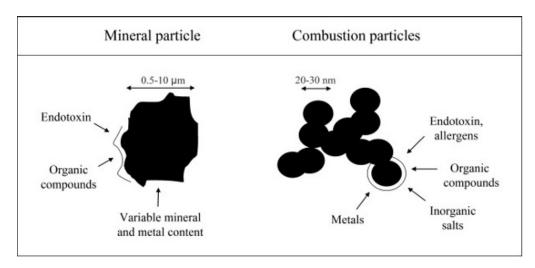
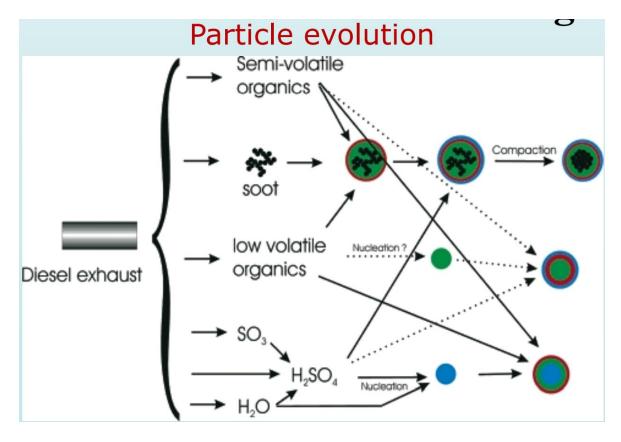


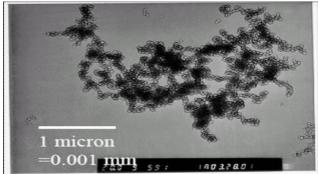
Identifying diesel particles in ambient PM2.5


Mark Hibberd Friday 13 June 2014

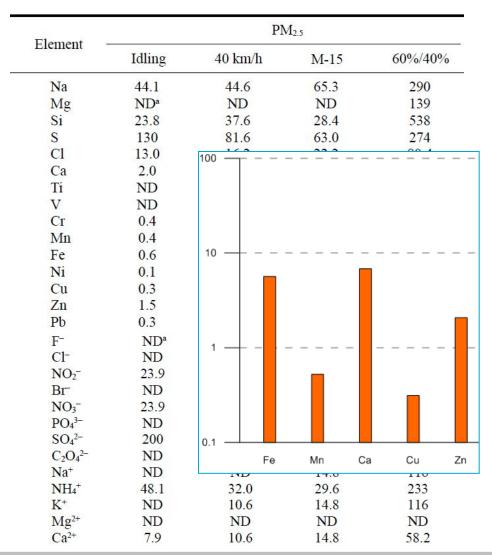
CENTRE FOR AUSTRALIAN WEATHER AND CLIMATE RESEARCH/CSIRO MARINE AND ATMOSPHERIC RESEARCH

Diesel PM_{2.5} particles


- 45-60% of PM2.5 mass is soot (also called black carbon or elemental carbon)
- Can be measured with light absorption (aethelometers) and thermal-optical techniques

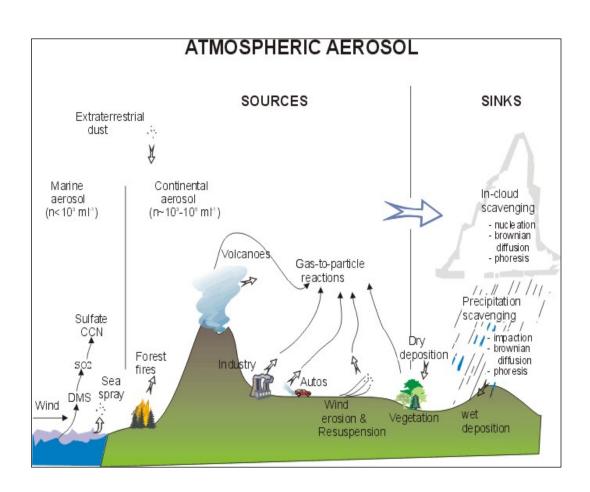

- Organic/lack carbon ratio is much lower (0.4) than for other sources
- Organic carbon more complex composition than elemental carbon, e.g. vegetation, burns at lower temperatures

Category	Average OC/BC ratio
Diesel engines	0.4
Petrol engines	5 – 10
Domestic woodheaters	7
Bushfires	10
Fuel reduction burns	12
Fugitive road dust	22


