Technical Report No. 4

Air Emissions Inventory for the Greater Metropolitan Region in New South Wales

2008 Calendar Year

Domestic-Commercial Emissions: Results

ACKNOWLEDGMENTS

This study was performed with the help of organisations and individuals who should be recognised for their efforts.

The 801 residential households that participated in the domestic survey conducted by Taverner Research are gratefully acknowledged. Their input has enabled a thorough evaluation of domestic sources of air emissions. Data provided by other government departments and service providers, including Allpower Industries Australia Pty Ltd, Australian Asphalt Pavement Association, Australian Bureau of Agricultural and Resource Economics and Sciences, Australian Bureau of Statistics, Australian Paint Manufacturers Federation Inc., Bureau of Transport Statistics, Informark, Jemena Gas Networks (NSW) Ltd and Office of Environment and Heritage, were essential for the completion of this study.

The work of a number of individuals is acknowledged, including Mr Nick Agapides, Manager Major Air Projects and Mr Kelsey Bawden, Senior Technical Policy Advisor, for their efforts in project scoping and management, developing emission estimation methodologies, collecting activity data, developing databases, estimating emissions and preparing this report.

© Copyright State of NSW and the Environment Protection Authority

The Environment Protection Authority and the State of NSW are pleased to allow this material to be reproduced in whole or in part for educational and non-commercial use, provided the meaning is unchanged and its source, publisher and authorship are acknowledged.

Published by: Environment Protection Authority 59-61 Goulburn Street PO Box A290 Sydney South 1232 Phone: (02) 9995 5000 (switchboard) Phone: 131 555 (environment information and publications requests) Fax: (02) 9995 5999 TTY: (02) 9211 4723

Email: <u>info@environment.nsw.gov.au</u> Website: <u>www.epa.nsw.gov.au</u>

ISBN 978-1-74293-465-5 EPA 2012/0048 August 2012

EXECUTIVE SUMMARY

An air emissions inventory project for domestic-commercial sources has taken over 2 years to complete. The base year of the domestic-commercial inventory represents activities that took place during the 2008 calendar year and is accompanied by emission projections in yearly increments up to the 2036 calendar year. The area included in the inventory covers the greater Sydney, Newcastle and Wollongong regions, known collectively as the Greater Metropolitan Region (GMR).

The inventory region defined as the GMR measures 210 km (east-west) by 273 km (north-south). The inventory region is presented in Table ES-1 and shown in Figure ES-1.

Region	South-west corne	r MGA ¹ coordinates	North-east corner MGA coordinates				
Negion	Easting (km)	Northing (km)	Easting (km)	Northing (km)			
Greater Metropolitan	210	6159	420	6432			
Sydney	261	6201	360	6300			
Newcastle	360	6348	408	6372			
Wollongong	279	6174	318	6201			

Table ES-1: Definition of Greater Metropolitan, Sydney, Newcastle and Wollongong regions

The domestic-commercial air emissions inventory includes emissions from the following sources/activities:

- > Aerosols and solvents (domestic and commercial);
- Barbecues (domestic);
- Cutback bitumen;
- Gaseous fuel combustion (domestic and unaccounted);
- Graphic arts (domestic and commercial);
- > Lawn mowing and garden equipment (domestic and public open space);
- Liquid fuel combustion (domestic);
- Natural gas leakage;
- > Portable fuel containers (domestic and public open space);
- Solid fuel combustion (domestic); and

¹ Map Grid of Australia based on the Geocentric Datum of Australia 1994 (GDA94) (ICSM, 2006).

> Surface coatings (domestic, commercial and industrial).

The pollutants inventoried include criteria pollutants specified in the Ambient Air Quality NEPM (NEPC, 2003), air toxics associated with the National Pollutant Inventory NEPM (NEPC, 2008) and the Air Toxics NEPM (NEPC, 2004), and any other pollutants associated with state-specific programs, i.e. Load Based Licensing (Protection of the Environment Operations (General) Regulation 2009 (PCO, 2010b)) and the Protection of the Environment Operations (Clean Air) Regulation 2010 (PCO, 2011).

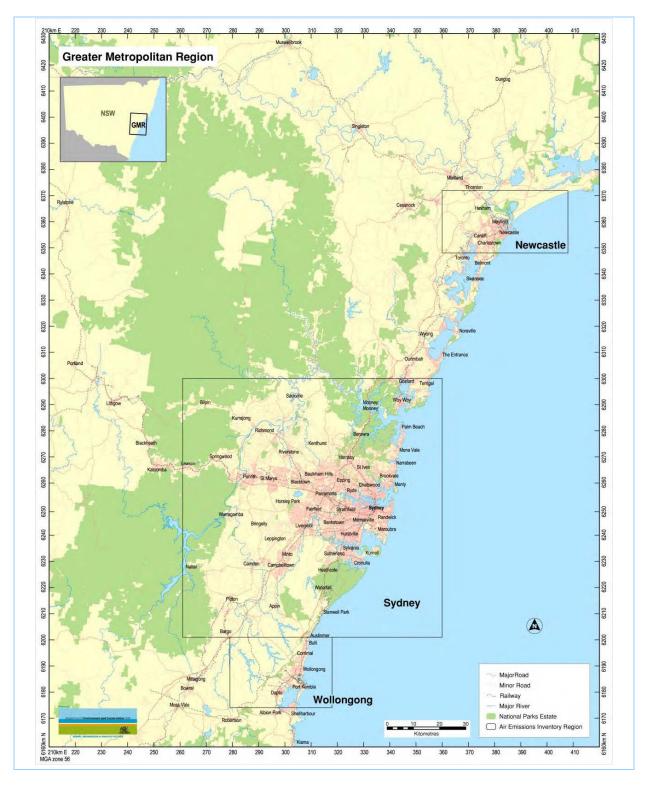


Table ES-2 presents total estimated annual emissions (for selected substances) from all domesticcommercial sources in the whole GMR and the Sydney, Newcastle and Wollongong regions. Total estimated annual emissions are also presented for the region defined as Non Urban. This region is the area of the GMR minus the combined areas of the Sydney, Newcastle and Wollongong regions. The selected substances were chosen because they:

- Are the most common air pollutants found in airsheds, according to the National Pollutant Inventory NEPM (NEPC, 2008);
- Are referred to in the NEPMs for ambient air quality (NEPC, 2003) and air toxics (NEPC, 2004); and
- > Have been classified as priority air pollutants (NEPC, 2006).

Substance	Emissions (tonne/year)								
oubstance	Newcastle	Non Urban	Sydney	Wollongong	GMR				
1,3-BUTADIENE	7.19	18	89	4.81	119				
ACETALDEHYDE	18	44	215	12	289				
BENZENE	47	116	585	31	779				
CARBON MONOXIDE	6,554	16,226	82,186	4,412	109,377				
FORMALDEHYDE	43	109	528	29	709				
ISOMERS OF XYLENE	187	453	2,657	133	3,430				
LEAD & COMPOUNDS	6.79 × 10 ⁻²	0.17	0.83	4.53×10^{-2}	1.12				
OXIDES OF NITROGEN	184	445	2,531	130	3,290				
PARTICULATE MATTER ≤ 10 µm	504	1,262	6,088	334	8,189				
PARTICULATE MATTER ≤ 2.5 μm	485	1,214	5,853	321	7,873				
PERCHLOROETHYLENE	4.67	12	73	3.44	92				
POLYCYCLIC AROMATIC HYDROCARBONS	14	35	186	9.59	244				
SULFUR DIOXIDE	11	26	131	7.07	175				
TOLUENE	185	449	2,619	131	3,384				
TOTAL SUSPENDED PARTICULATE	539	1,348	6,501	357	8,745				
TOTAL VOLATILE ORGANIC COMPOUNDS	3,757	9,213	53,178	2,660	68,809				
TRICHLOROETHYLENE	0.28	0.69	4.38	0.21	5.56				

 Table ES-2: Total estimated annual emissions from domestic-commercial sources in each region

Figure ES-2 shows the proportions of total estimated annual emissions (for selected substances) from domestic-commercial sources in the whole GMR and the Sydney, Newcastle, Wollongong and Non Urban regions.

2008 Calendar Year Domestic-Commercial Emissions: Results Executive Summary



Figure ES-2: Proportions of total estimated annual emissions from domestic-commercial sources in each region

Table ES-3, Table ES-4, Table ES-5, Table ES-6 and Table ES-7 present total estimated annual emissions (for selected substances) from each domestic-commercial source type in the whole GMR and the Sydney, Newcastle, Wollongong and Non Urban regions, respectively.

Figure ES-3, Figure ES-4, Figure ES-5, Figure ES-6 and Figure ES-7 show the proportions of total estimated annual emissions (for selected substances) from each domestic-commercial source type in the whole GMR and the Sydney, Newcastle, Wollongong and Non Urban regions, respectively.

1,3-BUTADIENE 1.25 44 73 119 ACETALDEHYDE 18 27 7.54×10^{-3} 243 289 2.78×10^{-4} 0.27 BENZENE 779 1.13×10^{-2} 4.10 389 3.23×10^{-4} 17 369 4.40×10^{-2} 109,377 CARBON MONOXIDE 520 7.70 53,985 861 54,003 FORMALDEHYDE 12 13 5.17×10^{-2} 612 9.07 \times 10⁻² 709 1.57 70 0.84 57 ISOMERS OF XYLENE 681 21 1,167 1.57×10^{-4} 12 80 1,412 3,430 3.04×10^{-3} 1.05×10^{-2} 0.33 0.77 LEAD & COMPOUNDS 1.94×10^{-3} 1.12 OXIDES OF NITROGEN 1,996 356 28 811 3,290 100 PARTICULATE MATTER 34 347 3.66 159 7,645 8,189 ≤ 10 µm PARTICULATE MATTER 7,873 31 159 320 3.28 7,359 ≤ 2.5 µm 9.52×10^{-2} PERCHLOROETHYLENE 92 92 4.83×10^{-5} POLYCYCLIC AROMATIC 91 0.47 7.30 3.53 1.84×10^{-3} 135 5.90 244 1.46×10^{-2} **HYDROCARBONS** SULFUR DIOXIDE 13 175 11 10 11 129 TOLUENE 8.91×10^{-3} 846 1.69 11 7.12×10^{-2} 10 1.134 41 103 1,237 3,384 TOTAL SUSPENDED 46 159 358 5.08 8,177 8,745 -PARTICULATE TOTAL VOLATILE 2,973 169 8,027 25,274 162 115 3,475 14,916 1.10 2,136 11,561 68,809 ORGANIC COMPOUNDS 5.56 TRICHLOROETHYLENE 5.56 --

Table ES-3: Total estimated annual emissions by domestic-commercial source type in the GMR

Air Emissions Inventory for the Greater Metropolitan Region of New South Wales

Executive Summary

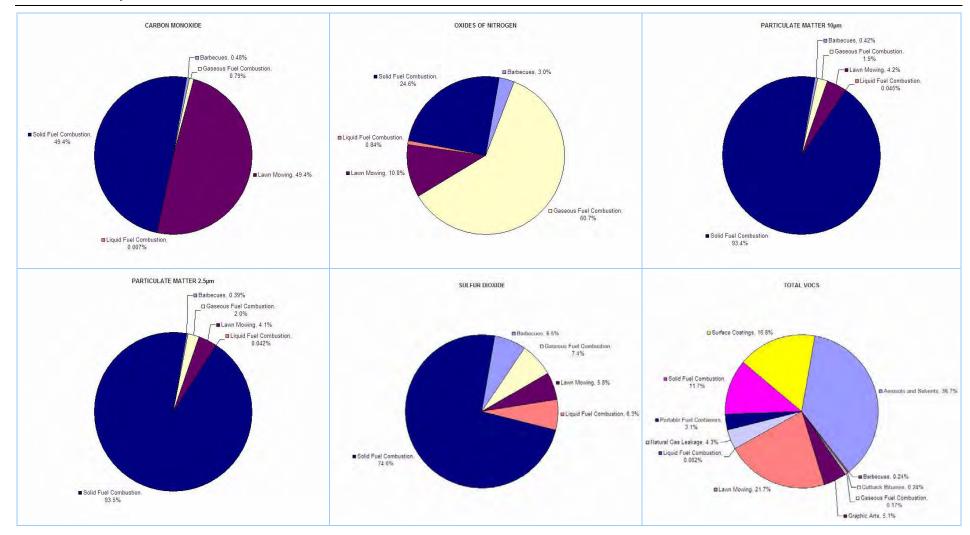


Figure ES-3: Proportions of total estimated annual emissions by domestic-commercial source type in the GMR

Table ES-4: Total estimated annual emissions by domestic-commercial source type in the Sydney region												
						Emissi	ons (tonne/yea	r)				
Substance	Aerosols and solvents	Barbecues	Cutback bitumen	Gaseous fuel combustion	Graphic arts	Lawn mowing	Liquid fuel combustion	Natural gas leakage	Portable fuel containers	Solid fuel combustion	Surface coatings	Domestic- Commercial Total
1,3-BUTADIENE	-	0.98	-	-	-	33	-	-	-	54	-	89
ACETALDEHYDE	-	14	-	2.17×10^{-4}	-	21	5.88×10^{-3}	-	-	180	0.21	215
BENZENE	8.91×10^{-3}	3.20	-	3.43×10^{-2}	-	295	$2.52\times10^{\text{-}4}$	-	12	274	-	585
CARBON MONOXIDE	-	406	-	671	-	41,069	6.00	-	-	40,034	-	82,186
FORMALDEHYDE	9.08	9.76	-	1.22	-	53	4.03×10^{-2}	-	-	454	7.07×10^{-2}	528
ISOMERS OF XYLENE	536	0.65	16	-	63	890	1.22×10^{-4}	-	8.74	42	1,101	2,657
LEAD & COMPOUNDS	-	2.37×10^{-3}	-	8.16 × 10-3	-	0.25	1.51 × 10-3	-	-	0.57	-	0.83
OXIDES OF NITROGEN	-	78	-	1,556	-	275	22	-	-	601	-	2,531
PARTICULATE MATTER ≤ 10 µm	-	27	-	124	-	265	2.86	-	-	5,669	-	6,088
PARTICULATE MATTER ≤ 2.5 μm	-	24	-	124	-	245	2.56	-	-	5,457	-	5,853
PERCHLOROETHYLENE	73	3.77×10^{-5}	-	-	-	-	-	-	-	-	$7.42\times10^{\text{-}2}$	73
POLYCYCLIC AROMATIC HYDROCARBONS	72	0.37	-	1.14 × 10-2	5.75	2.68	1.43×10^{-3}	-	-	100	4.60	186
SULFUR DIOXIDE	-	8.91	-	10	-	7.71	8.52	-	-	96	-	131
TOLUENE	666	1.32	8.48	5.55×10^{-2}	8.21	863	6.95 × 10 ⁻³	-	30	76	965	2,619
TOTAL SUSPENDED PARTICULATE	-	36	-	124	-	273	3.96	-	-	6,064	-	6,501
TOTAL VOLATILE ORGANIC COMPOUNDS	19,905	126	132	90	2,737	11,317	0.86	2,318	1,589	5,952	9,012	53,178
TRICHLOROETHYLENE	4.38	-	-	-	-	-	-	-	-	-	-	4.38

