Q1. First name Wayne and Susan

Q2. Last name Somerville

Q3. Phone

Q4. Mobile

Q5. Email

Q6. Postcode

Q7. Country Australia

Q8. Stakeholder type Individual

Q9. Stakeholder type - Other not answered

Q10. Stakeholder type - Staff not answered

Q11. Organisation name not answered

Q12. What is your preferred method of contact? Email

Q13. Would you like to receive further information and updates on IFOA and forestry matters? Yes

Q14. Can the EPA make your submission public? Yes

Q15. Have you previously engaged with the EPA on forestry issues? No

Q16. What parts of the draft Coastal IFOA are most important to you? Why? Please see attached documents

Q17. What parts of the draft Coastal IFOA do you think have a positive outcome on the management of environmental values or the production of sustainable timber? Why? Please see attached documents
Q18. What parts of the draft Coastal IFOA do you think have a negative outcome on the management of environmental values or the production of sustainable timber? Why?

Please see attached documents

Q19. What are your views on the effectiveness of the combination of permanent environmental protections at the regional, landscape and operational scales (multi-scale protection)?

Please see attached documents

Q20. In your opinion, would the draft Coastal IFOA be effective in managing environmental values and a sustainable timber industry? Why?

No. Please see attached documents

Q21. General comments

Please see attached documents

Q22. Attach your supporting documents (Document 1)

Please see attached documents

Q23. Attach your supporting documents (Document 2)

Please see attached documents

Q24. Attach your supporting documents (Document 3)

not answered
In this submission, we describe some of the changes that the NSW Government proposes for Coastal Integrated Forestry Operations Approvals (IFOAs); discuss why the proposed management of native eucalypts in State Forests in the Northern Rivers is bound to fail; and outline a solution to the problem of how to best reconcile the competing interests of the forestry industry, the community and the environment.

In preparing this submission, we have read the following documents produced by the EPA:

1) Coastal IFOA – Conditions, Consultation Draft, May 2018
2) Coastal IFOA - Protocols, Consultation Draft, May 2018
3) Coastal IFOA – Consultation Draft, Executive Summary, May 2018
6) Assessment of Threatened Ecological Communities of the Coastal Integrated Forestry Operations Approval Region, October 2016
7) EPA Fact Sheets on Landscape, Technology and Boundary Rules, Timber, Wildlife, and Environmental Protections: A new multi scale approach to forest management
8) Koala Habitat Mapping Pilot, 2016

1. What the NSW Government proposes to do and why

The NSW Government has proposed changes to IFOAs. They want to meld the four current Coastal IFOAs into one in order to a) ‘reduce costs associated with implementation and compliance’, and b) to ‘improve clarity and enforceability’.

The NSW Environment Protection Agency (EPA) is responsible for the revision, implementation and monitoring of IFOAs, as well as the day-to-day running of Forestry Corporation (FCNSW), which oversees logging in State Forests.

The NSW Government has set the following conditions for the revised IFOA. The IFOA:

1. Must not affect the commitments made regarding how to log or how much timber to take, as determined by the current Regional Forest Agreements (RFA) and Forestry Agreements (FA);
2. Will not change the national Comprehensive, Adequate and Representative (CAR) reserve system, which specifies areas set aside for the protection of biodiversity, old growth and wilderness values;
3. Will not reduce FCNSW’s ability to meet high quality wood supply commitments established in the forest agreements;
4. Will be outcomes focussed, supported by monitoring and evidence and based on risk management principles;
5. Will better protect threatened species and their habitat through a greater emphasis on landscape-based measures; and
6. Will be a credible and transparent framework.

One example of the changes to the IFOA proposed by the NSW Government is to open up more riparian habitat for logging by reducing buffers on streams in catchments under 20ha.
It has been past Forestry Corporation policy to identify unmapped drainage lines or streams on the ground before logging. The proposed use of LiDAR, a remote sensing technology, will allow the remote mapping of unmapped streams. In 1998 all unmapped drainage lines required 10 metre buffers under the Environment Protection Licence (EPL). But in 2004, most logging operations were exempted from the EPL to allow the logging of unmapped streams, except for unmapped streams within 100km upstream of threatened fish, which require 10 metre buffers. Under threatened fish provisions, the vast majority of unmapped streams in the Northern Rivers would qualify for 10 metre buffers.

However, ‘to ensure this increased protection (of streams) does not impact on the sustainable supply of timber, the draft Coastal IFOA proposes to reduce the width of protections on headwater streams in some areas from 10 metres to 5 metres.’

Another proposed change to the IFOA involves the mapping of old growth forest. Based on recommendations from the Natural Resources Commission (NRC), the NSW EPA proposes to use ‘modern mapping technology to improve the accuracy of old growth forest mapping on State Forest’. This mapping will be used by the NSW Government to develop a framework for rezoning areas for harvesting if they are determined to have no special conservation value underline added).

In the late 1990s, Old growth forests were classified by using aerial photographs to identify the numbers of young trees compared to aging trees. Old growth forests were protected and included as part of the CAR reserve system because they were both old growth and had high conservation values. With modern higher resolution imagery, more of the small understorey trees are now visible, so the old proportions of young to old trees are no longer adequate for identifying old growth stands. More visible young trees do not reduce the value of the old trees that are present. New criteria are now needed to classify old growth areas.

Proposed changes to the criteria for old growth and high conservation value forests will exclude many other stands which have a relatively high number of mature and old growth trees and haven't been subject to intensified logging in the past 20 years.

The EPA appears to be sincerely trying to satisfy environmental and community needs while meeting its obligations to the timber industry. But is this possible, or desirable?

2. Why the proposed changes to the IFOA won't work in the Northern Rivers

Native eucalypt forests in the Northern Rivers covered by the Upper North East Region IFOA confront a constellation of threats and conditions that the proposed ‘one size fits all’ rewriting of the Coastal IFOA does not address.

Native eucalypt forests in the Northern Rivers are in the grip of a rapidly escalating dieback crisis that is severely damaging forest integrity and threatens their demise. Forestry practices that allowed logging to disturb forest canopies without requiring follow-up weed control have enabled lantana to invade and dominate forests on a landscape scale. The spread of lantana has profoundly disturbed the forest system by facilitating the spread of Bell Miner Associated Dieback (BMAD), devastating biodiversity, and preventing natural forest regeneration through the elimination of seedlings and seed stock.

In 2006, the expert scientific committee commissioned by the government-funded BMAD Working Group noted that ‘The severity of the BMAD problem is such that tens of thousands of hectares in north-eastern NSW is currently affected with over 2.5 million hectares
considered potentially vulnerable.’ And the situation has deteriorated during the decade since then.

