 78 none 10 heavy 30 0 0 White 
Mahogany, 
Small-fruited 
Grey Gum 
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Site Reserve Topographic 
position 

Elevation Fire 
Severity 

Estimated time 
since last fire 

(yrs) 

Logging 
History 

Estimated 
time since 

last 
harvesting 
event (yrs) 

Number 
of Koala 

scats 

Number 
of Koala 

calls 

Dominant tree 
species 

10M NAMBUCCA SF gully 10 moderate 3-4 heavy 30 0 0 Red 
Bloodwood, 
Blackbutt 

10MA TAMBAN SF lower slope 18 light 4-5 heavy 15 0 1 Blackbutt, 
Ironbark 

10VH NEWRY SF lower slope 32 light 10 heavy 30 0 2 White 
Mahogany, 
Red Mahogany 

10vHa INGALBA SF lower slope 37 none 10 heavy 20 0 0  Flooded Gum 
, Tallowwood 

11Ha GIBRALTAR 
RANGE SF 

flat 1011 light 1 moderate 30 0 0 New England 
Blackbutt, 
Messmate 

11Hb MOOGEM SF flat 962 moderate 15 heavy 30 0 1 Mountain Blue 
Gum, 
Messmate 

11L GIBRALTAR 
RANGE NP 

flat 1059 light 1 none  0 0 Broad-leaved 
Stringybark, 
William's 
Stringybark 
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Site Reserve Topographic 
position 

Elevation Fire 
Severity 

Estimated time 
since last fire 

(yrs) 

Logging 
History 

Estimated 
time since 

last 
harvesting 
event (yrs) 

Number 
of Koala 

scats 

Number 
of Koala 

calls 

Dominant tree 
species 

11M MOOGEM SF simple slope 1043 light 5 light 5 0 0 New England 
Blackbutt, 
Forest Ribbon 
Gum 

12H EWINGAR SF saddle 755 none  heavy 25 0 0 New England 
Blackbutt, 
Tallowwood 

12Ma EWINGAR SF upper slope 718 none  moderate 25 0 0 Brush Box, 
Sydney Blue 
Gum 

12Mb EWINGAR SF ridge 412 light 5-10 moderate 20 0 1 Forest Oak, 
Mahogany 

12VH EWINGAR SF upper slope 605 moderate 10 moderate 25 0 0 New England 
Blackbutt, 
Tallowwood 

13H ROYAL CAMP 
SF 

flat 90 light 5 moderate 10 1 0 Spotted Gum, 
Small-fruited 
Grey Gum 

13HB CHERRY TREE 
SF 

gully 120 light 10 heavy 25 0 7 Small-fruited 
Grey Gum, 
Grey Ironbark 

13L  BUSBYS FLAT lower slope 113 light 10 light  0 0 Broad-leaved 
Apple, Black 
She-Oak 
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Site Reserve Topographic 
position 

Elevation Fire 
Severity 

Estimated time 
since last fire 

(yrs) 

Logging 
History 

Estimated 
time since 

last 
harvesting 
event (yrs) 

Number 
of Koala 

scats 

Number 
of Koala 

calls 

Dominant tree 
species 

13M KEYBARBIN SF flat 114 light 10 light  0 0 Forest Red 
Gum, Swamp 
Turpentine 

14H RICHMOND 
RANGE SF 

upper slope 341 none  heavy 20 0 0 Spotted Gum, 
Grey Ironbark 

14M RICHMOND 
RANGE SF 

simple slope 297 light 5 moderate 10 2 0 Small-fruited 
Grey Gum, 
White 
Mahogany 

14VH RICHMOND 
RANGE NP 

ridge 448 none  heavy 30 0 8 Spotted Gum, 
Tallowwood 

14VHb RICHMOND 
RANGE NP 

ridge 560 none  heavy 30 0  Tallowwood, 
White 
Mahogany 

15H YABBRA SF upper slope 554 light 10 moderate 25 0 3 Pink 
Bloodwood, 
Sydney Blue 
Gum 

15Hb YABBRA SF ridge 528 none 10 heavy 20 0 21 White 
Mahogany, 
Tallowwood 
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Site Reserve Topographic 
position 

Elevation Fire 
Severity 

Estimated time 
since last fire 

(yrs) 

Logging 
History 

Estimated 
time since 

last 
harvesting 
event (yrs) 

Number 
of Koala 

scats 

Number 
of Koala 

calls 

Dominant tree 
species 

15M TOONUMBAR 
NP 

upper slope 689 none  moderate >50 0 0 Rainforest spp.  

15VH YABBRA SF ridge 513 none 10 moderate 25 0 0 Tallowwood, 
White 
Mahogany 

16H BRAEMAR SF ridge 108 light 10 moderate 20 1 62 Red Gum, 
Grey Ironbark 

16L BANYABBA SCA ridge 106 moderate 5-10 none  0 0 Bastard 
Tallowwood, 
Red 
Bloodwood 

16M MYRTLE SF flat 51 light 10 heavy 20 1 6 Spotted Gum, 
Grey Box 

16VH BANYABBA SF flat 89 light 10 light 20 0  Spotted Gum, 
Red Ironbark 
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Appendix C 
Correlation matrix showing Pearson’s correlation coefficients for all (n=27) continuous variables. See Table 1 
in the main report for a description of the variables.  
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Appendix D 
Frequency of the four Wildfire classes (Class 0: Areas that never burned and that are considered not flammable; Class 1: 
Areas that never burned; Class 2: Areas that burned 1 to 3 times; Class 3: Areas that burned more than 3 times) within 
each Crafti floristic group (Class 1: Primary browse species; Class 2: Secondary browse species; Class 3: Tertiary 
browse species; Class 4: Unsuitable habitat) 
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