Table ES-4: Total estimated annual emissions by domestic-commercial source type in the Sydney region

Air Emissions Inventory for the Greater Metropolitan Region of New South Wales

Executive Summary

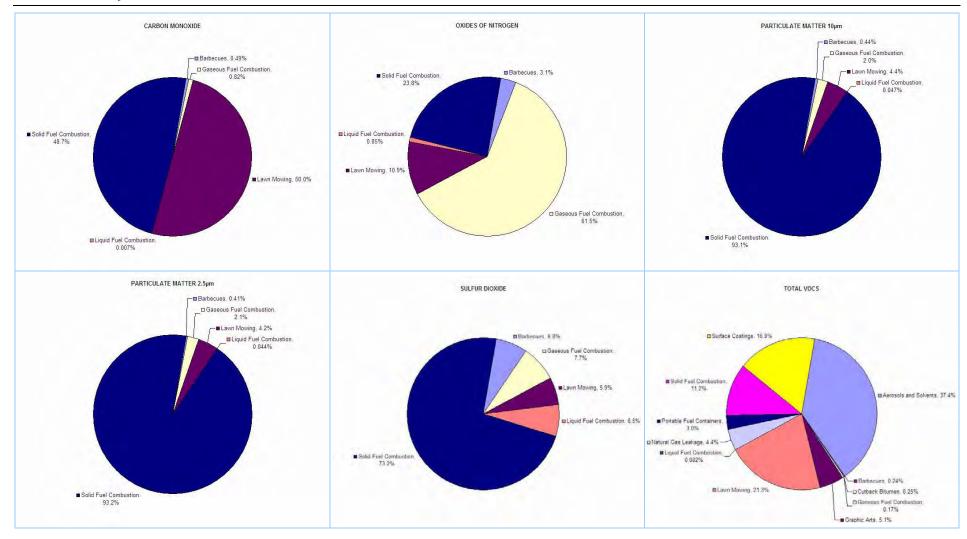


Figure ES-4: Proportions of total estimated annual emissions by domestic-commercial source type in the Sydney region

	Table ES-5:	Total estir	nated ann	ual emissior	is by don	nestic-com	mercial sour	ce type ir	the Newca	stle region		
	Emissions (tonne/year)											
Substance	Aerosols and solvents	Barbecues	Cutback bitumen	Gaseous fuel combustion	Graphic arts	Lawn mowing	Liquid fuel combustion	Natural gas leakage	Portable fuel containers	Solid fuel combustion	Surface coatings	Domestic- Commercial Total
1,3-BUTADIENE	-	$6.74\times10^{\text{-}2}$	-	-	-	2.57	-	-	-	4.55	-	7.19
ACETALDEHYDE	-	0.98	-	$1.50 imes 10^{-5}$	-	1.57	$4.06\times10^{\text{-}4}$	-	-	15	$1.46 imes 10^{-2}$	18
BENZENE	$5.71\times10^{\text{-}4}$	0.22	-	2.36 × 10 ⁻³	-	23	$1.74 imes10^{-5}$	-	1.02	23	-	47
CARBON MONOXIDE	-	28	-	46	-	3,134	0.41	-	-	3,345	-	6,554
FORMALDEHYDE	0.58	0.67	-	$8.45\times10^{\text{-2}}$	-	4.10	2.78×10^{-3}	-	-	38	$4.88\times10^{\text{-3}}$	43
ISOMERS OF XYLENE	34	$4.50\times10^{\text{-}2}$	1.16	-	4.04	67	8.42×10^{-6}	-	0.72	3.53	76	187
LEAD & COMPOUNDS	-	$1.63 imes 10^{-4}$	-	$5.63 imes 10^{-4}$	-	$1.92\times10^{\text{-}2}$	$1.04\times10^{\text{-}4}$	-	-	4.79 × 10-2	-	6.79 × 10 ⁻²
OXIDES OF NITROGEN	-	5.35	-	107	-	20	1.49	-	-	50	-	184
PARTICULATE MATTER ≤ 10 µm	-	1.84	-	8.57	-	20	0.20	-	-	474	-	504
PARTICULATE MATTER ≤ 2.5 μm	-	1.65	-	8.57	-	18	0.18	-	-	456	-	485
PERCHLOROETHYLENE	4.66	2.60×10^{-6}	-	-	-	-	-	-	-	-	5.12×10^{-3}	4.67
POLYCYCLIC AROMATIC HYDROCARBONS	4.61	2.53 × 10 ⁻²	-	$7.86 imes 10^{-4}$	0.37	0.21	9.89 × 10 ⁻⁵	-	-	8.38	0.32	14
SULFUR DIOXIDE	-	0.61	-	0.69	-	0.60	0.59	-	-	8.01	-	11
TOLUENE	43	9.11 × 10-2	0.61	3.83 × 10 ⁻³	0.53	66	$4.79\times10^{\text{-}4}$	-	2.50	6.36	67	185
TOTAL SUSPENDED PARTICULATE	-	2.46	-	8.57	-	21	0.27	-	-	507	-	539
TOTAL VOLATILE ORGANIC COMPOUNDS	1,276	8.71	9.42	6.19	175	871	5.90 × 10-2	160	131	497	622	3,757
TRICHLOROETHYLENE	0.28	-	-	-	-	-	-	-	-	-	-	0.28

Table ES 5: Total estimated annual emissions by demostic commercial source type in the Newcastle region

Air Emissions Inventory for the Greater Metropolitan Region of New South Wales

Executive Summary

Figure ES-5: Proportions of total estimated annual emissions by domestic-commercial source type in the Newcastle region

10	able E 5-0 :	i otai estim	lateu anni	ual emission	s by uom	estic-comi	nercial sourc	e type in	the womon	going region		
						Emissio	ns (tonne/yea					
Substance	Aerosols and solvents	Barbecues	Cutback bitumen	Gaseous fuel combustion	Graphic arts	Lawn mowing	Liquid fuel combustion	Natural gas leakage	Portable fuel containers	Solid fuel combustion	Surface coatings	Domestic- Commercial Total
1,3-BUTADIENE	-	$4.87\times10^{\text{-}2}$	-	-	-	1.76	-	-	-	3.00	-	4.81
ACETALDEHYDE	-	0.71	-	$1.08 imes 10^{-5}$	-	1.08	$2.93 imes 10^{-4}$	-	-	9.94	$1.06\times10^{\text{-}2}$	12
BENZENE	$4.21\times10^{\text{-}4}$	0.16	-	1.71×10^{-3}	-	16	$1.26 imes 10^{-5}$	-	0.68	15	-	31
CARBON MONOXIDE	-	20	-	33	-	2,148	0.30	-	-	2,209	-	4,412
FORMALDEHYDE	0.43	0.49	-	6.10 × 10-2	-	2.81	2.01 × 10 ⁻³	-	-	25	$3.53\times10^{\text{-}3}$	29
ISOMERS OF XYLENE	25	$3.25 imes 10^{-2}$	0.66	-	2.97	46	6.09 × 10-6	-	0.48	2.33	55	133
LEAD & COMPOUNDS	-	$1.18\times10^{\text{-}4}$	-	4.07×10^{-4}	-	$1.31\times10^{\text{-}2}$	$7.54 imes10^{-5}$	-	-	3.16 × 10-2	-	$4.53\times10^{\text{-}2}$
OXIDES OF NITROGEN	-	3.87	-	78	-	14	1.08	-	-	33	-	130
PARTICULATE MATTER ≤10 µm	-	1.33	-	6.19	-	14	0.14	-	-	313	-	334
PARTICULATE MATTER ≤ 2.5 μm	-	1.19	-	6.19	-	13	0.13	-	-	301	-	321
PERCHLOROETHYLENE	3.43	$1.88 imes 10^{-6}$	-	-	-	-	-	-	-	-	3.70×10^{-3}	3.44
POLYCYCLIC AROMATIC HYDROCARBONS	3.39	1.83 × 10-2	-	5.68×10^{-4}	0.27	0.14	7.15 × 10 ⁻⁵	-	-	5.53	0.23	9.59
SULFUR DIOXIDE	-	0.44	-	0.50	-	0.41	0.42	-	-	5.29	-	7.07
TOLUENE	31	$6.58 imes10^{-2}$	0.34	2.77 × 10-3	0.39	45	$3.46 imes 10^{-4}$	-	1.66	4.20	48	131
TOTAL SUSPENDED PARTICULATE	-	1.77	-	6.19	-	14	0.20	-	-	335	-	357
TOTAL VOLATILE ORGANIC COMPOUNDS	940	6.29	5.35	4.48	129	595	4.27×10^{-2}	116	87	328	449	2,660
TRICHLOROETHYLENE	0.21	-	-	-	-	-	-	-	-	-	-	0.21

Table ES-6: Total estimated annual emissions by domestic-commercial source type in the Wollongong region

Air Emissions Inventory for the Greater Metropolitan Region of New South Wales

Executive Summary

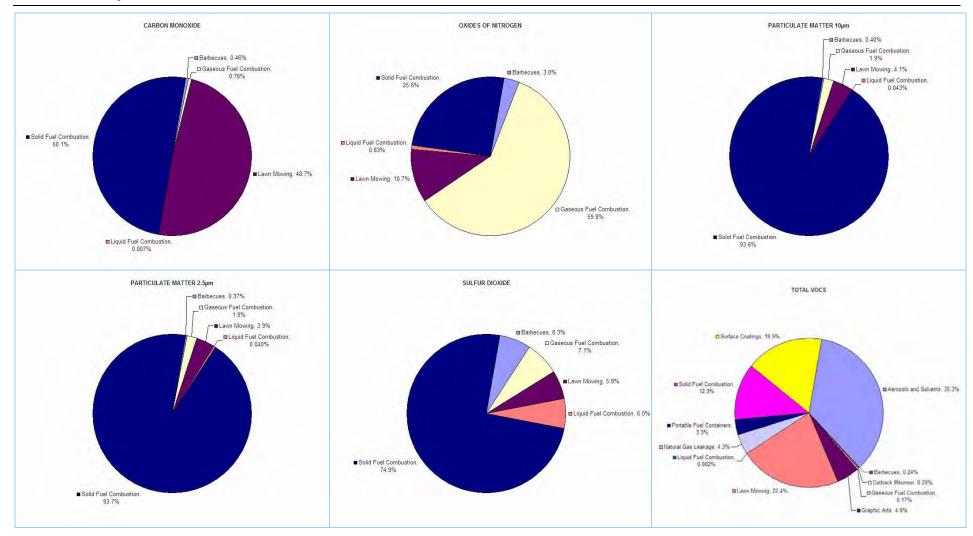


Figure ES-6: Proportions of total estimated annual emissions by domestic-commercial source type in the Wollongong region

1	able ES=7.	i otai estili	liateu alli	ual emission	is by uon	iestic-com	inercial source	te type II		Ibali legioli		
						Emissio	ns (tonne/yea	r)				
Substance	Aerosols and solvents	Barbecues	Cutback bitumen	Gaseous fuel combustion	Graphic arts	Lawn mowing	Liquid fuel combustion	Natural gas leakage	Portable fuel containers	Solid fuel combustion	Surface coatings	Domestic- Commercial Total
1,3-BUTADIENE	-	0.16	-	-	-	6.30	-	-	-	11	-	18
ACETALDEHYDE	-	2.33	-	$3.56 imes 10^{-5}$	-	3.81	$9.65 imes 10^{-4}$	-	-	38	$3.48\times10^{\text{-}2}$	44
BENZENE	1.41×10^{-3}	0.52	-	5.62×10^{-3}	-	55	$4.13 imes 10^{-5}$	-	2.56	57	-	116
CARBON MONOXIDE	-	67	-	110	-	7,652	0.98	-	-	8,396	-	16,226
FORMALDEHYDE	1.44	1.60	-	0.20	-	10	6.61 × 10 ⁻³	-	-	95	1.16×10^{-2}	109
ISOMERS OF XYLENE	85	0.11	2.73	-	9.98	164	$2.0 imes 10^{-5}$	-	1.81	8.86	180	453
LEAD & COMPOUNDS	-	$3.88 imes 10^{-4}$	-	1.34×10^{-3}	-	$4.72\times10^{\text{-}2}$	$2.48 imes 10^{-4}$	-	-	0.12	-	0.17
OXIDES OF NITROGEN	-	13	-	255	-	47	3.54	-	-	126	-	445
PARTICULATE MATTER ≤10 µm	-	4.38	-	20	-	48	0.47	-	-	1,189	-	1,262
PARTICULATE MATTER ≤ 2.5 μm	-	3.93	-	20	-	45	0.42	-	-	1,145	-	1,214
PERCHLOROETHYLENE	12	$6.18\times10^{\text{-}6}$	-	-	-	-	-	-	-	-	$1.22\times10^{\text{-}2}$	12
POLYCYCLIC AROMATIC HYDROCARBONS	11	6.0 × 10 ⁻²	-	1.87×10^{-3}	0.91	0.51	2.35×10^{-4}	-	-	21	0.75	35
SULFUR DIOXIDE	-	1.46	-	1.65	-	1.47	1.40	-	-	20	-	26
TOLUENE	106	0.22	1.43	9.10 × 10 ⁻³	1.30	160	1.14×10^{-3}	-	6.24	16	158	449
TOTAL SUSPENDED PARTICULATE	-	5.84	-	20	-	50	0.65	-	-	1,272	-	1,348
TOTAL VOLATILE ORGANIC COMPOUNDS	3,154	21	22	15	434	2,133	0.14	380	329	1,248	1,478	9,213
TRICHLOROETHYLENE	0.69	-	-	-	-	-	-	-	-	-	-	0.69

Table ES-7: Total estimated annual emissions by domestic-commercial source type in the Non Urban region

$\label{eq:alpha} Air\ Emissions\ Inventory\ for\ the\ Greater\ Metropolitan\ Region\ of\ New\ South\ Wales$

Executive Summary

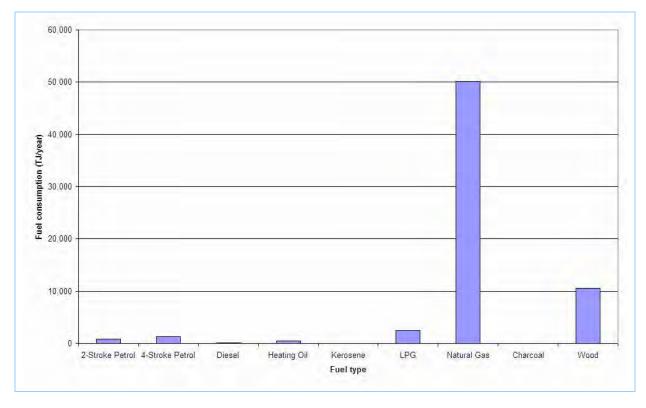

Figure ES-7: Proportions of total estimated annual emissions by domestic-commercial source type in the Non Urban region

Table ES-8 presents total estimated fuel consumption from all domestic-commercial sources in the GMR by volume and energy content.