Diesel particle formation

Some of the chemical species in diesel PM_{2.5}

Factors affecting diesel emissions


- Engine type and power
- Engine operating conditions, e.g. idle, accelerate, decelerate
- Fuel formulations, e.g. sulfur content
- Dilution and aging
- Meteorology, e.g. temperature, relative humidity, sunlight

Ambient PM_{2.5}

Ambient PM2.5 includes

- Diesel engine emissions
- Brake and tyre wear
- Road dust
- Other engine emissions
- Sea salt
- Smoke fires
- Industrial emissions
- Vegetation
- Dust from duststorms
- Biogenic emissions
- Secondary particles formed in the atmosphere

Source Apportionment to identifying diesel emissions in ambient PM_{2.5}

Method used in

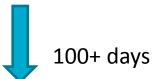
- Upper Hunter Particle Characterisation Study in 2012
- Current Lower Hunter Particle Characterisation Study
- ANSTO's long-running aerosol sampling program
- 1. Collect samples of ambient PM2.5
- 2. Analyse chemical composition of samples
- 3. Positive Matrix Factorisation (PMF) technique identifies fingerprints and their contributions
- 4. Interpret fingerprints to determine sources

Collect PM2.5 samples on filters

1 day in 3 sampling24-hour sample

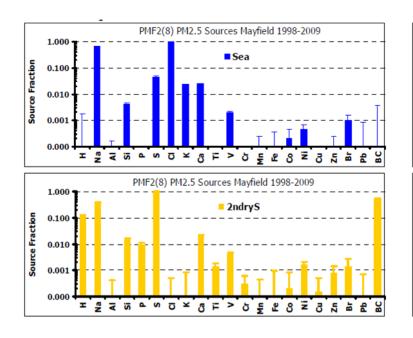
Analysis

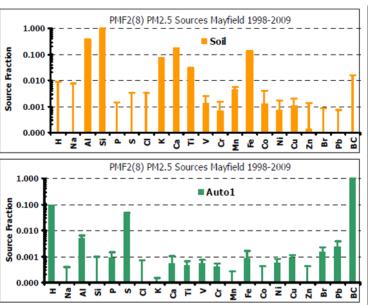
- Gravimetric mass
- Black carbon (laser integrated plate method)
- Elemental concentrations using IBA
 - Hydrogen (H)
 - Sodium (Na)
 - Aluminium (Al)
 - Silicon (Si)
 - Phosphorous (P)
 - Sulfur (S)
 - Chlorine (CI)
 - Potassium (K)
 - Calcium (Ca)
 - Titanium (Ti)
 - Vanadium (V)
 - Chromium (Cr)
 - Manganese (Mn)
 - Iron (Fe)
 - Cobolt (Co)
 - Nickel (Ni)
 - Copper (Cu)
 - Zinc (Zn)
 - Bromine (Br)
 - Lead (Pb)


- Organic carbon
- Elemental carbon
- Soluble ions
 - Chloride (Cl⁻)
 - Nitrate (NO₃-)
 - Sulphate (SO₄²⁻)
 - Oxalate
 - Phosphate
 - Methanosulfonate (MSA)
 - Sodium (Na+)
 - Ammonium (NH₄⁺)
 - Magnesium (Mg²⁺)
 - Calcium (Ca²⁺⁾
 - Potassium (K+)
- Anhydrous sugars (woodsmoke)
 - Levoglucuosan
 - Mannosan