Despite the profound significance of the lantana – dieback crisis in the Northern Rivers, the 74 pages of the Coastal IFOA – Conditions, Consultation Draft, May 2018 and the 18 pages of the Executive Summary make no mention of lantana, weed control or BMAD.

In the 194 page Coastal IFOA - Protocols, Consultation Draft, May 2018, there is one mention of lantana in the glossary definition, on page 173, of “impenetrable understorey”. There are three passing references to BMAD: a) in the glossary, as a definition; b) on page 25, where it is stated that an operational plan to mitigate the spread of dieback must be made before harvesting in forests at risk of BMAD, but no details are given regarding what such a plan might involve; and c) on page 142, where regenerating stands of forest which are at risk of BMAD have to be assessed every two to five years, but again, there is no detail about what such an assessment would entail or what actions would be triggered by certain findings. This amounts to nothing more than a subjective, cursory assessment.

The EPA says that the IFOA will use new mapping technology ‘to develop a framework for rezoning areas for harvesting if they are determined to have no special conservation value’. In the Northern Rivers, such rezoning would likely result in large areas of BMAD-affected forest being logged because they supposedly no longer have any ‘conservation value’. The current protocol of removing all trees affected by BMAD is to continue. These forests could be regenerated and saved, rather than be mortally wounded by logging.

The EPA only requires rehabilitation work when a forest is on its last legs: ‘Regeneration to achieve the standards in this protocol is only required for harvested areas where the natural floristic composition exists at a basal area of less than 14 m²/ha.’ This basal area is very small compared to intact quality forest which can have an average basal areas ranging from 47m² to 60m². And this basal area can be made up of dead and dying trees.

The minimal basal area requirement to trigger rehabilitation only applies to stands subject to ‘active’ logging. The extensive areas of degraded forests with no or little millable timber can simply be excluded from ‘active’ logging and thus will never require rehabilitation.

Many local eucalypt forests associated with the Gondwana rainforests are in advanced states of dieback. Many exist in steep terrain and in high rainfall areas, and support diverse and unique plant and animal species. If these areas are determined to have little to no conservation value and are logged further, then the resulting lantana and dieback-affected regrowth would pose a direct threat to adjacent rainforests by contributing to an increased incidence and severity of bushfires and lantana incursion into the rainforests.

The IFOA protocols for protecting threatened species are to rely more on landscape-scale mapping. But, for example, in the case of koalas, such mapping cannot identify crucial factors that sustain populations. As the EPA expert committee that prepared the NSW State Forests Koala Habitat Mapping Pilot – 2016 concluded, the data ‘supports the hypothesis that koala populations are limited by unmapped social and or historical disturbance factors (e.g. fire, disease, hunting, logging and predation) which are not incorporated into predictive landscape and environmental models because they cannot be, or have not been adequately mapped’.

Further, the proposed use of ‘preferred food trees’ as the main indicator of a koala habitat is manifestly inadequate.

The effectiveness of any regulation depends upon the motivation and determination of regulators to enforce rules, the ability and willingness of contractors to abide by regulations,
and the diligence of assessment and compliance agencies. Any real world assessment of the current state of Northern Rivers State Forests such as Donaldson SF, Toonumbar SF and Richmond Range SF clearly shows that past management regimes have failed – tree health has deteriorated and the potential for sustainable harvesting of timber resources is evaporating. The proposed IFOA would continue the sad tradition of regulation that fails in its stated aims of supplying hardwood timber while protecting environmental and community values. Further, the 194 pages of protocols and 74 pages of conditions prepared by the EPA present Forest Corporation contractors with regulatory requirements that are unlikely to be implemented on the ground and which will likely undermine compliance.

For instance, the protocols provide for exclusion zones for threatened wildlife – anywhere from 50 metres for frogs, to 300 metres for birds, and 12 hectares for an eastern quoll maternal den. Assuming that logging contractors are capable of identifying a quoll den, and are willing to actually report one if they come across it, they are then required to leave 12 ha of forest around it. Even if such a regulation was sensible, desirable and could be implemented, such operations would further fractionate the forest.

And in the requirements for pre-harvest wildlife surveys, surveyors are instructed to proceed down transect lines looking for evidence of wildlife at no more than one kilometre per hour.

In the real world, how likely is it that such regulations can work, especially when there is a powerful financial incentive for logging contractors to simply ‘not see’ or not report significant wildlife that they come across?

Whilst seeming to be appropriate in a desktop analysis, many regulations will not work on the ground in forests. Consider what the following protocol would mean for forestry contractors who accidentally knock down a single ‘retained tree’.

The protocol requires that the ‘FCNSW must not damage retained trees during a forestry operation. If a retained tree is damaged during forestry operations, FCNSW must replace it with a comparable tree. Where a comparable tree is not available, FCNSW must retain a mature tree with a healthy crown. FCNSW must ensure that each retained tree does not have harvesting debris accumulated at its base. Where debris has accumulated around a retained tree, FCNSW must remove or flatten the harvesting debris: (a) from areas within five metres of the retained tree; and (b) to less than one metre in height.’

How likely is this course of action should a single tree be knocked down? There is an obvious incentive to either not notice or not report such incidents.

After reading the 300 pages of draft Coastal IFOA conditions and protocols, the stated aims of reducing costs associated with implementation and compliance and improving clarity and enforceability of the regulations seem a long way off.

The EPA and the foresters are stuck with the current timber contracts due to past political decisions which changed contracts to guarantee a volume of supply, regardless of whether suitable trees are available or not. Consequently, Forestry Corporation is overcommitted to supplying high quality timber from a rapidly dwindling resource. In response to this, the proposed IFOA will increase logging intensity throughout all selectively logged forests by decreasing the current required retention of 10-30m2 basal tree area to 10-12m2 basal area. As stated, the average basal area range in healthy forest is 47m2 to 60m2.
In NSW public forests there are two opposing goals, two conflicting aims and approaches. How can koalas and loggers compete for the same tree? In forests with rapidly declining health, there are simply not enough trees to satisfy all the demands.

3. The future of logging in lantana-prone forests

In the 1970s, foresters argued that logging mature trees was a good thing because it revitalised moribund forests by creating space for regrowth. They thought of logging native forests as a kind of ‘free lunch’ – their consumption of trees would have no real impact on the future availability of timber. Back then, they never anticipated the devastating effect that lantana would have on native eucalypt forests in the Northern Rivers.