Table ES-8: Total estimated annual fuel consumption from domestic-commercial sources by volume and energy content in the GMR

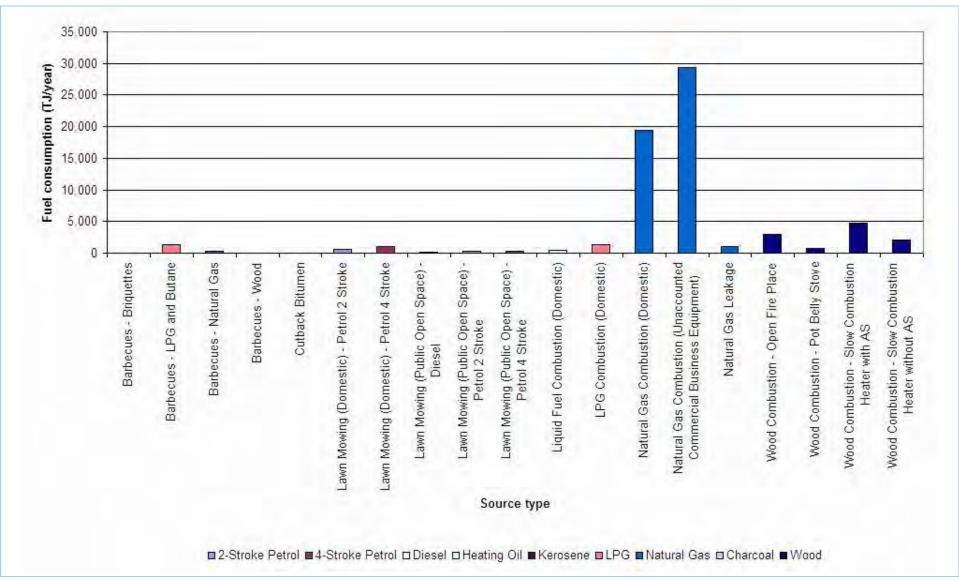
Fuel	Annual fuel consumption							
T uci	Volume	Volume units	Energy content (TJ/year)					
2-Stroke petrol	25,680		878					
4-Stroke petrol	39,736		1,359					
Diesel	3,336	kL/year	129					
Heating oil	12,848	KL/ year	483					
Kerosene	305		11					
LPG	99,870		2,547					
Natural gas	1,309	Mm ³ /year	50,126					
Charcoal	2,247	tonne/year	56					
Wood	647,802	torine/ year	10,494					

Figure ES-8 shows total estimated fuel consumption from all domestic-commercial sources in the GMR by energy content.

Figure ES-8: Total estimated annual fuel consumption from domestic-commercial sources by energy content in the GMR

Table ES-9 and Table ES-10 present total estimated fuel consumption by domestic-commercial source type in the GMR by volume and energy content, respectively. Figure ES-9 shows total estimated fuel consumption by domestic-commercial source type in the GMR by energy content.

Parrana tama	2-Stroke petrol	4-Stroke petrol	Diesel	Heating oil	Kerosene	LPG	Natural gas	Charcoal	Wood	
Source type		kL/year						tonne,	ne/year	
Barbecues - briquettes	-	-	-	-	-	-	-	2,247	-	
Barbecues – LPG and butane	-	-	-	-	-	49,885	-	-	-	
Barbecues – natural gas	-	-	-	-	-	-	7	-	-	
Barbecues - wood	-	-	-	-	-	-	-	-	1,285	
Cutback bitumen	-	-	-	-	305	-	-	-	-	
Lawn mowing (domestic) – petrol 2 stroke	15,665	-	-	-	-	-	-	-	-	
Lawn mowing (domestic) - petrol 4 stroke	-	30,525	-	-	-	-	-	-	-	
Lawn mowing (public open space) – diesel	-	-	3,336	-	-	-	-	-	-	
Lawn mowing (public open space) – petrol 2 stroke	10,014	-	-	-	-	-	-	-	-	
Lawn mowing (public open space) – petrol 4 stroke	-	9,212	-	-	-	-	-	-	-	
Liquid fuel combustion (domestic)	-	-	-	12,848	-	-	-	-	-	
LPG combustion (domestic)	-	-	-	-	-	49,984	-	-	-	
Natural gas combustion (domestic)	-	-	-	-	-	-	508	-	-	
Natural gas combustion (unaccounted commercial business equipment)	-	-	-	-	-	-	766	-	-	
Natural gas leakage	-	-	-	-	-	-	28	-	-	
Wood combustion – open fireplace	-	-	-	-	-	-	-	-	182,471	
Wood combustion - pot belly stove	-	-	-	-	-	-	-	-	44,296	
Wood combustion – slow combustion heater with AS ²	-	-	-	-	-	-	-	-	292,435	
Wood combustion - slow combustion heater without AS	-	-	-	-	-	-	-	-	127,314	
Grand Total	25,680	39,736	3,336	12,848	305	99,870	1,309	2,247	647,802	


Table ES-9: Total estimated annual fuel consumption by domestic-commercial source type and volume in the GMR

² Appliances certified in accordance with Standards Australia, 1992a and Standards Australia, 1992b or Standards Australia, 1999a and Standards Australia 1999b).

Executive Summary

Table ES-10: Total estimated annual fue	l consumption	by domestic-	comme	ercial source	e type and	energ	gy content i	n the GM	R	
	Energy content (TJ/year)									
Source type	2-Stroke petrol	4-Stroke petrol	Diesel	Heating oil	Kerosene	LPG	Natural gas	Charcoal	Wood	Grand Total
Barbecues – briquettes	-	-	-	-	-	-	-	56	-	56
Barbecues – LPG and butane	-	-	-	-	-	1,272	-	-	-	1,272
Barbecues - natural gas	-	-	-	-	-	-	252	-	-	252
Barbecues - wood	-	-	-	-	-	-	-	-	21	21
Cutback bitumen	-	-	-	-	11	-	-	-	-	11
Lawn mowing (domestic) - petrol 2 stroke	536	-	-	-	-	-	-	-	-	536
Lawn mowing (domestic) - petrol 4 stroke	-	1,044	-	-	-	-	-	-	-	1,044
Lawn mowing (public open space) - diesel	-	-	129	-	-	-	-	-	-	129
Lawn mowing (public open space) - petrol 2 stroke	342	-	-	-	-	-	-	-	-	342
Lawn mowing (public open space) - petrol 4 stroke	-	315	-	-	-	-	-	-	-	315
Liquid fuel combustion (domestic)	-	-	-	483	-	-	-	-	-	483
LPG combustion (domestic)	-	-	-	-	-	1,275	-	-	-	1,275
Natural gas combustion (domestic)	-	-	-	-	-	-	19,455	-	-	19,455
Natural gas combustion (unaccounted commercial business equipment)	-	-	-	-	-	-	29,332	-	-	29,332
Natural gas leakage	-	-	-	-	-	-	1,087	-	-	1,087
Wood combustion - open fire place	-	-	-	-	-	-	-	-	2,956	2,956
Wood combustion - pot belly stove	-	-	-	-	-	-	-	-	718	718
Wood combustion – slow combustion heater with AS ³	-	-	-	-	-	-	-	-	4,737	4,737
Wood combustion – slow combustion heater without AS	-	-	-	-	-	-	-	-	2,062	2,062
Grand Total	878	1,359	129	483	11	2,547	50,126	56	10,494	66,084

³ Appliances certified in accordance with Standards Australia, 1992a and Standards Australia, 1992b or Standards Australia, 1999a and Standards Australia 1999b).

Air Emissions Inventory for the Greater Metropolitan Region of New South Wales Executive Summary

unde summury

Figure ES-9: Total estimated annual fuel consumption by domestic-commercial source type and energy content in the GMR

CONTENTS

EX	ECUI	TVE SUMMARY	i
LIS	ST OF	TABLESxx	iv
LIS	ST OF	FIGURESxxx	vi
1	INT	RODUCTION	.1
2	INV	'ENTORY SPECIFICATIONS	. 2
	2.1	The Inventory Year	2
	2.2	The Inventory Region	
	2.3	Grid Coordinate System	
	2.4	Emission Sources Considered	
-	2.5	Pollutants Evaluated	
	2.6	Methodology Overview	
4	2.6.1		
	2.6.2		
	2.6.3		
	2.6.4		
	2.6.5		
3	DA	TA SOURCES AND RESULTS	25
3	3.1	Aerosols and Solvents	28
	3.1.1	Emission Source Description	28
	3.1.2	2 Emission Estimation Methodology	29
	3.1.3	3 Activity Data	30
	3.1.4	Emission and Speciation Factors	30
	3.1.5	5 Spatial Distribution of Emissions	34
	3.1.6	5 Temporal Variation of Emissions	37
	3.1.7	7 Emission Estimates	40
	3.1.8	3 Emission Projection Methodology	42
3	3.2	Barbecues	44
	3.2.1	Emission Source Description	44
	3.2.2	2 Emission Estimation Methodology	45
	3.2.3	3 Activity Data	45
	3.2.4	Emission and Speciation Factors	53
	3.2.5	5 Spatial Distribution of Emissions	59
	3.2.6	5 Temporal Variation of Emissions	62
	3.2.7	7 Emission Estimates	66
	3.2.8	3 Emission Projection Methodology	69
3	3.3	Cutback Bitumen	70
	3.3.1	Emission Source Description	70
	3.3.2		
	3.3.3		
	3.3.4	·	

3.3.5	Spatial Distribution of Emissions	
3.3.6	Temporal Variation of Emissions	
3.3.7	Emission Estimates	
3.3.8	Emission Projection Methodology	
3.4 0	Gaseous Fuel Combustion	
3.4.1	Emission Source Description	
3.4.2	Emission Estimation Methodology	
3.4.3	Activity Data	
3.4.4	Emission and Speciation Factors	
3.4.5	Spatial Distribution of Emissions	
3.4.6	Temporal Variation of Emissions	
3.4.7	Emission Estimates	
3.4.8	Emission Projection Methodology	107
3.5 C	Graphic Arts	
3.5.1	Emission Source Description	
3.5.2	Emission Estimation Methodology	110
3.5.3	Activity Data	110
3.5.4	Emission and Speciation Factors	112
3.5.5	Spatial Distribution of Emissions	113
3.5.6	Temporal Variation of Emissions	
3.5.7	Emission Estimates	120
3.5.8	Emission Projection Methodology	120
3.6 I	awn Mowing and Garden Equipment (domestic)	
3.6.1	Emission Source Description	122
3.6.2	Emission Estimation Methodology	
3.6.3	Activity Data	127
3.6.4	Emission and Speciation Factors	
3.6.5	Spatial Distribution of Emissions	
3.6.6	Temporal Variation of Emissions	
3.6.7	Emission Estimates	
3.6.8	Emission Projection Methodology	
3.7 I	awn Mowing and Garden Equipment (public open space)	
3.7.1	Emission Source Description	
3.7.2	Emission Estimation Methodology	160
3.7.3	Activity Data	
3.7.4	Emission and Speciation Factors	177
3.7.5	Spatial Distribution of Emissions	
3.7.6	Temporal Variation of Emissions	
3.7.7	Emission Estimates	
3.7.8	Emission Projection Methodology	
3.8 I	iquid Fuel Combustion	
3.8.1	Emission Source Description	196
3.8.2	Emission Estimation Methodology	196
3.8.3	Activity Data	197
3.8.4	Emission and Speciation Factors	
3.8.5	Spatial Distribution of Emissions	
3.8.6	Temporal Variation of Emissions	
3.8.7	Emission Estimates	

3.8.8	Emission Projection Methodology	
3.9 Na	atural Gas Leakage	
3.9.1	Emission Source Description	
3.9.2	Emission Estimation Methodology	
3.9.3	Activity Data	
3.9.4	Emission and Speciation Factors	
3.9.5	Spatial Distribution of Emissions	
3.9.6	Temporal Variation of Emissions	220
3.9.7	Emission Estimates	
3.9.8	Emission Projection Methodology	
3.10 Po	rtable Fuel Containers (domestic)	
3.10.1	Emission Source Description	
3.10.2	Emission Estimation Methodology	
3.10.3	Activity Data	233
3.10.4	Emission and Speciation Factors	
3.10.5	Spatial Distribution of Emissions	
3.10.6	Temporal Variation of Emissions	
3.10.7	Emission Estimates	
3.10.8	Emission Projection Methodology	
3.11 Po	rtable Fuel Containers (public open space)	
3.11.1	Emission Source Description	
3.11.2	Emission Estimation Methodology	
3.11.3	Activity Data	
3.11.4	Emission and Speciation Factors	
3.11.5	Spatial Distribution of Emissions	
3.11.6	Temporal Variation of Emissions	
3.11.7	Emission Estimates	
3.11.8	Emission Projection Methodology	
	lid Fuel Combustion	
3.12.1	Emission Source Description	
3.12.2 3.12.3	Emission Estimation Methodology	
	Activity Data Emission and Speciation Factors	
3.12.4 3.12.5	Spatial Distribution of Emissions	
3.12.5	Temporal Variation of Emissions	
3.12.0	Emission Estimates	
3.12.7	Emission Projection Methodology	
	rface Coatings	
3.13 3.1	Emission Source Description	
3.13.2	Emission Source Description	
3.13.2	Activity Data	
3.13.4	Emission and Speciation Factors	
3.13.5	Spatial Distribution of Emissions	
3.13.6	Temporal Variation of Emissions	
3.13.7	Emission Estimates	
3.13.8	Emission Projection Methodology	
4 EMISS	JIONS SUMMARY	

5	REFERENCES	. 338
	Appendix A: Estimated Annual Emissions of all Substances from Domestic-Commercial	
	Sources	A-1
	Appendix B: Domestic Survey Form	. B-1

LIST OF TABLES

Table ES-1: Definition of Greater Metropolitan, Sydney, Newcastle and Wollongong regions i
Table ES-2: Total estimated annual emissions from domestic-commercial sources in each regioniii
Table ES-3: Total estimated annual emissions by domestic-commercial source type in the GMR
Table ES-4: Total estimated annual emissions by domestic-commercial source type in the Sydney region
Table ES-5: Total estimated annual emissions by domestic-commercial source type in the Newcastle region
Table ES-6: Total estimated annual emissions by domestic-commercial source type in the Wollongong regionxii
Table ES-7: Total estimated annual emissions by domestic-commercial source type in the Non Urban region
Table ES-8: Total estimated annual fuel consumption from domestic-commercial sources by volume and energy content in the GMR
Table ES-9: Total estimated annual fuel consumption by domestic-commercial source type and volume in the GMRxvii
Table ES-10: Total estimated annual fuel consumption by domestic-commercial source type and energy content in the GMR xviii
Table 2-1: Definition of Greater Metropolitan, Sydney, Newcastle and Wollongong regions 2
Table 2-2: Domestic-commercial estimation methodologies and emission factor data
Table 2-3: Domestic-commercial activity data 16
Table 2-4: Domestic-commercial spatial data
Table 2-5: Domestic-commercial temporal data
Table 2-6: Domestic-commercial projection factors 23
Table 3-1: Aerosols and solvents product groups and categories 28
Table 3-2: Aerosols and solvents emission estimation methodology 29
Table 3-3: Aerosols and solvents activity data
Table 3-4: Aerosols and solvents emission and speciation factors 30