Results spreadsheet of chemical analysis

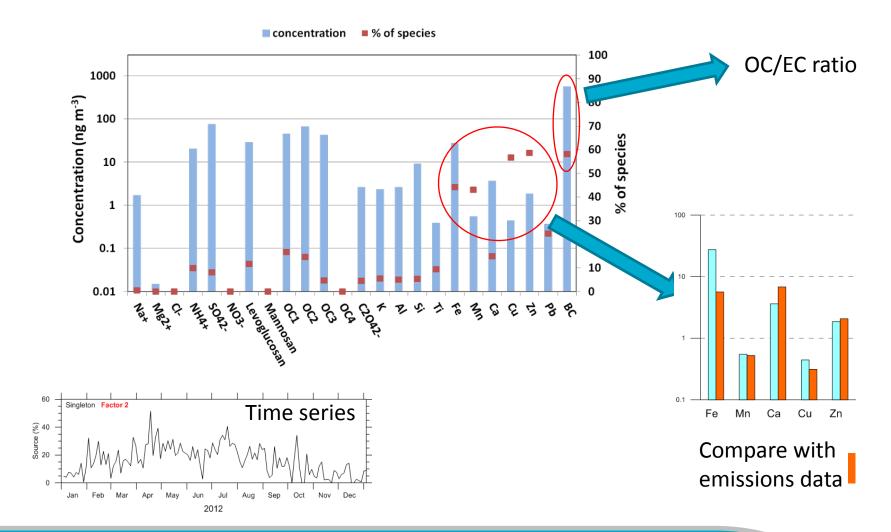
4	А	В	С	D	Е	F	G	Н	1	J	K	L	N
1		Na+	Mg2+	CI-	NH4+	SO42-	NO3-	Levoglu	Mannos	OC1	OC2	OC3	OC4
2	Date	ngim3	ng/m3	ng/m3	ng/m3	ng/m3	ng/m3	ng/m3	ng/m3	ng c/m3	ng c/m3	ng cims	ng c
3	4/01/2012	475.0	61.4	20.9	389.1	1926.3	136.4	7.8	0.2	389.3	823.5	1917.7	65
4	7/01/2012	748.5	89.5	537.8	120.8	1095.9	185.9	7.2	0.2	181.0	366.7	717.1	24
5	10/01/2012	799.9	97.0	234.4	324.7	1793.3	741.9	2.9	0.2	223.9	560.6	970.5	42
6	13/01/2012	491.5	58.3	582.7	68.4	506.2	51.0	14.2	0.2	225.4	422.0	879.7	
7	16/01/2012	476.6	58.1	129.9	188.5	1187.4	279.4	1.1	0.2	134.5	353.9	525.3	
8	19/01/2012	410.2	51.2	16.6	572.0	2505.9	75.2	2.2	0.2	165.0	329.1	425.4	28
9	22/01/2012	879.1	104.5	866.7	180.9	1245.4	159.7	7.6	0.2	69.1	231.9	393.7	11
10	25/01/2012	459.9	52.4	400.7	71.7	633.1	125.6	2.2	0.2	33.8	157.2	239.0	6
11	28/01/2012	490.4	58.4	377.6	145.1	952.6	95.4	0.2	0.2	70.9	223.5	310.2	1(
12	31/01/2012	698.9	85.1	659.0	106.9	901.4	142.8	2.6	0.2	114.4	293.2	530.3	17
13	3/02/2012	94.0	10.5	3.6	262.1	1008.8	23.6	2.7	0.2	58.4	139.6	208.4	3
14	6/02/2012	364.3	48.7	9.8	992.1	3727.6	19.6	7.5	0.2	183.4	459.8	478.5	38
15	9/02/2012	924.3	110.5	978.6	167.7	1138.4	193.2	2.7	0.2	180.4	366.7	603.3	18
16	12/02/2012	125.0	14.9	2.3	333.2	1279.4	25.4	12.1	0.2	107.2	248.6	437.2	19
17	15/02/2012	250.6	30.9	145.5	110.1	598.4	128.8	1.9	0.2	95.9	231.5	357.5	16
18	18/02/2012	176.8	25.7	2.4	1117.3	3712.1	30.9	7.4	0.2	173.9	530.6	457.1	3(
19	21/02/2012	214.6	21.1	29.2	181.4	932.6	82.0	8.6	0.2	94.0	208.5	339.1	14
20	24/02/2012	166.1	20.8	6.5	255.3	1061.0	16.3	2.4	0.2	82.5	256.9	450.4	20
21	27/02/2012	245.1	33.9	12.4	138.8	849.3	127.7	3.9	0.2	138.8	398.6	846.0	34
22	1/03/2012	356.1	37.2	42.4	133.7	1053.1	123.4	0.2	0.2	187.1	494.3	1423.1	58
23	4/03/2012	399.7	50.7	241.4	128.6	735.1	237.3	27.6	2.7	72.4	337.8	705.2	3(
24	7/02/2012	308 3	20 0	1150	115/	8038	2EU 8	2.4	0.2	110 /	2122	/Q7 A	15





Analysis using Positive Matrix Factorisation (PMF)

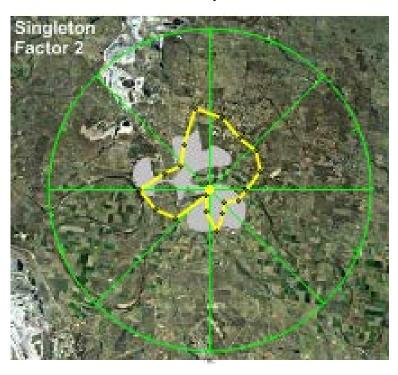
- PMF is a statistical data analysis tool with output of
 - fingerprint profiles
 - fingerprint contributions to total PM2.5