Nowadays, it’s clear that past management practices in lantana-prone forests have been a disaster. Harvesting timber is not like mining where to get more minerals you create more mines or dig a deeper hole. Rather, forestry is akin to farming – you can't expect the land or a garden to keep producing high-quality food if you do not invest in the future and care for your asset. Sustainable logging of native forests in the Northern Rivers was only ever a possibility if foresters invested in effective weed control to protect and rehabilitate areas where the canopy was broken.

The parlous state of native forests in the Northern Rivers demonstrates the failure of past forestry management policy and its disconnection from the reality of what’s actually going on in the bush. No matter how well-intentioned, the desktop analyses and policies in the proposed IFOA can only perpetuate and exacerbate a crisis that threatens the very existence of native forests in this region.

You can’t garden without weeding. If foresters had dealt with lantana from the start, and followed up logging operations with effective weed control, we would now have a sustainable timber industry and healthy State Forests. But they didn't do that, and the negligent failure to prevent lantana from colonising areas where the canopy was broken by logging is now driving an unprecedented collapse of forest ecosystems and an associated loss of biodiversity and the amenities that forests provide for the community.

We have lived in Toonumbar since the mid-1970s. We know what the forest used to be like. We saw the logging of local State Forests in the 80s and 90s and the insidious invasion of lantana over subsequent decades. And now we are witnessing the demise of a once great and valuable forest asset. But, on our property, we have shown how dieback-affected forests can be brought back to health on a landscape scale. The key is to remove the lantana and keep it out of the forest until the canopy fully recovers.

As described in our 2011 peer-reviewed journal paper, ‘Regenerating native forest using splatter gun techniques to remove lantana’ (see attached), the dieback problem can be solved. We know how to fix this problem in a cost-effective way. The hundreds of hectares of dying forest that we have treated on our property have regenerated to become healthy forest again. And across the creek, in the Toonumbar State Forest, the Githabul Rangers, a dedicated and skilled group of indigenous bush regenerators, are working hard to bring a very ill landscape back to health.

On their website, the Forestry Corporation suggests an appropriate response to the impending demise of lantana prone native forests in the Northern Rivers. As Forestry Corp points out, ‘Only a tiny percentage of State Forest land is harvested each year to ensure a sustainable supply of timber …’ If this is so, then the obvious management intervention is to stop logging lantana and dieback affected native forests, implement landscape-scale bush regeneration
programs to remove the extant lantana, and require diligent management of lantana following logging in any as yet unaffected, but at risk, areas.

It’s time to shift from a mining to a farming mindset. If we are to ever have healthy forests and a sustainable timber resource based on native forests, it is essential to invest in our forest assets by rehabilitating and protecting them.

The major barrier to a rational forestry policy is the cost of compensating companies for a failure to provide log yields that were promised decades ago. It will come down to a political decision to pay for the mistakes of the past. As was the case with Metgasco in the Northern Rivers, the Government will have to pay out the local foresters for their contracts and invest in saving the forests. If they don't do that, they will lose everything.

Protecting what can only be a tiny portion of the ‘tiny percentage’ of State Forests that are logged each year, and adding to the 200,000 ha of softwood plantations and 35,000 ha of eucalypt plantations already under management, would be worth it, whatever the costs.

By transitioning from the logging of native forests to an exclusive use of plantation timber, and implementing effective programs to rehabilitate and regenerate our native forests, the NSW Government would generate many benefits for the country and citizens. In coming years, the true wealth of intact healthy native forest will be apparent.

If we don’t repair our dieback-affected, lantana-infested forests, the environmental cost will be incalculable. Why allow our forests to die when we could repair and maintain them? We need to farm trees and leave the native forests alone.

Trees are Nature’s irreplaceable and valuable gift. Healthy forests sequester carbon. They’re the lungs of the planet. Forests support biodiversity and filter precious water. They create environments that nourish the human spirit. A healthy forest is self-sustaining, potentially forever. And, of course, the jobs generated by a rational forest policy that invests in the future would complement the flow-on benefits to tourism and rural residential industries. A forest policy that paid out affected logging companies and invested in our precious forest assets would be a grand stimulus for regional economies.

References

Regenerating native forest using splatter gun techniques to remove Lantana

By Susan Somerville, Wayne Somerville and Rodney Coyle

How does one farming couple repair 370 ha of native forest severely infested with Lantana and affected by Bell Miner–Associated Dieback (BMAD)? After their use and improvement of ‘splatter gun’ technology to control Lantana, the once declining forests, with ailing trees, are now vigorously regenerating and most trees are recovering. This raises the question of whether Lantana presence may be a critical element in a complex process of ecosystem breakdown.

Key words: Bell Miner–Associated Dieback, bush regeneration, Lantana, splatter gun.

Introduction

In the 1970s, within the forests of the broader Toonumbar area west of Lismore in north-eastern NSW, there was little Lantana (Lantana camara). On the ridges, the drier eucalypt forests had grassy understoreys; further downslope, understoreys were shrubby; and in the wetter gullies, rainforests or rainforest elements were common. The native honeyeater Bell Miner (Manorina melanophrys) was present but not widespread. By the 1990s, due mainly to previous logging disturbance, much of the forest understorey had been replaced by Lantana (50–90% cover), and around the same time, Bell Miners became common throughout most of the forest. The hills rang with their incessant and penetrating calls from dawn until dusk; other birds were scarce; tree canopies were shrinking, and some trees were dead. What has become known as Bell Miner Associated Dieback (BMAD) was rapidly spreading throughout the forests (See Fig. 1 and Box 1). Currently, some 2000 ha of the Iron Pot Creek catchment and
Box 1. Bell Miner–Associated Dieback (BMAD)

Bell Miner–Associated Dieback has been listed as a Threatening Process under the NSW Threatened Species Conservation ACT, 1995 (TSC Act 1995). It currently occurs through sclerophyll forests on public and private lands in New South Wales, Victoria and Queensland and is spreading through forest ecosystems in eastern Australia.