Table 3-5: Aerosols and solvents emission factors	33
Table 3-6: Aerosols and solvents spatial data	34
Table 3-7: Aerosols and solvents spatial distribution of population by LGA and region	34
Table 3-8: Aerosols and solvents temporal data	38
Table 3-9: Aerosols and solvents hourly temporal profile	38
Table 3-10: Aerosols and solvents daily temporal profile	39
Table 3-11: Aerosols and solvents monthly temporal profile	40
Table 3-12: Aerosols and solvents emissions by activity	41
Table 3-13: Aerosols and solvents emissions by source type	41
Table 3-14: Aerosols and solvents emission projection factors	42
Table 3-15: Barbecues fuel type and properties	44
Table 3-16: Barbecues emission estimation methodology	45
Table 3-17: Barbecues activity data	46
Table 3-18: Confidence intervals at 95% confidence level by sample size for barbecue survey	47
Table 3-19: Barbecue survey milestones	48
Table 3-20: Population and dwelling by LGA used to scale-up barbecue survey	49
Table 3-21: Barbecues population by dwelling type in the GMR	51
Table 3-22: Barbecues population by fuel type in the GMR	52
Table 3-23: Barbecues fuel consumption in the GMR	53
Table 3-24: Barbecues emission and speciation factors	53
Table 3-25: Barbecues emission factors	58
Table 3-26: Barbecues spatial data	59
Table 3-27: Barbecues spatial distribution of fuel consumption by LGA and region	59
Table 3-28: Barbecues temporal data	63
Table 3-29: Barbecues hourly temporal profile	63
Table 3-30: Barbecues daily temporal profile	64

Table 3-31: Barbecues monthly temporal profile	65
Table 3-32: Barbecues emissions by activity	66
Table 3-33: Barbecues emissions by source type	67
Table 3-34: Barbecues emission projection factors	69
Table 3-35: Cutback bitumen cutter type and properties	70
Table 3-36: Cutback bitumen emission estimation methodologies	71
Table 3-37: Cutback bitumen activity data	73
Table 3-38: Cutback bitumen and cutter consumption in the GMR	73
Table 3-39: Cutback bitumen emission and speciation factors	73
Table 3-40: Cutback bitumen spatial data	74
Table 3-41: Cutback bitumen cutter consumption by LGA and region	74
Table 3-42: Cutback bitumen temporal data	78
Table 3-43: Cutback bitumen hourly temporal profile	79
Table 3-44: Cutback bitumen daily temporal profile	80
Table 3-45: Cutback bitumen monthly temporal profile	82
Table 3-46: Cutback bitumen emissions by activity	82
Table 3-47: Cutback bitumen emission projection factors	83
Table 3-48: Gaseous fuel type and properties	85
Table 3-49: Gaseous fuel combustion emission estimation methodology	86
Table 3-50: Gaseous fuel combustion activity data	86
Table 3-51: Confidence intervals at 95% confidence level by sample size for gaseous fuel combustion survey	
Table 3-52: Gaseous fuel combustion survey milestones	89
Table 3-53: Population and dwelling by LGA used to scale-up gaseous fuel combustion survey	90
Table 3-54: Gaseous fuel fired residential appliance usage in the GMR	92
Table 3-55: Residential LPG consumption in the GMR	93
Table 3-56: Residential natural gas consumption in NSW and the GMR	93

Table 3-57: Total natural gas consumption in NSW	93
Table 3-58: Total natural gas consumption in the GMR	94
Table 3-59: Gaseous fuel fired residential appliances and commercial business equipment fuel consumption in the GMR	94
Table 3-60: Gaseous fuel combustion emission and speciation factors	95
Table 3-61: Gaseous fuel combustion emission factors	97
Table 3-62: Gaseous fuel combustion spatial data	98
Table 3-63: Gaseous fuel combustion spatial distribution of fuel consumption by LGA and region	98
Table 3-64: Gaseous fuel combustion temporal data	. 102
Table 3-65: Gaseous fuel combustion hourly temporal profile	. 102
Table 3-66: Gaseous fuel combustion daily temporal profile	. 103
Table 3-67: Gaseous fuel combustion monthly temporal profile	. 104
Table 3-68: Gaseous fuel combustion emissions by activity	. 105
Table 3-69: Gaseous fuel combustion emissions by source type	. 106
Table 3-70: Gaseous fuel combustion emission projection factors	. 107
Table 3-71: Graphic arts emission estimation methodology	. 110
Table 3-72: Graphic arts activity data	. 111
Table 3-73: Graphics arts component VOC emission factors	. 111
Table 3-74: Graphic arts VOC emissions in Australia by State	. 112
Table 3-75: Graphic arts VOC emissions in NSW and the GMR	. 112
Table 3-76: Graphic arts emission and speciation factors	. 113
Table 3-77: Graphic arts emission factor	. 113
Table 3-78: Graphic arts spatial data	. 113
Table 3-79: Graphic arts spatial distribution of population by LGA and region	. 114
Table 3-80: Graphic arts temporal data	. 117
Table 3-81: Graphic arts hourly temporal profile	. 117
Table 3-82: Graphic arts daily temporal profile	. 118

Table 3-83: Graphic arts monthly temporal profile	. 119
Table 3-84: Graphic arts emissions by activity	. 120
Table 3-85: Graphic arts emission projection factors	. 121
Table 3-86: Lawn mowing and garden equipment (domestic) fuel type and properties	. 124
Table 3-87: Lawn mowing and garden equipment (domestic) emission estimation methodology	. 125
Table 3-88: Lawn mowing and garden equipment (domestic) activity data	. 127
Table 3-89: Confidence intervals at 95% confidence level by sample size for lawn mowing and garden equipment (domestic) survey	. 128
Table 3-90: Lawn mowing and garden equipment (domestic) survey milestones	. 130
Table 3-91: Population and dwelling by LGA used to scale-up lawn mowing and garden equipmen (domestic) survey	
Table 3-92: Lawn mowing and garden equipment sales data for NSW	. 132
Table 3-93: Lawn mowing and garden equipment (domestic) population in the GMR	. 133
Table 3-94: Lawn mowing and garden equipment (domestic) annual operating time in the GMR	. 134
Table 3-95: Lawn mowing and garden equipment (domestic) NonRoad Model ambient temperatur and petrol RVP by month	
Table 3-96: Lawn mowing and garden equipment (domestic) NonRoad Model population	. 137
Table 3-97: Lawn mowing and garden equipment (domestic) NonRoad Model load factor and annual operating time	. 138
Table 3-98: Lawn mowing and garden equipment (domestic) NonRoad Model fuel consumption in the GMR	. 139
Table 3-99: Lawn mowing and garden equipment (domestic) emission and speciation factors	. 140
Table 3-100: Lawn mowing and garden equipment (domestic) emission factors	. 142
Table 3-101: Lawn mowing and garden equipment (domestic) spatial data	. 143
Table 3-102: Lawn mowing and garden equipment (domestic) spatial distribution of petrol consumption by LGA and region	. 143
Table 3-103: Lawn mowing and garden equipment (domestic) temporal data	. 147
Table 3-104: Lawn mowing and garden equipment (domestic) exhaust hourly temporal profile	. 147
Table 3-105: Lawn mowing and garden equipment (domestic) evaporative hourly temporal profile	147
xxviii	

Table 3-106: Lawn mowing and garden equipment (domestic) exhaust daily temporal profile
Table 3-107: Lawn mowing and garden equipment (domestic) evaporative daily temporal profile 149
Table 3-108: Lawn mowing and garden equipment (domestic) exhaust monthly temporal profile 150
Table 3-109: Lawn mowing and garden equipment (domestic) evaporative monthly temporal profile 151
Table 3-110: Lawn mowing and garden equipment (domestic) emissions by activity 152
Table 3-111: Lawn mowing and garden equipment (domestic) emissions by source type 153
Table 3-112: Lawn mowing and garden equipment (domestic) emission projection factors 154
Table 3-113: Lawn mowing and garden equipment (public open space) fuel type and properties 159
Table 3-114: Lawn mowing and garden equipment (public open space) emission estimation methodology 160
Table 3-115: Lawn mowing and garden equipment (public open space) activity data
Table 3-116: Golf course equipment population by NSW region in the GMR 162
Table 3-117: Evaluation of LGA lawn mowing and garden equipment linear regression models 163
Table 3-118: LGA equipment population by LGA in the GMR 164
Table 3-119: Lawn mowing and garden equipment sales data for NSW 166
Table 3-120: Golf course equipment population in the GMR
Table 3-121: Golf course equipment annual operating time in the GMR 167
Table 3-122: LGA equipment population in the GMR 168
Table 3-123: LGA equipment annual operating time in the GMR
Table 3-124: Lawn mowing and garden equipment (public open space) population in the GMR 169
Table 3-125: Lawn mowing and garden equipment (public open space) annual operating time in the GMR
Table 3-126: Lawn mowing and garden equipment (public open space) NonRoad Model ambienttemperature and petrol RVP by month
Table 3-127: Lawn mowing and garden equipment (public open space) NonRoad Model population
Table 3-128: Lawn mowing and garden equipment (public open space) NonRoad Model load factor and annual operating time 176

Table 3-129: Lawn mowing and garden equipment (public open space) NonRoad Model fuel consumption in the GMR 177
Table 3-130: Lawn mowing and garden equipment (public open space) emission and speciation factors
Table 3-131: Lawn mowing and garden equipment (public open space) emission factors
Table 3-132: Lawn mowing and garden equipment (public open space) spatial data 182
Table 3-133: Lawn mowing and garden equipment (public open space) spatial distribution of petroland diesel consumption by LGA and region
Table 3-134: Lawn mowing and garden equipment (public open space) temporal data
Table 3-135: Lawn mowing and garden equipment (public open space) exhaust hourly temporal profile
Table 3-136: Lawn mowing and garden equipment (public open space) evaporative hourly temporal profile
Table 3-137: Lawn mowing and garden equipment (public open space) exhaust daily temporal profile
Table 3-138: Lawn mowing and garden equipment (public open space) evaporative daily temporal profile
Table 3-139: Lawn mowing and garden equipment (public open space) exhaust monthly temporal profile
Table 3-140: Lawn mowing and garden equipment (public open space) evaporative monthly temporal profile 190
Table 3-141: Lawn mowing and garden equipment (public open space) emissions by activity
Table 3-142: Lawn mowing and garden equipment (public open space) emissions by source type 193
Table 3-143: Lawn mowing and garden equipment (public open space) emission projection factors. 195
Table 3-144: Liquid fuel type and properties 196
Table 3-145: Liquid fuel combustion emission estimation methodology
Table 3-146: Liquid fuel combustion activity data
Table 3-147: Confidence intervals at 95% confidence level by sample size for liquid fuel combustion survey 198
Table 3-148: Liquid fuel combustion survey milestones
Table 3-149: Population and dwelling by LGA used to scale-up liquid fuel combustion survey 200 xxx

Table 3-150: Liquid fuel fired residential space and water heater population in the GMR	202
Table 3-151: Liquid fuel fired residential space and water heater fuel consumption in the GMR	203
Table 3-152: Liquid fuel combustion emission and speciation factors	204
Table 3-153: Liquid fuel combustion emission factors	205
Table 3-154: Liquid fuel combustion spatial data	. 205
Table 3-155: Liquid fuel combustion spatial distribution of heating oil consumption by LGA and region	206
Table 3-156: Liquid fuel combustion temporal data	210
Table 3-157: Liquid fuel combustion hourly temporal profile	. 210
Table 3-158: Liquid fuel combustion daily temporal profile	. 211
Table 3-159: Liquid fuel combustion monthly temporal profile	. 211
Table 3-160: Liquid fuel combustion emissions by activity	. 212
Table 3-161: Liquid fuel combustion emission projection factors	. 213
Table 3-162: Natural gas properties	. 214
Table 3-163: Natural gas leakage emission estimation methodology	. 214
Table 3-164: Natural gas leakage activity data	. 215
Table 3-165: Unaccounted for gas (UAFG) in NSW natural gas network	. 215
Table 3-166: Natural gas leakage in NSW and the GMR	216
Table 3-167: Natural gas leakage emission and speciation factors	. 216
Table 3-168: Natural gas composition	. 217
Table 3-169: Natural gas leakage emission factors	. 217
Table 3-170: Natural gas leakage spatial data	. 217
Table 3-171: Natural gas leakage spatial distribution by LGA and region	. 218
Table 3-172: Natural gas leakage temporal data	221
Table 3-173: Natural gas leakage hourly temporal profile	221
Table 3-174: Natural gas leakage daily temporal profile	222
Table 3-175: Natural gas leakage monthly temporal profile	223

Table 3-176: Natural gas leakage emissions by activity	224
Table 3-177: Natural gas leakage emission projection factors	224
Table 3-178: Portable fuel containers (domestic) fuel type and properties	228
Table 3-179: Portable fuel containers (domestic) emission estimation methodologies	228
Table 3-180: Portable fuel containers (domestic) activity data	234
Table 3-181: Portable fuel containers (domestic) petrol throughput in the GMR	234
Table 3-182: Portable fuel containers (domestic) survey data and estimates	235
Table 3-183: Portable fuel containers (domestic) petrol throughput, RVP and ambient temperature by month	
Table 3-184: Portable fuel containers (domestic) petrol throughput, RVP and ambient temperature hour	-
Table 3-185: Portable fuel containers (domestic) emission and speciation factors	237
Table 3-186: Portable fuel containers (domestic) emission factors	237
Table 3-187: Portable fuel containers (domestic) spatial data	237
Table 3-188: Portable fuel containers (domestic) spatial distribution of petrol throughput by LGA and region	238
Table 3-189: Portable fuel containers (domestic) temporal data	241
Table 3-190: Portable fuel containers (domestic) hourly temporal profile	242
Table 3-191: Portable fuel containers (domestic) daily temporal profile	242
Table 3-192: Portable fuel containers (domestic) monthly temporal profile	243
Table 3-193: Portable fuel containers (domestic) emissions by activity	244
Table 3-194: Portable fuel containers (domestic) emission projection factors	244
Table 3-195: Portable fuel containers (public open space) fuel type and properties	248
Table 3-196: Portable fuel containers (public open space) emission estimation methodologies	248
Table 3-197: Portable fuel containers (public open space) activity data	254
Table 3-198: Portable fuel containers (public open space) petrol throughput in the GMR	255
Table 3-199: Portable fuel containers (public open space) survey data and estimates	255