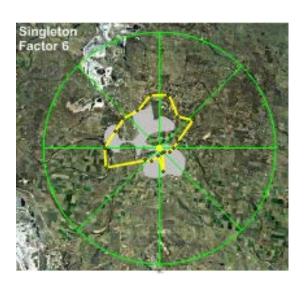
PMF fingerprints → Sources of PM2.5

- PMF fingerprints can include
 - single source
 - multiple sources
 - secondary particles that form in the atmosphere
- Interpretation of fingerprints to determine sources using:
 - information about known sources
 - knowledge of atmospheric chemistry
 - wind sector analysis
 - seasonal variations

Diesel/Industry factor


OC/EC ratio in Upper Hunter PMF factors

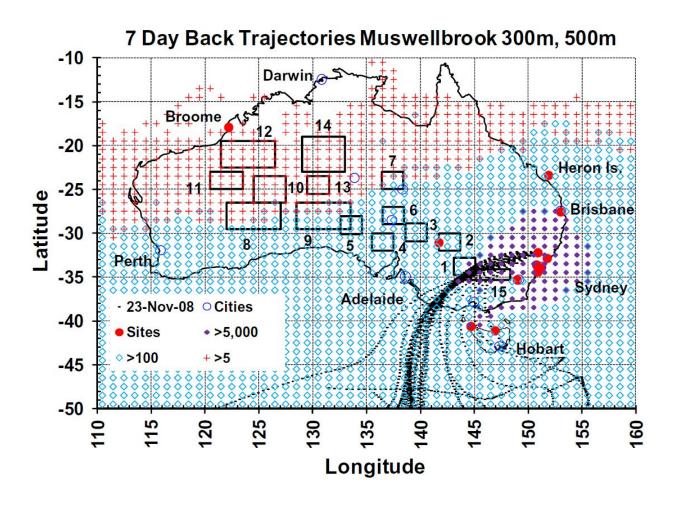
Factor	OC/EC ratio
Diesel/Industry	0.3
Sea salt	1.0
Industry aged sea salt	1.6
Secondary sulfate	1.8
Soil	3.4
Domestic woodsmoke	3.8
Secondary nitrate	6.0
Biomass burning	11.4



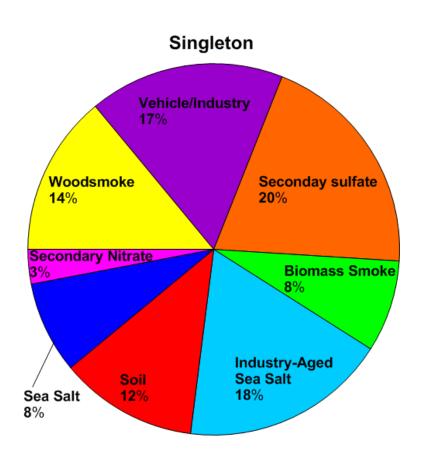
Pinpointing sources with wind data

Diesel/Industry factor

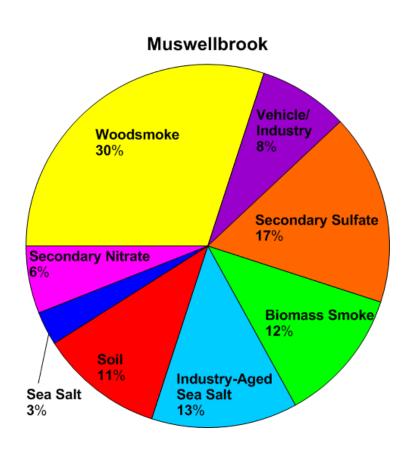
Soil factor



Sea salt factor



Back trajectory analysis to identify sources



Summary of PM_{2.5} results for Upper Hunter

Annual average 6 μg m⁻³

Annual average 8 μg m⁻³

Conclusions

- Ambient PM_{2.5} is a complex mix of chemical species from many sources and with a wide range of sizes
- 45-60% of the mass of diesel engine emissions are elemental carbon (soot)
- OC/EC ratio for diesel emissions is much lower than other sources
- Source apportionment (PMF) can identify the fraction of diesel emissions in ambient PM_{2.5}, and also its sources

Thank you

CSIRO Marine and Atmospheric Research

Dr Mark Hibberd Principal Research Scientist

E: Mark.Hibberd@csiro.au

T: +61 3 9239 4400

W: www.csiro.au

MARINE AND ATMOSPHERIC RESEARCH

www.csiro.au