Symptoms of BMAD in trees include dying or dead outer branches and in severe cases, high epicormic leaf production, discoloured leaves and the death of the tree. All the factors supporting BMAD are still not fully known, but the pattern of cause and effect has been described as a response to the disturbance of forest structure, where there is an open canopy, a sparse or absent mid-storey and subsequently a well lit, dense, shrubby understorey. When the forest has tree species susceptible to attack by Glycaspis species of psyllid insects and the understorey becomes dominated by a single plant species such as the weed Lantana, which supports nesting by the Bell Miner, the scene is set for increasing populations of psyllids and Bell Miners. The Bell Miner eats the sugary lerps covering the psyllid insect on eucalypt leaves, but it generally does not eat the psyllid itself. Because of the increased numbers of dominant Bell Miners in a disturbed forest, other birds that do eat the psyllid have been forced out of the area. The result is an overabundance of psyllids, which suck the sap from the leaves. This causes the tree to repeatedly defoliate, which eventually kills the tree, and ultimately the forest (John Hunter, DECCW, pers. comm., http://www.bmad.com.au/index.html accessed 19 April 2011).

The NSW Scientific Committee’s 2008 Final Determination of ‘Forest eucalypt dieback associated with overabundant psyllids and Bell Miners’ or BMAD as a key Threatening Process estimates that 20% of 100 000 ha of susceptible forest have been affected by this dieback, with about 30% of affected forest classed as severely damaged. It has been estimated that 2.5 million hectares of forest in New South Wales is at risk from BMAD.

The tree species most susceptible to dieback include Dunn’s White Gum (Eucalyptus dunnii), Sydney Blue Gum, Flooded Gum (E. grandis), Grey Ironbark, Narrow Leaved White Mahogany (E. acmenoides) and Grey Gum. There is also evidence that some normally non-susceptible dry sclerophyll types, e.g Spotted Gum and Blackbutt (Eucalyptus pilularis) may be affected when they occur alongside susceptible forest types.

Bell Miner breeding, nesting and feeding. The Bell Miner lives in large, complex social groups or colonies, which can number from 8 to 200 birds (Higgins et al. 2001). Within each group, there are subgroups not only consisting of several breeding pairs but also including a number of birds who are not currently breeding. The non-breeders help in providing food for the young in all the nests in the subgroup. Bell Miners are sedentary and nest all year around, but mainly in June to November.

The bird nests in dense understorey from 2 to 5 m above the ground (Stone 2005). In the Creek’s Bend forests, the Lantana hedges provide the preferred vegetative structure for nesting. In other ecosystems, thickets of native vines that are structurally similar to Lantana hedges are also used by Bell Miners for nesting. They feed mainly on insects, especially psyllids and their lerps, from the foliage of eucalypts but also eat nectar and manna. The birds defend their colony area communally and aggressively, excluding most other passerine species. They do this to protect their territory from other insect-eating birds that would eat the lerps on which they feed. (They will also ‘mob’ humans when their territory is entered.) Predators of eggs and young include a range of carnivorous birds and snakes.

Psyllids are tiny invertebrates that feed on the leaf sap or phloem of certain host trees and construct a sugary-coated shelter, or lerp, over their larvae to protect them from the elements. Psyllid species usually feed on a single plant species (monophagous) but can be oligophagous (feeding on a few similar species). Glycaspis baileyi is the main psyllid species associated with BMAD. Glycaspis psyllids live in large populations on Eucalypt species, and females lay between 45 and 700 eggs on new Eucalypt foliage. The eggs hatch out within 10–20 days as nymphs. These nymphs then build their lerps and insert their stylet into the leaf to feed. The lerp is made of honey dew and sometimes a waxy secretion from the psyllid. The nymphs have five life stages under the lerp and then emerge as winged adults, where they disperse among the tree canopies and the egg laying cycle begins again. (P. Meek, BMAD Working Group Technical Note 2, May 2007).

Whenever the local forests undergo increased psyllid infestations, the Bell Miner undergoes a population boom, placing further pressure on the trees. Some tree species die after a few attempts at resprouting foliage.

The BMAD Working Group is a voluntary body convened by a Northern Branch of the NSW National Parks and Wildlife Group (part of the Office of Environment and Heritage and is supported by the North-East Region of Forests NSW. The group, made up of scientists and representatives of government agencies, indigenous communities, industry groups, conservation groups and local landholders, is coordinating efforts to better manage BMAD.

The group has prepared and endorsed the BMAD Strategy, which contains an agreed suite of actions designed to address prevention, control and remediation of BMAD in affected and potentially affected forests across all land tenures. (Content of this box has been adapted from information including that on the BMAD website http://www.bmad.com.au/index.html).
much of the Toonumbar valley forests have been invaded by Lantana and are BMAD affected (Flower 2009), and it is evident that large swathes of forest trees are dying.

Our 470 ha property, Creek’s Bend offers a useful case study of the BMAD process and efforts to manage it. Creek’s Bend consists of a series of steep ridges running from the Richmond Range in the west to the Iron Pot Creek in the east. The dry sclerophyll forest on the ridgetops is predominantly Grey Gum (Eucalyptus propinqua), Grey Ironbark (Eucalyptus siderophloia) forest with Spotted Gum (Corymbia variegata), Pink Bloodwood (Corymbia intermedia) and Tallowwood (Eucalyptus microcorys) as codominants. The wet sclerophyll forests and rainforests in the valley systems and gullies support Brush Box (Lophostemon confertus), Turpentine (Syncarpia glomulifera), Flooded Gum (Eucalyptus grandis), Blue Gum (Eucalyptus saligna) and many rainforest species.

The property is largely forested. About 100 ha of lowland pasture remains adjacent to the Iron Pot Creek for cattle and horse grazing. During the 1960s and 1970s, the previous owners selectively logged much of the forested area and low-intensity grazing by cattle followed. When we purchased the property in 1980, cattle were excluded from the forests and the forests were left to regrow. However, their natural recovery was hampered by Lantana invasion. By the 1990s, the Bell Miner had established large and persistent colonies on the property and exploited for food the increasing populations of Glycaspis psyllids, which were feeding on the eucalypts. BMAD was evident and increasing (Box 1).

In 2000, some 350 ha of forest on Creek’s Bend were infested with Lantana, with the weed spreading from previously logged areas to wetter gullies that had not been logged. Most of the forests’ understoreys were composed of 25–80% Lantana. A few small isolated areas dominated by turpentine, rainforest or rainforest species, were free of Lantana. BMAD affected about 80% of the forests and was always associated with dense Lantana and high numbers of Bell Miners. There was only one small area of healthy intact forest. This was distinguished by having been only lightly logged and disturbed in the past.

Our response to the presence of BMAD on our property

Our observations and study of theories of BMAD proposed by researchers (the ‘Stress theorem’ (Jurskis 2005a,b) and the ‘Disturbance theorem’ (Stone 1996, 2005) prompted us to develop a model of the pathogenic processes involved in BMAD (Fig. 2).