Table 3-200: Portable fuel containers (public open space) petrol throughput, RVP and ambient temperature by month	256
Table 3-201: Portable fuel containers (public open space) petrol throughput, RVP and ambient temperature by hour	256
Table 3-202: Portable fuel containers (public open space) emission and speciation factors	257
Table 3-203: Portable fuel containers (public open space) emission factors	257
Table 3-204: Portable fuel containers (public open space) spatial data	258
Table 3-205: Portable fuel containers (public open space) spatial distribution of petrol throughput b LGA and region	-
Table 3-206: Portable fuel containers (public open space) temporal data	262
Table 3-207: Portable fuel containers (public open space) hourly temporal profile	263
Table 3-208: Portable fuel containers (public open space) daily temporal profile	264
Table 3-209: Portable fuel containers (public open space) monthly temporal profile	264
Table 3-210: Portable fuel containers (public open space) emissions by activity	265
Table 3-211: Portable fuel containers (public open space) emission projection factors	266
Table 2 212. Solid fuel type and properties	
Table 3-212: Solid fuel type and properties	267
Table 3-212: Solid fuel combustion emission estimation methodology	
	268
Table 3-213: Solid fuel combustion emission estimation methodology	268 268
Table 3-213: Solid fuel combustion emission estimation methodology Table 3-214: Solid fuel combustion activity data Table 3-215: Confidence intervals at 95% confidence level by sample size for solid fuel combustion	268 268 269
Table 3-213: Solid fuel combustion emission estimation methodology Table 3-214: Solid fuel combustion activity data Table 3-215: Confidence intervals at 95% confidence level by sample size for solid fuel combustion survey	268 268 269 271
Table 3-213: Solid fuel combustion emission estimation methodology Table 3-214: Solid fuel combustion activity data Table 3-215: Confidence intervals at 95% confidence level by sample size for solid fuel combustion survey Table 3-216: Solid fuel combustion survey milestones	268 268 269 271 271
Table 3-213: Solid fuel combustion emission estimation methodology Table 3-214: Solid fuel combustion activity data Table 3-215: Confidence intervals at 95% confidence level by sample size for solid fuel combustion survey Table 3-216: Solid fuel combustion survey milestones Table 3-217: Population and dwelling by LGA used to scale-up solid fuel combustion survey	268 269 271 271 273
Table 3-213: Solid fuel combustion emission estimation methodology Table 3-214: Solid fuel combustion activity data Table 3-215: Confidence intervals at 95% confidence level by sample size for solid fuel combustion survey Table 3-216: Solid fuel combustion survey milestones Table 3-217: Population and dwelling by LGA used to scale-up solid fuel combustion survey Table 3-218: Wood fuel fired residential space heater population by dwelling type in the GMR	 268 269 271 271 273 274
Table 3-213: Solid fuel combustion emission estimation methodology Table 3-214: Solid fuel combustion activity data Table 3-215: Confidence intervals at 95% confidence level by sample size for solid fuel combustion survey Table 3-216: Solid fuel combustion survey milestones Table 3-217: Population and dwelling by LGA used to scale-up solid fuel combustion survey Table 3-218: Wood fuel fired residential space heater population by dwelling type in the GMR Table 3-219: Wood fuel fired residential space heater population by heater type in the GMR	 268 269 271 271 273 274 275
Table 3-213: Solid fuel combustion emission estimation methodology	 268 269 271 271 273 274 275 276

Table 3-224: Solid fuel combustion spatial data	. 283
Table 3-225: Solid fuel combustion spatial distribution of wood consumption by LGA and region	. 283
Table 3-226: Wood fuel fired residential space heater ownership by LGA	. 285
Table 3-227: Wood fuel fired residential space heater ownership by region	. 288
Table 3-228: Solid fuel combustion temporal data	. 290
Table 3-229: Solid fuel combustion hourly temporal profile	. 290
Table 3-230: Solid fuel combustion daily temporal profile	. 2 91
Table 3-231: Solid fuel combustion monthly temporal profile	. 292
Table 3-232: Solid fuel combustion emissions by activity	. 293
Table 3-233: Solid fuel combustion emissions by source type	. 294
Table 3-234: Solid fuel combustion emission projection factors	. 296
Table 3-235: Surface coatings emission estimation methodologies	. 301
Table 3-236: Surface coatings activity data	. 301
Table 3-237: Surface coatings and thinner consumption in the GMR by surface coating category and surface coating type	. 302
Table 3-238: Surface coatings and thinner consumption in the GMR by surface coating category	. 304
Table 3-239: Architectural and decorative surface coatings retail proportion	. 305
Table 3-240: Architectural and decorative surface coatings trade proportion	. 306
Table 3-241: Architectural and decorative thinner consumption factors	. 307
Table 3-242: Surface coatings emission and speciation factors	. 307
Table 3-243: Surface coatings emission factors	. 309
Table 3-244: Surface coatings spatial data	. 310
Table 3-245: Surface coatings spatial distribution of total dwellings by LGA and region	. 311
Table 3-246: Surface coatings temporal data	. 314
Table 3-247: Surface coatings hourly temporal profile	. 314
Table 3-248: Surface coatings daily temporal profile	. 315
Table 3-249: Surface coatings monthly temporal profile xxxiv	. 316

Table 3-250: Surface coatings emissions by activity 31	17
Table 3-251: Surface coatings emissions by source type 31	18
Table 3-252: Surface coatings emission projection factors 31	19
Table 4-1: Total estimated annual emissions from domestic-commercial sources in each region	21
Table 4-2: Total estimated annual emissions by domestic-commercial source type in the GMR	24
Table 4-3: Total estimated annual emissions by domestic-commercial source type in the Sydney region 32	26
Table 4-4: Total estimated annual emissions by domestic-commercial source type in the Newcastle region 32	28
Table 4-5: Total estimated annual emissions by domestic-commercial source type in the Wollongong region 33	
Table 4-6: Total estimated annual emissions by domestic-commercial source type in the Non Urban region 33	32
Table 4-7: Total estimated annual fuel consumption from domestic-commercial sources by volume and energy content in the GMR 33	34
Table 4-8: Total estimated annual fuel consumption by domestic-commercial source type and volume in the GMR	35
Table 4-9: Total estimated annual fuel consumption by domestic-commercial source type and energy content in the GMR	36

LIST OF FIGURES

Figure ES-1: Definition of Greater Metropolitan, Sydney, Newcastle and Wollongong regions i	i
Figure ES-2: Proportions of total estimated annual emissions from domestic-commercial sources in each region	7
Figure ES-3: Proportions of total estimated annual emissions by domestic-commercial source type in the GMR	i
Figure ES-4: Proportions of total estimated annual emissions by domestic-commercial source type in the Sydney region	ĸ
Figure ES-5: Proportions of total estimated annual emissions by domestic-commercial source type in the Newcastle region	i
Figure ES-6: Proportions of total estimated annual emissions by domestic-commercial source type in the Wollongong region	i
Figure ES-7: Proportions of total estimated annual emissions by domestic-commercial source type in the Non Urban region	7
Figure ES-8: Total estimated annual fuel consumption from domestic-commercial sources by energy content in the GMR	i
Figure ES-9: Total estimated annual fuel consumption by domestic-commercial source type and energy content in the GMRxiv	ĸ
Figure 2-1: Definition of Greater Metropolitan, Sydney, Newcastle and Wollongong regions	3
Figure 2-2: Grid coordinate system	1
Figure 2-3: Domestic-commercial Emissions Data Management System v1.0 start-up form	2
Figure 3-1: Aerosols and solvents spatial distribution of population by LGA	5
Figure 3-2: Aerosols and solvents spatial distribution of emissions	7
Figure 3-3: Aerosols and solvents hourly temporal profile)
Figure 3-4: Aerosols and solvents daily temporal profile)
Figure 3-5: Aerosols and solvents monthly temporal profile)
Figure 3-6: Aerosols and solvents emission projection factors	3
Figure 3-7: Barbecues population by dwelling type in the GMR	1
Figure 3-8: Barbecues population by fuel type in the GMR	2

Figure 3-9: Barbecues spatial distribution of fuel consumption by LGA	61
Figure 3-10: Barbecues spatial distribution of emissions	62
Figure 3-11: Barbecues hourly temporal profile	64
Figure 3-12: Barbecues daily temporal profile	65
Figure 3-13: Barbecues monthly temporal profile	66
Figure 3-14: Barbecues emission projection factors	69
Figure 3-15: Cutback bitumen cumulative VOC evaporation of cutter as a function of elapsed time.	72
Figure 3-16: Cutback bitumen cutter consumption by LGA	76
Figure 3-17: Cutback bitumen spatial distribution of emissions	77
Figure 3-18: Cutback bitumen hourly cutter application rate and cumulative VOC emissions	78
Figure 3-19: Cutback bitumen hourly temporal profile	79
Figure 3-20: Cutback bitumen daily cutter application rate and cumulative VOC emissions	80
Figure 3-21: Cutback bitumen daily temporal profile	81
Figure 3-22: Cutback bitumen monthly cutter application rate and cumulative VOC emissions	81
Figure 3-23: Cutback bitumen monthly temporal profile	82
Figure 3-24: Cutback bitumen emission projection factors	83
Figure 3-25: Gaseous fuel fired residential appliance usage in the GMR	92
Figure 3-26: Gaseous fuel combustion spatial distribution of fuel consumption by LGA	. 100
Figure 3-27: Gaseous fuel combustion spatial distribution of emissions	. 101
Figure 3-28: Gaseous fuel combustion hourly temporal profile	. 103
Figure 3-29: Gaseous fuel combustion daily temporal profile	. 104
Figure 3-30: Gaseous fuel combustion monthly temporal profile	. 105
Figure 3-31: Gaseous fuel combustion emission projection factors	. 108
Figure 3-32: Graphic arts spatial distribution of population by LGA	. 115
Figure 3-33: Graphic arts spatial distribution of emissions	. 116
Figure 3-34: Graphic arts hourly temporal profile	. 118

Figure 3-35: Graphic arts daily temporal profile 1	19
Figure 3-36: Graphic arts monthly temporal profile1	20
Figure 3-37: Graphic arts emission projection factors	.21
Figure 3-38: Lawn mowing and garden equipment (domestic) – use of survey data 1	.23
Figure 3-39: Lawn mowing and garden equipment (domestic) population in the GMR1	.34
Figure 3-40: Lawn mowing and garden equipment (domestic) annual operating time in the GMR 1	.35
Figure 3-41: Lawn mowing and garden equipment (domestic) NonRoad Model splash screen	.36
Figure 3-42: Lawn mowing and garden equipment (domestic) NonRoad Model options 1	.36
Figure 3-43: Lawn mowing and garden equipment (domestic) spatial distribution of petrol consumption by LGA	.45
Figure 3-44: Lawn mowing and garden equipment (domestic) spatial distribution of emissions 1	.46
Figure 3-45: Lawn mowing and garden equipment (domestic) exhaust hourly temporal profile 1	48
Figure 3-46: Lawn mowing and garden equipment (domestic) evaporative hourly temporal profile 1	48
Figure 3-47: Lawn mowing and garden equipment (domestic) exhaust daily temporal profile 1	.49
Figure 3-48: Lawn mowing and garden equipment (domestic) evaporative daily temporal profile 1	50
Figure 3-49: Lawn mowing and garden equipment (domestic) exhaust monthly temporal profile 1	51
Figure 3-50: Lawn mowing and garden equipment (domestic) evaporative monthly temporal profile	.52
Figure 3-51: Lawn mowing and garden equipment (domestic) emission projection factors 1	55
Figure 3-52: Lawn mowing and garden equipment (public open space) – use of survey data	57
Figure 3-53: Preferred LGA lawn mowing and garden equipment linear regression model 1	.64
Figure 3-54: Lawn mowing and garden equipment (public open space) population in the GMR 1	70
Figure 3-55: Lawn mowing and garden equipment (public open space) annual operating time in the GMR	.72
Figure 3-56: Lawn mowing and garden equipment (public open space) NonRoad Model splash screen	.73
Figure 3-57: Lawn mowing and garden equipment (public open space) NonRoad Model options 1	73
Figure 3-58: Lawn mowing and garden equipment (public open space) spatial distribution of petrol and diesel consumption by LGA	.84

Figure 3-59: Lawn mowing and garden equipment (public open space) spatial distribution of	
emissions	185
Figure 3-60: Lawn mowing and garden equipment (public open space) exhaust hourly temporal profile	. 187
Figure 3-61: Lawn mowing and garden equipment (public open space) evaporative hourly temporal profile	. 188
Figure 3-62: Lawn mowing and garden equipment (public open space) exhaust daily temporal pro-	
Figure 3-63: Lawn mowing and garden equipment (public open space) evaporative daily temporal profile	. 189
Figure 3-64: Lawn mowing and garden equipment (public open space) exhaust monthly temporal profile	. 191
Figure 3-65: Lawn mowing and garden equipment (public open space) evaporative monthly temporal profile	. 191
Figure 3-66: Lawn mowing and garden equipment (public open space) emission projection factors.	195
Figure 3-67: Liquid fuel fired residential space and water heater population in the GMR	. 203
Figure 3-68: Liquid fuel combustion spatial distribution of heating oil consumption by LGA	. 208
Figure 3-69: Liquid fuel combustion spatial distribution of emissions	. 209
Figure 3-70: Liquid fuel combustion hourly temporal profile	. 210
Figure 3-71: Liquid fuel combustion daily temporal profile	211
Figure 3-72: Liquid fuel combustion monthly temporal profile	212
Figure 3-73: Liquid fuel combustion emission projection factors	213
Figure 3-74: Natural gas leakage spatial distribution by LGA	. 219
Figure 3-75: Natural gas leakage spatial distribution of emissions	. 220
Figure 3-76: Natural gas leakage hourly temporal profile	. 222
Figure 3-77: Natural gas leakage daily temporal profile	. 223
Figure 3-78: Natural gas leakage monthly temporal profile	. 224
Figure 3-79: Natural gas leakage emission projection factors	. 225
Figure 3-80: Portable fuel containers (domestic) - use of survey data	227