Taking a Systems Theory and Adaptive Management approach, we hypothesised that the forests might heal themselves and natural balances be reinstated if one or more of the key factors that supported dieback were changed. Lantana was the obvious target for intervention. This Weed of National Significance has severe impacts on forest health and biodiversity, and it is the only exotic factor in the model. Furthermore, it has been demonstrated elsewhere that removal of Lantana can be followed by the regeneration of natives, if the recovery phase is subjected to repeated follow-up weeding (Woodford 2000).

We set about testing the hypothesis that removing Lantana might play a vital role in breaking the BMAD cycle and allowing healthy regeneration of native forests to occur. We hoped that this work might help forest managers better respond to the appearance of BMAD in the future and ameliorate one of the major threats affecting the health of our eucalypt forests.

Our Programme to Treat Lantana and Regenerate Native Understoreys

Lantana is a widely occurring weed along the east coast of Australia in a variety of situations and can be treated by a range of techniques including manual or mechanical removal, cut stump herbicide treatment or overspraying with a range of herbicides with or without fire pretreatment (Department of Natural Resources and Environment 2000).

Figure 2. Cycle of Forest Decline, model proposed by Wayne and Susan Somerville, 2009.

Removal of Lantana is proposed as a potentially feasible intervention to interrupt the cycle of decline and allow recovery.
Other techniques have also been developed for relatively flat land, such as flattening with a tractor followed by slashing and herbicide spraying of the regrowth (Woodford 2000). There have also been numerous attempts at biological control programmes for Lantana since 1914. A total of 31 agents have been introduced, and 18 of those have established in the field. Five agents are damaging but only on a seasonal basis, and it is clear that Lantana is not adequately controlled by these agents (Queensland Government Department of Primary Industries and Fisheries, 2011). There is evidence that some biological control agents exist on our property, but these have not significantly damaged the Lantana.

Owing to the size of the area to be treated, the extent of the Lantana infestation and the steep and rugged terrain on our property (Fig. 3), all of these techniques proved to be unsuitable and ineffective methods for Lantana removal. In an effort to find an alternative approach, we carried out a range of preliminary trials on Creek’s Bend with what became known as the ‘splatter gun’. These preliminary trials showed that we were able to treat Lantana without using a lot of herbicide mixture or causing significant off-target damage (See Box 2). Encouraged by these early results, we developed a plan to undertake a programme of works on Creek’s Bend and grants were obtained from the Northern Rivers Catchment Management Authority in 2007 and 2009 to implement the programme over a 5-year period. Works using the modified splatter gun technology (Box 2, Fig. 4) commenced in 2006, progressing in a generally south to north direction on the property (Fig. 3) and are ongoing.

Because of the large size of the treatment area, the treatment needed to be staged. We found it most practical to reopen some previous logging tracks with a small 4WD tractor. These tracks usually contain dense, mature stands of Lantana, which grow well in cleared areas. We then made side incursions with the tractor into solid Lantana hedges to allow access for the operators. The tracks were then treated with a small 4WD utility (Suzuki Sierra soft top) with a 100-L spray unit with a splatter gun nozzle mounted on the back. The vehicle was driven by one operator with another walking behind, using the splatter gun nozzle. Both sides of the track were treated to a depth of between four and 20 m, depending on terrain. About a month after this initial knock-down, a single operator would return with a splatter gun backpack and, working off the track, would treat the rest of the area. The operator used the parked 100-L spray unit to refill the backpack from the track.

Documentation and Monitoring Methods

Vegetation

A photographic record was kept ‘before, during and after’ treatments along with more formal photopoint monitoring at three locations. In addition, regular 6 monthly or annual observations of the treated sites were built into the programme, so we could understand the nature of the Lantana’s response to the initial treatment and to ensure that the follow-up treatments were delivered at appropriate times so that regeneration of natives could occur.

Records of works (i.e. locations, person hours, chemicals used and other details) were kept in daily record sheets to record information about areas as they are treated and to help the landowners to plan and monitor the ongoing work. These data were then transferred to a computer spreadsheet, where the date of the treatment is hyperlinked to a directory that contains information about the chemical data sheets, pre- and post-treatment photographs, pre- and post-treatment audio sound recordings of Bell Miner calls and other notes. Each entry of a treatment triggers a forward entry on a
calendar to mark the appropriate follow up for that area.

This record keeping allowed us to map the forest areas using a resilience-based bushland condition assessment system (T. McDonald, pers. comm., 2008), in which ‘0’, indicated ‘no degradation and excellent resilience’, to ‘6’, indicating ‘extreme degradation and no resilience for the original vegetation community’. (Note that this system is based on condition of the native vegetation as well as weed status.)

Box 2. Evolution of the Splatter Gun Technique

As none of the commonly used techniques for removing Lantana, including mechanical removal or overspray with heavy equipment, could be readily applied to our steep and rugged site, we sought another solution. The answer to the problem was provided by John Hunter, then an Ecologist with NSW National Parks and Wildlife Service. At a 2005 Forum on BMAD at Southern Cross University, John related how his father had had great success treating Lantana in Queensland by ‘squirting’ small quantities of a glyphosate–water mixture onto plants. The implications of this method of Lantana removal seemed profound as a low volume, high concentration approach offered efficiencies for the treatment of Lantana in remote locations where carrying high volumes of water or using heavy machinery was impracticable.

Trials

Further investigation found that small, herbicide guns, about the size of a tree stem injector, had been used in the past by Queensland Forestry to treat small bushes of Lantana that grew in pine forests (John Hunter, pers. comm., 2006). Because of the landscape-scale task on Creek’s Bend, we experimented with adapting a hand-operated cattle drench gun with the nozzle removed, to deliver the registered nine parts water to one part glyphosate (of 360 g/L concentration) mix in a comparative trial supported by the National Parks and Wildlife Service and the BMAD Working Group. The method evolved, and the drench gun was replaced by a NJ Phillips Forestry LPG powered gas gun and adapted nozzle. The nozzle on a 100-L spray unit mounted on a 4WD vehicle was also adapted to deliver a splatter application.

Current Technique “Splatter gun” (Fig. 4) refers to the process of delivering discrete, tightly confined jets of a high concentration and low volume glyphosate mixture in a large droplet form. The herbicide is applied to Lantana hedges in parallel lines, spaced one to two metres apart, wetting only a minority of leaves on the plant. The effect is like that of a water pistol, not an overspray. (See video clip at http://www.bmad.com.au).