Figure 3-81: Portable fuel containers (domestic) spatial distribution of petrol throughput by LGA.	239
Figure 3-82: Portable fuel containers (domestic) spatial distribution of emissions	240
Figure 3-83: Portable fuel containers (domestic) hourly temporal profile	242
Figure 3-84: Portable fuel containers (domestic) daily temporal profile	243
Figure 3-85: Portable fuel containers (domestic) monthly temporal profile	244
Figure 3-86: Portable fuel containers (domestic) emission projection factors	245
Figure 3-87: Portable fuel containers (public open space) - use of survey data	247
Figure 3-88: Portable fuel containers (public open space) spatial distribution of petrol throughput by LGA	260
Figure 3-89: Portable fuel containers (public open space) spatial distribution of emissions	261
Figure 3-90: Portable fuel containers (public open space) hourly temporal profile	263
Figure 3-91: Portable fuel containers (public open space) daily temporal profile	264
Figure 3-92: Portable fuel containers (public open space) monthly temporal profile	265
Figure 3-93: Portable fuel containers (public open space) emission projection factors	266
Figure 3-94: Wood fuel fired residential space heater population by dwelling type in the GMR	274
Figure 3-95: Wood fuel fired residential space heater population by heater type in the GMR	275
Figure 3-96: Solid fuel combustion spatial distribution of wood consumption by LGA and region	285
Figure 3-97: Wood fuel fired residential space heater ownership by LGA	287
Figure 3-98: Wood fuel fired residential space heater ownership by region	288
Figure 3-99: Solid fuel combustion spatial distribution of emissions	289
Figure 3-100: Solid fuel combustion hourly temporal profile	291
Figure 3-101: Solid fuel combustion daily temporal profile	292
Figure 3-102: Solid fuel combustion monthly temporal profile	293
Figure 3-103: Solid fuel combustion emission projection factors	297
Figure 3-104: Surface coating and thinner consumption and VOC content by surface coating category	304
Figure 3-105: Surface coatings spatial distribution of total dwellings by LGA	312

Figure 3-106: Surface coatings spatial distribution of emissions	313
Figure 3-107: Surface coatings hourly temporal profile	. 315
Figure 3-108: Surface coatings daily temporal profile	. 316
Figure 3-109: Surface coatings monthly temporal profile	. 317
Figure 3-110: Surface coatings emission projection factors	. 319
Figure 4-1: Proportions of total estimated annual emissions from domestic-commercial sources in each region	. 322
Figure 4-2: Proportions of total estimated annual emissions by domestic-commercial source type in the GMR	. 325
Figure 4-3: Proportions of total estimated annual emissions by domestic-commercial source type in the Sydney region	. 327
Figure 4-4: Proportions of total estimated annual emissions by domestic-commercial source type in the Newcastle region	. 329
Figure 4-5: Proportions of total estimated annual emissions by domestic-commercial source type in the Wollongong region	. 331
Figure 4-6: Proportions of total estimated annual emissions by domestic-commercial source type in the Non Urban region	. 333
Figure 4-7: Total estimated annual fuel consumption from domestic-commercial sources by energy content in the GMR	
Figure 4-8: Total estimated annual fuel consumption by domestic-commercial source type and energy content in the GMR	. 337

1 INTRODUCTION

An air emissions inventory project for domestic-commercial sources has taken over 2 years to complete. The base year of the domestic-commercial inventory represents activities that took place during the 2008 calendar year and is accompanied by emission projections in yearly increments up to the 2036 calendar year. The area included in the inventory covers the greater Sydney, Newcastle and Wollongong regions, known collectively as the Greater Metropolitan Region (GMR).

The purpose of this document is to present the emission estimation methodologies and results of the domestic-commercial air emissions inventory. The information is structured as follows:

- > A description of the domestic-commercial air emissions inventory specification (Section 2) including:
 - The inventory year (Section 2.1);
 - A description of the inventory region (Section 2.2);
 - A description of the grid coordinate system (Section 2.3);
 - A description of emission sources considered (Section 2.4);
 - A description of the pollutants evaluated (Section 2.5); and
 - A broad discussion of the methodology (Section 2.6).
- > The emission estimation methodology; and activity, spatial, temporal and projection factor data presented by domestic-commercial source type (Section 3).
- > An emission summary (for selected substances) presented by domestic-commercial source type in the whole GMR and the Sydney, Newcastle, Wollongong and Non Urban regions (Section 3).
- > An emissions summary (for selected substances) presented for all domestic-commercial sources in the whole GMR and the Sydney, Newcastle, Wollongong and Non Urban regions (Section 4).
- > A complete list of references (Section 5).
- Total domestic-commercial emissions of all substances emitted in the whole GMR and the Sydney, Newcastle, Wollongong and Non Urban regions (Appendix A: Estimated Annual Emissions of all Substances from Domestic-Commercial Sources).
- Domestic survey questionnaire form used to obtain activity data for barbecues, gaseous fuel combustion, domestic lawn mowing and garden equipment, liquid fuel combustion, domestic portable fuel containers and solid fuel combustion (Appendix B: Domestic Survey Form).

2 INVENTORY SPECIFICATIONS

2.1 The Inventory Year

The domestic-commercial air emissions inventory results presented in this report are based on activities that took place in the 2008 calendar year.

2.2 The Inventory Region

The inventory region defined as the GMR measures 210 km (east-west) by 273 km (north-south). The inventory region is presented in Table 2-1 and shown in Figure 2-1.

Region	South-west corne	r MGA ⁴ coordinates	North-east corne	r MGA coordinates
Region	Easting (km)	Northing (km)	Easting (km)	Northing (km)
Greater Metropolitan	210	6159	420	6432
Sydney	261	6201	360	6300
Newcastle	360	6348	408	6372
Wollongong	279	6174	318	6201

Table 2-1: Definition of Greater Metropolitan, Sydney, Newcastle and Wollongong regions

⁴ Map Grid of Australia based on the Geocentric Datum of Australia 1994 (GDA94) (ICSM, 2006).

Figure 2-1: Definition of Greater Metropolitan, Sydney, Newcastle and Wollongong regions

2.3 Grid Coordinate System

The grid coordinate system used for the domestic-commercial air emissions inventory uses 1 km by 1 km grid cells. The grid coordinates start from the bottom left corner having index number with

Easting (km) in the horizontal and Northing (km) in the vertical direction. The grid coordinate system is shown in Figure 2-2.

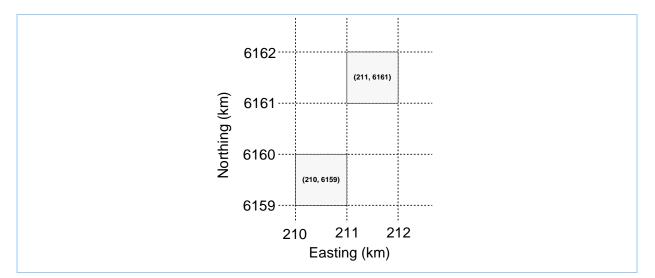


Figure 2-2: Grid coordinate system

2.4 Emission Sources Considered

The domestic-commercial air emissions inventory includes emissions from the following sources/activities:

- > Aerosols and solvents (domestic and commercial);
- Barbecues (domestic);
- Cutback bitumen;
- Gaseous fuel combustion (domestic and unaccounted);
- > Graphic arts (domestic and commercial);
- > Lawn mowing and garden equipment (domestic and public open space);
- Liquid fuel combustion (domestic);
- Natural gas leakage;
- > Portable fuel containers (domestic and public open space);
- > Solid fuel combustion (domestic); and
- > Surface coatings (domestic, commercial and industrial).

2.5 Pollutants Evaluated

The following pollutants have been considered:

- Substances included in the National Environment Protection (National Pollutant Inventory) Measure (NEPC, 2008);
- Pollutants included in the National Environment Protection (Ambient Air Quality) Measure (NEPC, 2003);
- > Pollutants included in the National Environment Protection (Air Toxics) Measure (NEPC, 2004);
- Pollutants associated with the Protection of the Environment Operations (Clean Air) Regulation 2010 (PCO, 2011);
- Air pollutants associated with the *Protection of the Environment Operations (General) Regulation 2009* (PCO, 2010b);
- > Speciation of oxides of nitrogen (i.e. NO and NO₂) for photochemical modelling (USEPA, 2003)⁵;
- > Speciated organic compounds for photochemical modelling sourced from Carter (2010);
- Speciated particulate emissions (i.e. TSP (total suspended particulate), PM₁₀ (particulate matter with an aerodynamic diameter ≤ 10 µm) and PM_{2.5} (particulate matter with an aerodynamic diameter ≤ 2.5 µm));
- Environment Protection Authority of Victoria air toxic pollutants sourced from Hazardous Air Pollutants - A Review of Studies Performed in Australia and New Zealand (EPAV, 1999);
- Commonwealth Government Air Toxics Program Technical Advisory Group (13 March 2000) priority air pollutants (EA, 2001);
- > U.S. Environmental Protection Agency list of 189 Hazardous Air Pollutants (USEPA, 2010a);
- Air pollutants included in the Office of Environmental Human Health Assessment (OEHHA)/Air Resources Board (ARB) 'hot spots' list (CARB, 2011);
- > EPA regulated pollutants with design ground level concentrations (DEC, 2005);
- > USEPA 16 priority polycyclic aromatic hydrocarbons (PAH) (Keith et. al., 1979);
- > WHO97 polychlorinated dibenzo-p-dioxins (PCDD), polychlorinated dibenzofurans (PCDF) and polychlorinated biphenyls (PCB) (Van den Berg et. al., 1998); and
- Greenhouse gases (i.e. carbon dioxide, methane and nitrous oxide) included in the National Greenhouse Accounts (NGA) Factors (DCCEE, 2010).

2.6 Methodology Overview

This section contains a broad overview of the methodology used to develop the domestic-commercial air emissions inventory, while specific details are provided in Section 3.

The methodology used to develop the domestic-commercial air emissions inventory involves the following steps:

 $^{^{\}scriptscriptstyle 5}$ The default NO_x speciation profile used in the inventory is 95% NO and 5% NO₂.

2.6.1 *Identify Sources*

Domestic-commercial sources considered in this report include all sources defined in Section 2.4 with the potential for air emissions in the GMR.

Domestic-commercial air emission sources have been identified from a number of different sources including:

- ARB's Emissions Inventory, Area-Wide Source Methodologies, Index of Methodologies by Major Category (CARB, 2008a);
- > EMEP/EEA air pollutant emission inventory guidebook 2009 (EEA, 2009);
- > USEPA AP 42, Fifth Edition, Compilation of Air Pollutant Emission Factors, Volume 1: Stationary Point and Area Sources (USEPA, 1995a);
- USEPA Emission Inventory Improvement Program, EIIP Technical Report Series, Volumes 1-10 (USEPA, 2007a);
- > USEPA 2008 National Emissions Inventory Data (USEPA, 2011a); and
- > USEPA Nonroad Engines, Equipment, and Vehicles (USEPA, 2011b).

2.6.2 Select Emission Estimation Methodologies

Emissions have been estimated by combining activity data with emission factors. The emissions have been allocated spatially to each 1 km by 1 km grid cell, and temporally to months, weekdays/weekend days and hours. Emissions have been estimated using estimation methodologies and emission factors sourced from references provided in Table 2-2.

	0		
Source type	Methodology or substance	Estimation methodologies and emission factor source	
	Methodology	- Consumer and Commercial Solvent Use (ERG, 1996a)	
Aerosols and solvents (domestic and commercial)	Criteria pollutants: VOC	 Study of Volatile Organic Compound Emissions from Consumer and Commercial Products, Volume 1 (USEPA, 1995b) Study of Volatile Organic Compound Emissions from Consumer and Commercial Products, Volume 2 (USEPA, 1995c) Desktop Literature Review of Aerosols and Solvents Emission Source Category (SLR Consulting, 2011) 	
	Speciated VOC	 Consumer and Commercial Solvent Use (ERG, 1996a) Speciate 4.2 Database Development Documentation (Pechan, 2009a) 	
	Organic air toxics	 Consumer and Commercial Solvent Use (ERG, 1996a) Speciate 4.2 Database Development Documentation (Pechan, 2009a) 	
	Polycyclic aromatic hydrocarbons:	 Consumer and Commercial Solvent Use (ERG, 1996a) Speciate 4.2 Database Development Documentation (Pechan, 	

Table 2-2: Domestic-commercial estimation methodologies and emission factor data

Source type	Methodology or	Estimation methodologies and emission factor source	
Source type	substance		
	РАН	2009a)	
Barbecues (domestic)	Methodology	- Documentation for the Final 2002 NonPoint Sector (FEB 06 version) National Emission Inventory for Criteria and Hazardous Air Pollutants (Pechan, 2006)	
	Criteria pollutants: CO, NO _x , PM _{2.5} , PM ₁₀ , SO ₂ and VOC	 AP 42, Fifth Edition, Volume I, Chapter 1: External Combustion Sources, 1.4 Natural Gas Combustion (USEPA, 1998a) AP 42, Fifth Edition, Volume I, Chapter 1: External Combustion Sources, 1.5 Liquified Petroleum Gas Combustion (USEPA, 2008a) AP 42, Fifth Edition, Volume I, Chapter 1: External Combustion Sources, 1.1 Bituminous And Subbituminous Coal Combustion (USEPA, 1998b) AP 42, Fifth Edition, Volume I, Chapter 1: External Combustion Sources, 1.9 Residential Fireplaces (USEPA, 1996a) California Emission Inventory and Reporting System (CEIDARS), Particulate Matter (PM) Speciation Profiles (CARB, 2008b) 	
	Criteria pollutants: TSP	 AP 42, Fifth Edition, Volume I, Chapter 1: External Combustion Sources, 1.4 Natural Gas Combustion (USEPA, 1998a) AP 42, Fifth Edition, Volume I, Chapter 1: External Combustion Sources, 1.5 Liquified Petroleum Gas Combustion (USEPA, 2008a) AP 42, Fifth Edition, Volume I, Chapter 1: External Combustion Sources, 1.1 Bituminous And Subbituminous Coal Combustion (USEPA, 1998b) AP 42, Fifth Edition, Volume I, Chapter 1: External Combustion Sources, 1.9 Residential Fireplaces (USEPA, 1996a) California Emission Inventory and Reporting System (CEIDARS), Particulate Matter (PM) Speciation Profiles (CARB, 2008b) 	
	Speciated NO _x	- Technology Transfer Network - Clearinghouse for Inventories & Emissions Factors (USEPA, 2003)	
	Speciated VOC	 Documentation for the Final 2002 NonPoint Sector (FEB 06 version) National Emission Inventory for Criteria and Hazardous Air Pollutants (Pechan, 2006) AP 42, Fifth Edition, Volume I, Chapter 1: External Combustion Sources, 1.4 Natural Gas Combustion (USEPA, 1998a) AP 42, Fifth Edition, Volume I, Chapter 1: External Combustion Sources, 1.1 Bituminous And Subbituminous Coal Combustion (USEPA, 1998b) Speciate 4.2 Database Development Documentation (Pechan, 2009a) 	
	Organic air toxics	- Documentation for the Final 2002 NonPoint Sector (FEB 06 version) National Emission Inventory for Criteria and Hazardous Air Pollutants (Pechan, 2006)	

Source type	Methodology or substance	Estimation methodologies and emission factor source
	Metal air toxics	 AP 42, Fifth Edition, Volume I, Chapter 1: External Combustion Sources, 1.4 Natural Gas Combustion (USEPA, 1998a) AP 42, Fifth Edition, Volume I, Chapter 1: External Combustion Sources, 1.1 Bituminous And Subbituminous Coal Combustion (USEPA, 1998b) Speciate 4.2 Database Development Documentation (Pechan, 2009a) Documentation for the Final 2002 NonPoint Sector (FEB 06 version) National Emission Inventory for Criteria and Hazardous Air Pollutants (Pechan, 2006) AP 42, Fifth Edition, Volume I, Chapter 1: External Combustion Sources, 1.4 Natural Gas Combustion (USEPA, 1998a) AP 42, Fifth Edition, Volume I, Chapter 1: External Combustion Sources, 1.1 Bituminous And Subbituminous Coal Combustion (USEPA, 1998b) Speciate 4.2 Database Development Documentation (Pechan, 2009a) Documentation for the Final 2002 NonPoint Sector (FEB 06 version) National Emission Inventory for Criteria and Hazardous Air Pollutants (Pechan, 2006) Documentation for the Final 2002 NonPoint Sector (FEB 06 version) National Emission Inventory for Criteria and Hazardous Air Pollutants (Pechan, 2006) Documentation for the Final 2002 NonPoint Sector (FEB 06 version) National Emission Inventory for Criteria and Hazardous Air Pollutants (Pechan, 2006)
	Polycyclic aromatic hydrocarbons: PAH	 AP 42, Fifth Edition, Volume I, Chapter 1: External Combustion Sources, 1.4 Natural Gas Combustion (USEPA, 1998a) AP 42, Fifth Edition, Volume I, Chapter 1: External Combustion Sources, 1.1 Bituminous And Subbituminous Coal Combustion (USEPA, 1998b) AP 42, Fifth Edition, Volume I, Chapter 1: External Combustion Sources, 1.10 Residential Wood Stoves (USEPA, 1996b)
	Polychlorinated dibenzo-p-dioxins and Polychlorinated dibenzofurans: PCDD and PCDF	- Australian Inventory of Dioxin Emissions 2004, National Dioxins Program Technical Report No. 3 (Bawden et. al., 2004)
	Ammonia	- Estimating Ammonia Emissions from Anthropogenic Non- Agricultural Sources – Draft Final Report (Pechan, 2004)
	Greenhouse gases: CH4, CO2 and N2O	 AP 42, Fifth Edition, Volume I, Chapter 1: External Combustion Sources, 1.4 Natural Gas Combustion (USEPA, 1998a) AP 42, Fifth Edition, Volume I, Chapter 1: External Combustion Sources, 1.5 Liquified Petroleum Gas Combustion (USEPA, 2008a) AP 42, Fifth Edition, Volume I, Chapter 1: External Combustion Sources, 1.1 Bituminous And Subbituminous Coal Combustion (USEPA, 1998b) AP 42, Fifth Edition, Volume I, Chapter 1: External Combustion Sources, 1.9 Residential Fireplaces (USEPA,

Source type	Methodology or substance	Estimation methodologies and emission factor source
		 1996a) Speciate 4.2 Database Development Documentation (Pechan, 2009a)
Cutback bitumen	Methodology	 Asphalt Paving (ERG, 2001) AP-42, Fifth Edition, Volume I, Chapter 4: Evaporation Loss Sources, 4.5 Asphalt Paving Operations (USEPA, 1979)
	Criteria pollutants: VOC	- AP-42, Fifth Edition, Volume I, Chapter 4: Evaporation Loss Sources, 4.5 Asphalt Paving Operations (USEPA, 1979)
	Speciated VOC	- California Emission Inventory and Reporting System (CEIDARS), Organic Gas Speciation Profiles (CARB, 2005)
	Organic air toxics	- California Emission Inventory and Reporting System (CEIDARS), Organic Gas Speciation Profiles (CARB, 2005)
	Methodology	- Documentation for the Final 2002 NonPoint Sector (FEB 06 version) National Emission Inventory for Criteria and Hazardous Air Pollutants (Pechan, 2006)
	Criteria pollutants: CO, NO _x , PM _{2.5} , PM ₁₀ , SO ₂ and VOC	 AP 42, Fifth Edition, Volume I, Chapter 1: External Combustion Sources, 1.4 Natural Gas Combustion (USEPA, 1998a) AP 42, Fifth Edition, Volume I, Chapter 1: External Combustion Sources, 1.5 Liquified Petroleum Gas Combustion (USEPA, 2008a)
	Criteria pollutants: TSP	 AP 42, Fifth Edition, Volume I, Chapter 1: External Combustion Sources, 1.4 Natural Gas Combustion (USEPA, 1998a) AP 42, Fifth Edition, Volume I, Chapter 1: External Combustion Sources, 1.5 Liquified Petroleum Gas Combustion (USEPA, 2008a)
	Speciated NO _x	- Technology Transfer Network - Clearinghouse for Inventories & Emissions Factors (USEPA, 2003)
Gaseous fuel combustion (domestic and unaccounted)	Speciated VOC	 Documentation for the Final 2002 NonPoint Sector (FEB 06 version) National Emission Inventory for Criteria and Hazardous Air Pollutants (Pechan, 2006) AP 42, Fifth Edition, Volume I, Chapter 1: External Combustion Sources, 1.4 Natural Gas Combustion (USEPA, 1998a)
	Organic air toxics	 Documentation for the Final 2002 NonPoint Sector (FEB 06 version) National Emission Inventory for Criteria and Hazardous Air Pollutants (Pechan, 2006) AP 42, Fifth Edition, Volume I, Chapter 1: External Combustion Sources, 1.4 Natural Gas Combustion (USEPA, 1998a)
	Metal air toxics	 Documentation for the Final 2002 NonPoint Sector (FEB 06 version) National Emission Inventory for Criteria and Hazardous Air Pollutants (Pechan, 2006) AP 42, Fifth Edition, Volume I, Chapter 1: External Combustion Sources, 1.4 Natural Gas Combustion (USEPA, 1998a)
	Polycyclic aromatic hydrocarbons:	- Documentation for the Final 2002 NonPoint Sector (FEB 06 version) National Emission Inventory for Criteria and

2008 Calendar Year Domestic-Commercial Emissions: Results 2. Inventory Specifications

Source type	Methodology or substance	Estimation methodologies and emission factor source
	РАН	 Hazardous Air Pollutants (Pechan, 2006) AP 42, Fifth Edition, Volume I, Chapter 1: External Combustion Sources, 1.4 Natural Gas Combustion (USEPA, 1998a)
	Polychlorinated dibenzo-p-dioxins and Polychlorinated dibenzofurans: PCDD and PCDF	 Australian Inventory of Dioxin Emissions 2004, National Dioxins Program Technical Report No. 3 (Bawden et. al., 2004)
	Ammonia	- Estimating Ammonia Emissions from Anthropogenic Non- Agricultural Sources – Draft Final Report (Pechan, 2004)
	Greenhouse gases: CH4, CO2 and N2O	 AP 42, Fifth Edition, Volume I, Chapter 1: External Combustion Sources, 1.4 Natural Gas Combustion (USEPA, 1998a) AP 42, Fifth Edition, Volume I, Chapter 1: External Combustion Sources, 1.5 Liquified Petroleum Gas Combustion (USEPA, 2008a)
	Methodology	- 2008 National Emissions Inventory, 2008 Nonpoint Emission Estimates, Solvent Usage – Other (Pechan, 2009b)
Graphic arts (domestic and commercial)	Criteria pollutants: VOC	 Ink Manufacturing in Australia (IBISWorld, 2008) Australian Demographic Statistics (ABS, 2009) Graphic Arts (ERG, 1996b) 2008 Survey of EPA-Licensed Premises (DECCW, 2009) 2004 Survey of Commercial Businesses (DECC, 2007a)
	Speciated VOC	- California Emission Inventory and Reporting System (CEIDARS), Organic Gas Speciation Profiles (CARB, 2005)
	Organic air toxics	- California Emission Inventory and Reporting System (CEIDARS), Organic Gas Speciation Profiles (CARB, 2005)
	Methodology	- Guidance for Estimating Lawn and Garden Equipment Activity Levels (Environ, 1997)
	Criteria pollutants: CO, NO _x , PM _{2.5} , PM ₁₀ , SO ₂ and VOC	- NONROAD2008a Model (USEPA, 2009)
	Criteria pollutants: TSP	- California Emission Inventory and Reporting System (CEIDARS), Particulate Matter (PM) Speciation Profiles (CARB, 2008b)
Lawn mowing and	Speciated NO _x	- Technology Transfer Network - Clearinghouse for Inventories & Emissions Factors (USEPA, 2003)
garden equipment (domestic)	Speciated VOC	 Documentation for Aircraft, Commercial Marine Vessel, Locomotive, and other NonRoad Components of the National Emissions Inventory, Volume I – Methodology (Pechan, 2005) California Emission Inventory and Reporting System (CEIDARS), Organic Gas Speciation Profiles (CARB, 2005)
	Organic air toxics	 Documentation for Aircraft, Commercial Marine Vessel, Locomotive, and other NonRoad Components of the National Emissions Inventory, Volume I – Methodology (Pechan, 2005)

Source type	Methodology or substance	Estimation methodologies and emission factor source
		 California Emission Inventory and Reporting System (CEIDARS), Organic Gas Speciation Profiles (CARB, 2005) Documentation for Aircraft, Commercial Marine Vessel,
	Metal air toxics	 Locomotive, and other NonRoad Components of the National Emissions Inventory, Volume I – Methodology (Pechan, 2005) California Emission Inventory and Reporting System (CEIDARS), Particulate Matter (PM) Speciation Profiles (CARB, 2007)
	Polycyclic aromatic hydrocarbons: PAH	 Documentation for Aircraft, Commercial Marine Vessel, Locomotive, and other NonRoad Components of the National Emissions Inventory, Volume I – Methodology (Pechan, 2005)
	Polychlorinated dibenzo-p-dioxins and Polychlorinated dibenzofurans: PCDD and PCDF	- Documentation for Aircraft, Commercial Marine Vessel, Locomotive, and other NonRoad Components of the National Emissions Inventory, Volume I – Methodology (Pechan, 2005)
	Ammonia	- Estimating Ammonia Emissions from Anthropogenic Non- Agricultural Sources – Draft Final Report (Pechan, 2004)
	Greenhouse gases: CH4, CO2 and N2O	 NONROAD2008a Model (USEPA, 2009) Climate Leaders Greenhouse Gas Inventory Protocol Core Module Guidance, Direct Emissions from Mobile Combustion Sources (USEPA, 2008b)
	Methodology	- Guidance for Estimating Lawn and Garden Equipment Activity Levels (Environ, 1997)
	Criteria pollutants: CO, NO _x , PM _{2.5} , PM ₁₀ , SO ₂ and VOC	- NONROAD2008a Model (USEPA, 2009)
	Criteria pollutants: TSP	- California Emission Inventory and Reporting System (CEIDARS), Particulate Matter (PM) Speciation Profiles (CARB, 2008b)
	Speciated NO _x	- Technology Transfer Network - Clearinghouse for Inventories & Emissions Factors (USEPA, 2003)
Lawn mowing and garden equipment (public open space)	Speciated VOC	 Documentation for Aircraft, Commercial Marine Vessel, Locomotive, and other NonRoad Components of the National Emissions Inventory, Volume I - Methodology (Pechan, 2005) California Emission Inventory and Reporting System (CEIDARS), Organic Gas Speciation Profiles (CARB, 2005)
	Organic air toxics	 Documentation for Aircraft, Commercial Marine Vessel, Locomotive, and other NonRoad Components of the National Emissions Inventory, Volume I – Methodology (Pechan, 2005) California Emission Inventory and Reporting System (CEIDARS), Organic Gas Speciation Profiles (CARB, 2005)
	Metal air toxics	- Documentation for Aircraft, Commercial Marine Vessel, Locomotive, and other NonRoad Components of the National

Source type	Methodology or substance	Estimation methodologies and emission factor source
		 Emissions Inventory, Volume I – Methodology (Pechan, 2005) California Emission Inventory and Reporting System (CEIDARS), Particulate Matter (PM) Speciation Profiles (CARB, 2007)
	Polycyclic aromatic hydrocarbons: PAH	 Documentation for Aircraft, Commercial Marine Vessel, Locomotive, and other NonRoad Components of the National Emissions Inventory, Volume I – Methodology (Pechan, 2005)
	Polychlorinated dibenzo-p-dioxins and Polychlorinated dibenzofurans: PCDD and PCDF	- Documentation for Aircraft, Commercial Marine Vessel, Locomotive, and other NonRoad Components of the National Emissions Inventory, Volume I – Methodology (Pechan, 2005)
	Ammonia	 Estimating Ammonia Emissions from Anthropogenic Non- Agricultural Sources - Draft Final Report (Pechan, 2004) NONROAD2008a Model (USEPA, 2009)
	Greenhouse gases: CH ₄ , CO ₂ and N ₂ O	Climate Leaders Greenhouse Gas Inventory Protocol Core Module Guidance, Direct Emissions from Mobile Combustion Sources (USEPA, 2008b)
	Methodology	- Documentation for the Final 2002 NonPoint Sector (FEB 06 version) National Emission Inventory for Criteria and Hazardous Air Pollutants (Pechan, 2006)
	Criteria pollutants: CO, NO _x , PM _{2.5} , PM ₁₀ , SO ₂ and VOC	 AP 42, Fifth Edition, Volume I, Chapter 1: External Combustion Sources, 1.3 Fuel Oil Combustion (USEPA, 2010b)
	Criteria pollutants: TSP	 AP 42, Fifth Edition, Volume I, Chapter 1: External Combustion Sources, 1.3 Fuel Oil Combustion (USEPA, 2010b)
	Speciated NO _x	- Technology Transfer Network - Clearinghouse for Inventories & Emissions Factors (USEPA, 2003)
Liquid fuel combustion (domestic)	Speciated VOC	 Documentation for the Final 2002 NonPoint Sector (FEB 06 version) National Emission Inventory for Criteria and Hazardous Air Pollutants (Pechan, 2006) AP 42, Fifth Edition, Volume I, Chapter 1: External Combustion Sources, 1.3 Fuel Oil Combustion (USEPA, 2010b) Speciate 4.2 Database Development Documentation (Pechan, 2009a)
	Organic air toxics Metal air toxics	 Documentation for the Final 2002 NonPoint Sector (FEB 06 version) National Emission Inventory for Criteria and Hazardous Air Pollutants (Pechan, 2006) AP 42, Fifth Edition, Volume I, Chapter 1: External Combustion Sources, 1.3 Fuel Oil Combustion (USEPA, 2010b) Speciate 4.2 Database Development Documentation (Pechan, 2009a) Documentation for the Final 2002 NonPoint Sector (FEB 06