A few millilitres of Protec, a canola-based surfactant, was added to aid the herbicide mix sticking to and penetrating the Lantana foliage. A coloured spray marker dye was also added to enable the operator to see where the herbicide was being delivered and to aid in detecting spills or leaks.

As a result of these trials, we soon identified that the modified splatter gun technique – which showed little off-target damage and much improved delivery time and portability – might offer clear advantages in efficiency, effectiveness and suitability for ecologically sensitive areas.

We found that we could deliver 100 L of the nine parts water to one part glyphosate 360 (9:1) mix in 60–90 min using the 4WD spray unit. Using the backpack, our operator delivers between seven and ten litres of the 9:1 mix per hour, depending on the terrain and the density of the Lantana plants.

These early trials indicate that the modified splatter gun is exceptionally portable. An operator carrying a small backpack with five litres of 9:1 glyphosate mix, and a hand-held gas gun is able to treat Lantana as fast as he or she can walk, even in steep, rugged and isolated areas. The much reduced chemical run-off minimises collateral damage to other plants and encourages native species to regenerate through the dead Lantana. The focused nature of the herbicide jet makes it possible to surgically remove Lantana from around valuable plants, and experienced users can just touch the trigger to deliver minimal, carefully directed doses to small Lantana plants.

Because of the landscape scale and ruggedness of terrain involved in the works, splatter gun operators on the ground found it more efficient to treat smaller areas within a valley or ridge system, let the Lantana die, and return to the site later to push through the dead thickets and proceed deeper into the area. Thus, treatments would be performed in sections, often starting from the most easily accessible areas and working towards the more inaccessible areas. This made it more efficient for the operator to create supply dumps of water and herbicide. The nature of the works is indicated by the following treatment maps. Work is carried out in different areas at different times, depending on the constraints of terrain and weather.

Bell Miners

To quantify changes in distribution of Bell Miners after treatment, we undertook monitoring of Bell Miner density from 2005 at variable time intervals along 100-m transects. This was
measured by visual and auditory sampling at five locations before and after Lantana removal. (Bell Miner colonies are easily detected as the birds make loud bell-like calls (‘peep–tink’ and distinct ‘chak chak’ alarm calls (Morcombe 2000)).

The survey was conducted by the same single observer (Susan Somerville) in four 50×50 m quadrats along each transect (two each side) at the five sites. Initially, Bell Miner numbers were estimated by sightings and calls. Later monitoring was reduced to a presence/absence determination on advice from the Scientific Reference Group advising the BMAD Working Group (Prof Harry Recher, pers. comm., 2006), and movements of the Bell Miners were noted across areas of the property when they occurred. Bell Miner presence/absence continues to be monitored as the Lantana treatments continue, and in more recently treated areas (not yet reported), audio recordings have been taken at photopoints to monitor Bell Miner movements in future.

The Results of our Lantana Treatment

In terms of the delivery of herbicide, using the splatter gun (See Box 2 for rates) allowed us to treat about 300 ha of degraded forest, including the necessary follow ups, within the 5 years the project has been in operation. We are currently systematically revisiting the total area with follow-up treatments and are finding that we are treating Lantana at a progressively declining rate as the sites stabilize under native regrowth.

Effect on Lantana

Our observations showed that, where the Lantana (which in our case is the pink-flowered variety – see Ensby 2008) was well hydrated and actively growing, it responded quickly to a 9:1 splatter gun treatment and defoliated and died in a few weeks (Fig. 5). Where conditions were drier, Lantana was less responsive to herbicide. The splatter gun technique reliably killed individual plants and large hedges of Lantana with very little reshooting from the base or roots. When reshooting did occur, it could be readily retreated. Most regrowth of Lantana occurred from seed.

Native and weed regrowth

Our regular observations found that, in areas where the Lantana consists of isolated plants in an otherwise intact forest with good canopy density, the Lantana was slow to resprout from seed and was out-competed by the native understorey and no follow up was necessary. In these areas, the Lantana has mostly been replaced by native seedlings rather than other weed species such as Tobacco Bush, Winter Senna and Crofton Weed. In other areas containing up to 50% Lantana in the understorey, however, Lantana was able to recolonise from seed and at least one follow-up treatment was necessary by 12 months after the initial knockdown to give the native plants an advantage over these weed species. In large degraded areas, such as old logging dumps, we observed strong competition between Lantana growing from seed and regenerating natives, and it was necessary to continue to treat the Lantana (and other weed such as Crofton Weed) over a few follow-up visits, until some midstorey was developing to shade out the Lantana and prevent it from outcompeting the natives and dominating the understorey again.

In drier areas on the ridges, we found that much of the regeneration involved a range of saplings and seedlings as well as vegetative expansion by forbs and grasses typical of the forest floor. All the species in Appendix SI were found to be regenerating on the sites, and these species are typical of the broader community of Creek’s Bend forests.
Native canopies

There is strong evidence that tree canopies on Creek’s Bend have variously returned to health in areas with previously severe BMAD. This occurred only after the mid-storey and understorey diversity of these sites improved after Lantana removal. Prior to Lantana control, we observed trees subjected to psyllid attack and producing epicormic growth several times until they finally died. As Lantana has been controlled in these areas, while some younger and more damaged trees did not recover, many trees have gone beyond the epicormic growth response stage and are now re-forming healthy canopies. The most affected tree species remain the Grey Ironbark in the drier ecotones and Flooded Gum and Blue Gum in the moister areas. Where there is a dense population of Grey Ironbark, it appears that the psyllid populations remain high and the BMAD is most resistant to change.

Indeed, where we were previously able to show visitors samples of psyllid-affected foliage from most trees, even saplings only a metre high, we now have to search much farther afield for samples of affected leaves.

Mapped changes at property scale

Substantial upward shifts in vegetation condition after Lantana treatment are shown in both Figure 6 and Table 1, which divide, for convenience, the two land portions that make up Creek’s Bend: The Lower Valley and the Upper Valley. We estimate that in 2005, 2% of the forests of the property were in Class 1 or 2 (higher) condition at the commencement of the project and 98% in Class 3 or 4 (lower) condition. In 2011, 50% of the property’s forests are in Class 1 or 2 condition and 50% in Class 3 or 4 condition. There is still about 25% of the area of the Upper Valley, which has not yet been treated. This means that Condition Class 4 areas have substantially shifted to Class 3 condition and Class 3 areas have substantially shifted to Class 2 condition from 2005 to 2011. And we consider it fair to say that the treatment programme, ensuring follow up within a year at most sites, has achieved a distinct improvement in the condition of the vegetative communities on Creek’s Bend over the 5 years to date.

Changes to Bell Miner population and habitats

In 2005 before Lantana treatment commenced, Bell Miners were found throughout the forested areas, with only three small areas that were Bell Miner–free. Over time, we could see and hear that Bell Miners had moved from many areas of previously degraded forest after the Lantana was removed and forest structure and plant diversity improved. Areas of the forest that had been filled with constant Bell Miner calls had become quiet.

Results from surveying Bell Miners show that high numbers of Bell Miners existed in all five monitored sites in November 2005 (Table 2), but that, by April 2008, Bell Miner numbers at Sites

Figure 5. Although the plant physiological explanations are yet to be clarified, the application of low volume/high concentration herbicide at 1-m spacings is highly effective. This time series set of photographs records the rapid process of Lantana decline over 29 days after treatment. (a) Site just after treatment, (b) same site at 6 days after treatment (yellowing commencing) and (c) 21 days after treatment (no leaves remaining). (Photographs: Wayne Somerville, 2009).
1, 2, and 3, had decreased substantially, and the birds were absent at these sites in August 2011. In contrast, Site 4 and Site 5 retained substantial numbers of Bell Miners, despite Site 4 having dropped to low numbers in 2008.

What Can the Results Tell Us?

Vegetation response

On Creeks Bend, treated habitats with understoreys previously dominated by Lantana have, after 3–5 years, become much more structurally diverse, with a range of height classes of trees, shrubs and ferns, providing a number of habitats and shelter for other faunal species, especially other birds. But this was not a sudden process. The removal of Lantana across the landscape has occurred gradually over a few years, with the biodiversity and condition of the forest observably increasing as the Lantana dominance was observably decreasing. This left a changing understorey that has evidently provided a more protective habitat for understorey native fauna, reducing psyllid attack and allowing the gradual recovery of many of the tree canopies affected by dieback.

A PhD study is ongoing on the Creek’s Bend property, monitoring two sites and measuring native regeneration occurring in these areas after Lantana removal. The results to date from that study indicate that very few introduced species occupied the plant community after herbicide treatment of Lantana and that the richness of the regenerating native plant community after herbicide was greater than that in untreated Lantana-invaded areas (A. Yeates, unpubl. data., 2011). Final results from monitoring in one small area show that control of Lantana using the splatter gun has been effective, with little off-target damage except possibly to the pioneer shrub Poison Peach (Trema tomentosa), which is very similar in appearance to Lantana (Yeates & Schooler 2011).

Hunter (2007) reports on a trial conducted in a 70-aerial-ha area of native forest on Creek’s Bend from October 2005 to June 2007. The report concluded that 90% of the Lantana treated with the splatter gun was killed and had not regrown. In its place, successfully colonizing natives were Cheese Tree (Glochidion sp.), Bleeding Heart (Homolanthus populifolius), Red Cedar (Toona ciliata), Lilly Pilly (Acmena smithii), Native Ginger (Alpinia coerulescens), ferns, bolly gums (Litsea spp., Neolitsea spp.), Celerywood and Ribbonwood

© 2011 Ecological Society of Australia
Table 1. Condition class before and after Lantana treatment

<table>
<thead>
<tr>
<th>Sector of the property</th>
<th>Class</th>
<th>2005 (%)</th>
<th>2011 (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lower Valley (243 ha)</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>2</td>
<td>46</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>48</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Upper Valley (231 ha)</td>
<td>0</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>1</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>60</td>
<td>19</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>38</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>11</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Area still untreated</td>
<td>25</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(Euroschinus falcatus), among others. Hunter (2007) also noted changes in structure ‘with a mid-storey establishing, and a sparser understorey appearing under the thickening canopy, which is preventing the Lantana from re-establishing’ (Hunter 2007, p. 7).

Hunter et al. (2007), also reporting on the trial conducted on Creek’s Bend, noted that ‘The overall effect appears to be a more diverse, multi-structured forest returning to the areas which were formerly a solid lantana understorey with a dying eucalypt upper storey. In the areas where the dying eucalypts may not recover appear to be evolving into a rainforest mid-storey’ (Hunter et al. 2007, p. 22).

Bird response

Bell Miners have moved away from some treated areas. We believe that this is a direct result of our treatments and that this has played a key role in vegetation recovery. That is, massive reduction of Bell Miner numbers occurred some years after Lantana treatment in three of the five monitored sites. This is likely to be due not only to the diverse native vegetation now in the understoreys of these sites but also to the fact that these three sites have no nearby Lantana in which Bell Miners could nest. Indeed, the retention of high numbers of Bell Miners in the regenerated Sites 4 and 5 could be explained by the location of these sites either side of a large valley containing degraded, Lantana-infested forest that has only recently been initially treated. As such, this valley could have provided nearby nesting sites, allowing the Bell Miners to continue to defend Sites 4 and 5 as feeding sites.

Our survey of Bell Miners, however, was relatively small and was conducted at different times of year; so further studies undertaken at similar times of year at a range of sites would be required to adequately test the decline of Bell Miner after vegetation treatment and recovery. In our view, however, it is unlikely that season would explain the decline of the birds on all the monitored sites without nearby Lantana as Bell Miner colonies are sedentary, and the colony members do not move far. Whole colonies may shift with changes in habitat, but not due to seasonal changes (P. McDonald, UNE, pers. comm., 2011). Indeed, Bell Miners appear to persist throughout wet and dry years. The survey years 2005, 2006 and 2008 were all very dry years, while the final survey year when the birds had left the sites (2011) was a very wet year, when productivity increases would be expected in such prime habitat.

While we have no conclusive evidence as we have undertaken no formal comparisons of birds prior to and after treatment, we have certainly observed many other bird species in recovering areas compared with our observations of few birds other than Bell Miners in those areas dominated by Lantana. In particular, we have noted King Parrot (Alisterus scapularis), Crimson Rosella (Platycercus elegans), Rainbow Lorikeet (Trichoglossus haematodus), Lewin’s Honeyeater (Meliphaga lewinii), Laughing Kookaburra (Dacelo novaeguineae), Eastern.

Table 2. Numbers of Bell Miners Surveyed at five Sites before and after Lantana Treatments between 2005 and 2011

<table>
<thead>
<tr>
<th>Survey Date</th>
<th>Site 1</th>
<th>Site 2</th>
<th>Site 3</th>
<th>Site 4</th>
<th>Site 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>October–November</td>
<td>23, 14, 29</td>
<td>18, 22</td>
<td>17, 27</td>
<td>25, 9, 16</td>
<td>22, 33</td>
</tr>
<tr>
<td>(prior to treatment)</td>
<td>Mean = 22</td>
<td>Mean = 20</td>
<td>Mean = 22</td>
<td>Mean = 17</td>
<td>Mean = 28</td>
</tr>
<tr>
<td>Site then treated</td>
<td>February 2006 (SG)</td>
<td></td>
<td></td>
<td>Site then treated</td>
<td>February 2006 (SG)</td>
</tr>
<tr>
<td>June–July 2006</td>
<td>23, 38</td>
<td>19, 30</td>
<td>22, 30</td>
<td>13, 29</td>
<td>34, 47</td>
</tr>
<tr>
<td>(after treatment)</td>
<td>Mean = 31</td>
<td>Mean = 25</td>
<td>Mean = 26</td>
<td>Mean = 21</td>
<td>Mean = 41</td>
</tr>
<tr>
<td>Site then treated</td>
<td>July 2007 (F)</td>
<td>July 2007 (F)</td>
<td>July 2007 (F)</td>
<td>Site then treated</td>
<td>March 2006 (SG)</td>
</tr>
<tr>
<td>April 2008</td>
<td>7 (all in one quadrat)</td>
<td>0</td>
<td>5 (all in one quadrat)</td>
<td>4 (all in one quadrat)</td>
<td>20 (in all quadrats)</td>
</tr>
<tr>
<td>Site then treated</td>
<td>May 2010 (SG)</td>
<td>Site treated</td>
<td>Site then treated</td>
<td>Site then treated</td>
<td>Site then treated</td>
</tr>
<tr>
<td>January 2011 (SG)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>September 2010 (SG)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>August 2011</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>14 (in all quadrats)</td>
<td>19 (in all quadrats)</td>
</tr>
</tbody>
</table>

Treatment ‘SG’ denotes ‘splatter gun’, while Treatment ‘F’ denotes ‘a low-intensity fire’. Sites 2 and 3 were used as untreated control sites for 9 months and were burnt in 2007.
Implications of the Results for Management

Our experiences and findings indicate that property-scale Lantana infestations can be effectively and efficiently treated minimal labour and cost using splatter gun technology. Over the previous 5 years, about 300 ha of degraded forest on Creek’s Bend have been treated by single operators on foot and/or two operators in a 4WD working along the tracks. Costs depend on such factors as terrain, accessibility and severity of Lantana infestation, but, on average, it has cost about $250 per hectare to do this form of Lantana removal on our property. As techniques are refined, the cost per hectare is decreasing.

Lantana follow-up treatments are likely to be required for some years to come, albeit at a much reduced level once weed seed banks are depleted. However, the level of native vegetation recovery is such that we are confident that time and continued effort over the next 2–3 years will see the reinstatement of stable, healthy forest across Creek’s Bend. The removal of Lantana stimulates a variety of native species, and treated areas have already begun to show marked improvement in forest structure and biodiversity. Native understoreys and mid-storeys are reappearing, and Bell Miners have moved from several areas of previously degraded forest.

In 2008, the NSW Scientific Committee, in their Notice of Final Determination of ‘Forest eucalypt dieback associated with overabundant psyllids and Bell Miners’ as a key Threatening Process, stated: ‘Forest eucalypt dieback associated with overabundant psyllids and Bell Miners’ cannot be arrested by controlling a single factor’ (Point 4). Furthermore, a review of the literature on BMAD concluded ‘There is likely to be no single or simple management solution’ (Wardell-Johnson et al. 2005a,b).

Of course, determining the relative contributions of various pathogenic factors in a complex systemic condition such as BMAD will always be difficult if not impossible. It would take a huge research effort to separate out the individual roles that Lantana, psyllids, plant pathogens, soil nitrogen and chemistry, soil microbes, tree species, micro-climate, weather, fire, logging, grazing regimes, degree of disturbance, forest structure, flora and fauna diversity, and Bell Miners play in creating and supporting the pathological condition known as ‘BMAD’.

The work on Creek’s Bend since 2005, however, indicates that native forest badly degraded by BMAD can show substantial levels of recovery and the return of complex structure and species biodiversity if the Lantana understorey is removed. This work adds weight to our initial hypothesis that the cycle of decline might be interrupted if one of the key factors, in this case the exotic weed Lantana, was removed. While we have not carried out experimental treatments to test this, the results are indicative of a process whereby changing one key factor, in this case Lantana, has resulted in system-wide changes involving other key factors including reductions in Bell Miner populations in treated areas.

There may be a range of reasons why Bell Miners might move from sites, including decline of psyllids after widespread tree death or return to a previous territory (Ewen et al. 2003). However, our impression is that Bell Miner colonies can also leave an area about 12 months after it has been cleared of Lantana and forest regeneration is underway. This allows time after nesting site removal to impact on nesting behaviour and bird numbers. While this is as yet an untested hypothesis, we consider that our case provides sufficiently interesting indications to warrant formal experimentation into the efficacy and efficiency of using splatter gun technology to remove Lantana in the treatment of BMAD and for promoting improved biodiversity in Australian native forests. If further research confirms our findings, then the splatter gun method for removing Lantana could be widely used to address the severe threat posed by Lantana and BMAD to hundreds of thousands of hectares of native forests along the east coast of Australia and worldwide.

Acknowledgements

Many people and organisations have helped with the bush regeneration work on Creek’s Bend. We would like to especially thank John Hunter for his initial inspiration and continuing support and advice; Bob Jarman and the staff at Richmond Landcare Services; Craig Wall, Paul Meek (then from DEC-CW) and Steve King from NSW National Parks and Wildlife Service (now part of OEH); John Nagle and Jamie Morton from the Northern Rivers CMA; Stephanie Horton; and All Members of the BMAD Working Group.

References

Ensley R. (September 2008) NSW DPI Prime Facts, Prime Fact 673, NSW Department of Primary Industries, Grafton.

© 2011 Ecological Society of Australia

Yellow Robin (Eopsaltria australis), Superb Fairy-wren (Malurus Cyaneus), Rufous Fantail (Rhipidura rufifrons), Grey Fantail (Rhipidura fuliginosa) and ground-dwelling birds (previously rarely seen) such as Log Runners (Orthonyx temminckii) and Brush Turkey (Alectura lathami).

Supporting Information

Additional Supporting Information may be found in the online version of this article.

Appendix S1. Native flora species list-Creeks Bend, Toonumbar – (April 2010–August 2011) Rodney Coyle. Please note: Wiley-Blackwell are not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing material) should be directed to the corresponding author for the article.