Source type	Methodology or substance	Estimation methodologies and emission factor source
	Polycyclic aromatic hydrocarbons: PAH	 version) National Emission Inventory for Criteria and Hazardous Air Pollutants (Pechan, 2006) AP 42, Fifth Edition, Volume I, Chapter 1: External Combustion Sources, 1.3 Fuel Oil Combustion (USEPA, 2010b) Speciate 4.2 Database Development Documentation (Pechan, 2009a) Documentation for the Final 2002 NonPoint Sector (FEB 06 version) National Emission Inventory for Criteria and Hazardous Air Pollutants (Pechan, 2006) AP 42, Fifth Edition, Volume I, Chapter 1: External Combustion Sources, 1.3 Fuel Oil Combustion (USEPA, 2010b)
	Polychlorinated dibenzo-p-dioxins and Polychlorinated dibenzofurans: PCDD and PCDF	- Australian Inventory of Dioxin Emissions 2004, National Dioxins Program Technical Report No. 3 (Bawden et. al., 2004)
	Ammonia Greenhouse gases: CH4, CO2 and N2O	 Estimating Ammonia Emissions from Anthropogenic Non- Agricultural Sources – Draft Final Report (Pechan, 2004) AP 42, Fifth Edition, Volume I, Chapter 1: External Combustion Sources, 1.3 Fuel Oil Combustion (USEPA, 2010b)
Natural gas leakage	Methodology Criteria pollutants: VOC	 National Greenhouse Accounts (NGA) Factors (DCC, 2009a) Jemena Gas Networks (NSW) Ltd Access Arrangement (JEMENA, 2009a) Jemena Gas Networks (NSW) Ltd Access Arrangement Information (JEMENA, 2009b) NSW gas networks Performance report 2007-08 (DWE, 2009) NSW gas networks Performance report 2008-09 (II, 2009) Nstional Greenhouse Accounts (NGA) Factors (DCC, 2009a) National Greenhouse and Energy Reporting System Measurement, Technical Guidelines for the Estimation of Greenhouse Gas Emissions by Facilities in Australia (DCC, 2009b)
	Speciated VOC	 AGL Natural Gas, Chemwatch Material Safety Data Sheet (AGL, 2008) Eastern Gas Pipeline Measurement Manual (JEMENA, 2000)
Portable fuel containers (domestic)	Organic air toxics Methodology	 2009c) Eastern Gas Pipeline Operations Manual (JEMENA, 2009d) Public Meeting to Consider Approval of California's Portable Gasoline Container Emissions Inventory (CARB, 1999) Estimating Emissions Associated with Portable Fuel Containers (PFCs) (USEPA, 2007b)
	Criteria pollutants: VOC	 Public Meeting to Consider Approval of California's Portable Gasoline Container Emissions Inventory (CARB, 1999) Estimating Emissions Associated with Portable Fuel Containers (PFCs) (USEPA, 2007b)

2008 Calendar Year Domestic-Commercial Emissions: Results 2. Inventory Specifications

Source type	Methodology or substance	Estimation methodologies and emission factor source
		- NONROAD2008a Model (USEPA, 2009)
	Speciated VOC	 Air Emissions Inventory for the Greater Metropolitan Region in NSW, Commercial Emissions Module: Results (DECC, 2007a)
	Organic air toxics	 Air Emissions Inventory for the Greater Metropolitan Region in NSW, Commercial Emissions Module: Results (DECC, 2007a)
	Methodology	 Public Meeting to Consider Approval of California's Portable Gasoline Container Emissions Inventory (CARB, 1999) Estimating Emissions Associated with Portable Fuel Containers (PFCs) (USEPA, 2007b)
Portable fuel containers (public open space)	Criteria pollutants: VOC	 Public Meeting to Consider Approval of California's Portable Gasoline Container Emissions Inventory (CARB, 1999) Estimating Emissions Associated with Portable Fuel Containers (PFCs) (USEPA, 2007b) NONROAD2008a Model (USEPA, 2009)
	Speciated VOC	 Air Emissions Inventory for the Greater Metropolitan Region in NSW, Commercial Emissions Module: Results (DECC, 2007a)
	Organic air toxics	 Air Emissions Inventory for the Greater Metropolitan Region in NSW, Commercial Emissions Module: Results (DECC, 2007a)
	Methodology	 2008 National Emissions Inventory, 2008 Nonpoint Emission Estimates, Residential Heating, 2104008nnn & 2104009000, Residential Wood Combustion and Wax Firelogs (Pechan, 2009c)
	Criteria pollutants: CO, NO _x , PM ₁₀ , SO ₂ and VOC	 2008 National Emissions Inventory, 2008 Nonpoint Emission Estimates, Residential Heating, 2104008nnn & 2104009000, Residential Wood Combustion and Wax Firelogs (Pechan, 2009c)
	Criteria pollutants: PM _{2.5}	- California Emission Inventory and Reporting System (CEIDARS), Particulate Matter (PM) Speciation Profiles (CARB, 2008b)
Solid fuel combustion (domestic)	Criteria pollutants: TSP	- California Emission Inventory and Reporting System (CEIDARS), Particulate Matter (PM) Speciation Profiles (CARB, 2008b)
(domestic)	Speciated NOx	- Technology Transfer Network - Clearinghouse for Inventories & Emissions Factors (USEPA, 2003)
	Speciated VOC	 2008 National Emissions Inventory, 2008 Nonpoint Emission Estimates, Residential Heating, 2104008nnn & 2104009000, Residential Wood Combustion and Wax Firelogs (Pechan, 2009c) AP 42, Fifth Edition, Volume I, Chapter 1: External Combustion Sources, 1.10 Residential Wood Stoves (USEPA, 1996b) Speciate 4.2 Database Development Documentation (Pechan, 2009a)
	Organic air toxics	- 2008 National Emissions Inventory, 2008 Nonpoint Emission Estimates, Residential Heating, 2104008nnn & 2104009000,

Source type	Methodology or substance	Estimation methodologies and emission factor source
	Metal air toxics	 Residential Wood Combustion and Wax Firelogs (Pechan, 2009c) AP 42, Fifth Edition, Volume I, Chapter 1: External Combustion Sources, 1.10 Residential Wood Stoves (USEPA, 1996b) Speciate 4.2 Database Development Documentation (Pechan, 2009a) 2008 National Emissions Inventory, 2008 Nonpoint Emission Estimates, Residential Heating, 2104008nnn & 2104009000, Residential Wood Combustion and Wax Firelogs (Pechan, 2009c) AP 42, Fifth Edition, Volume I, Chapter 1: External Combustion Sources, 1.10 Residential Wood Stoves (USEPA, 1996b) Speciate 4.2 Database Development Documentation (Pechan, 2009c)
	Polycyclic aromatic hydrocarbons: PAH	 2009a) 2008 National Emissions Inventory, 2008 Nonpoint Emission Estimates, Residential Heating, 2104008nnn & 2104009000, Residential Wood Combustion and Wax Firelogs (Pechan, 2009c) AP 42, Fifth Edition, Volume I, Chapter 1: External Combustion Sources, 1.10 Residential Wood Stoves (USEPA, 1996b)
	Polychlorinated dibenzo-p-dioxins and Polychlorinated dibenzofurans: PCDD and PCDF	 Australian Inventory of Dioxin Emissions 2004, National Dioxins Program Technical Report No. 3 (Bawden et. al., 2004)
	Ammonia	 2008 National Emissions Inventory, 2008 Nonpoint Emission Estimates, Residential Heating, 2104008nnn & 2104009000, Residential Wood Combustion and Wax Firelogs (Pechan, 2009c)
	Greenhouse gases: CH4, CO2 and N2O	 2008 National Emissions Inventory, 2008 Nonpoint Emission Estimates, Residential Heating, 2104008nnn & 2104009000, Residential Wood Combustion and Wax Firelogs (Pechan, 2009c) AP 42, Fifth Edition, Volume I, Chapter 1: External Combustion Sources, 1.9 Residential Fireplaces (USEPA, 1996a) AP 42, Fifth Edition, Volume I, Chapter 1: External Combustion Sources, 1.10 Residential Wood Stoves (USEPA, 1996b) Greenhouse Gases from Small-Scale Combustion Devices in Developing Countries: Phase IIA Household Stoves in India (USEPA, 2000)
Surface coatings (domestic, commercial and industrial)	Methodology	 Area-Wide Source Methodologies, Section 3.5, Coatings and Related Process Solvents Industrial Coatings (CARB, 1997a) Area-Wide Source Methodologies, Section 3.6, Coatings and Related Process Solvents Thinning and Cleaning Solvents

Source type	Methodology or substance	Estimation methodologies and emission factor source
	Criteria pollutants: VOC	 (CARB, 1997b) Area-Wide Source Methodologies, Section 6.3, Architectural Coatings (CARB, 2003) Study on the Potential for Reducing Emissions of Volatile Organic Compounds (VOC) Due To The Use Of Decorative Paints and Varnishes for Professional and Non-professional Use (EC, 2000) Area-Wide Source Methodologies, Section 3.5, Coatings and Related Process Solvents Industrial Coatings (CARB, 1997a) Area-Wide Source Methodologies, Section 3.6, Coatings and Related Process Solvents Thinning and Cleaning Solvents (CARB, 1997b) Area-Wide Source Methodologies, Section 6.3, Architectural Coatings (CARB, 2003) Study on the Potential for Reducing Emissions of Volatile Organic Compounds (VOC) Due To The Use Of Decorative Paints and Varnishes for Professional and Non-professional Use (EC, 2000) VOCs from Surface Coatings – Assessment of the Categorisation, VOC Content and Sales Volumes of Coating Products Sold in Australia (Environ, 2009)
	Speciated VOC	 Speciate 4.2 Database Development Documentation (Pechan, 2009a)
	Organic air toxics	- Speciate 4.2 Database Development Documentation (Pechan, 2009a)

Detailed emission estimation methodologies for each domestic-commercial source are presented in Section 3.

2.6.3 Acquire Activity, Spatial and Temporal Data

Activity, spatial and temporal data have been acquired from a number of government departments and service providers. Emissions have been estimated using activity, spatial and temporal data sourced from the references provided in Table 2-3, Table 2-4 and Table 2-5.

Source type	Activity data	Activity data source
Aerosols and solvents (domestic and commercial)	Gridded 1 km x 1 km population estimates required for per capita emission factors	- Forecasts for Population from 2006 to 2036 (TDC, 2009)
	Barbecue/outdoor stove/portable stove type, number and fuel consumption	- Domestic Barbecue Pollution Survey (TR, 2009)
Barbecues (domestic)	Gridded 1 km x 1 km total dwelling estimates required to scale-up domestic survey	- Forecasts for Total Dwelling from 2006 to 2036 (TDC, 2009)
Cutback bitumen	Cutback bitumen and cutter consumption	- Cutback Bitumen and Cutter Consumption in the NSW GMR

Table 2-3: Domestic-commercial activity data

Source type	Activity data	Activity data source
		(AAPA, 2009)
Gaseous fuel combustion (domestic and unaccounted)	Natural gas and LPG consumption	 Domestic natural gas: Energy update 2009 (ABARE, 2009a) Australian Energy, National and State Projections to 2029-30 (ABARE, 2006) Jemena Gas Networks (NSW) Ltd Access Arrangement (JEMENA, 2009a) Jemena Gas Networks (NSW) Ltd Access Arrangement Information (JEMENA, 2009b) Domestic LPG: Domestic Fuel Combustion Pollution Survey (TR, 2009) Unaccounted natural gas: 2008 Survey of EPA-Licensed Premises (DECCW, 2009) 2004 Survey of Commercial Businesses (DECC, 2007a)
	Gridded 1 km x 1 km total dwelling estimates for domestic LPG required to scale-up domestic survey	- Forecasts for Total Dwelling from 2006 to 2036 (TDC, 2009)
Graphic arts (domestic and commercial)	Ink and solvent consumption	 Ink Manufacturing in Australia (IBISWorld, 2008) Australian Demographic Statistics (ABS, 2009) Graphic Arts (ERG, 1996b) 2008 Survey of EPA-Licensed Premises (DECCW, 2009) 2004 Survey of Commercial Businesses (DECC, 2007a)
	Gridded 1 km x 1 km population estimates	- Forecasts for Population from 2006 to
	required for per capita emission factors	2036 (TDC, 2009)
	Lawn mower and garden equipment type/number and monthly mowing frequency/duration	- Domestic Lawn Mowing Pollution Survey (TR, 2009)
Lawn mowing and garden equipment (domestic)	Gridded 1 km x 1 km dwelling estimates required to scale-up domestic survey	- Forecasts for Total Dwelling from 2006 to 2036 (TDC, 2009)
	Lawn mower and garden equipment fleet composition	- NSW Lawn Mowing and Garden Equipment Sales, Unit Cost and Operating Life Data for 2000 to 2004 (AIA, 2005)
Lown mowing and	Lawn mower and garden equipment type/number and monthly mowing frequency/duration	- Public Open Space Lawn Mowing Pollution Survey (DECC, 2007b)
Lawn mowing and garden equipment (public open space)	Golf course locations required to scale-up golf course survey Gridded 1 km x 1 km population estimates	 Australian Course Directory (Iseekgolf.com, 2011) Forecasts for Population from 2006 to
	required to scale-up LGA survey Lawn mower and garden equipment fleet	2036 (TDC, 2009)
	composition	- NSW Lawn Mowing and Garden Equipment Sales, Unit Cost and

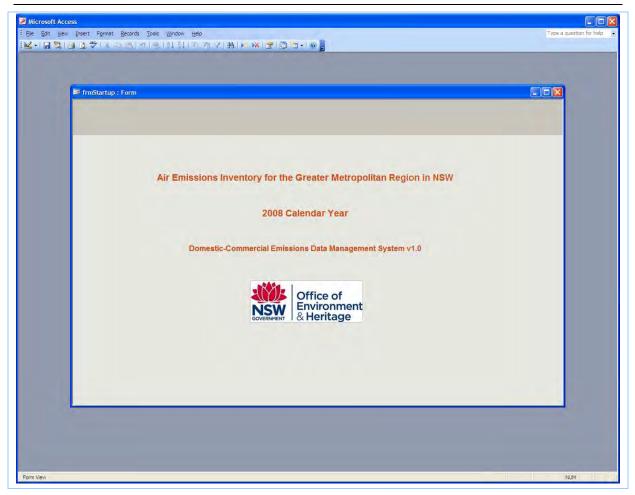
2008 Calendar Year Domestic-Commercial Emissions: Results 2. Inventory Specifications

Source type	Activity data	Activity data source
		Operating Life Data for 2000 to 2004 (AIA, 2005)
Liquid fuel combustion	Liquid fuel consumption	- Domestic Liquid Fuel Combustion Pollution Survey (TR, 2009)
(domestic)	Gridded 1 km x 1 km total dwelling estimates required to scale-up domestic survey	- Forecasts for Total Dwelling from 2006 to 2036 (TDC, 2009)
Natural gas leakage	Unaccounted for natural gas	 Jemena Gas Networks (NSW) Ltd Access Arrangement (JEMENA, 2009a) Jemena Gas Networks (NSW) Ltd Access Arrangement Information (JEMENA, 2009b) NSW gas networks Performance report 2007-08 (DWE, 2009) NSW gas networks Performance report 2008-09 (II, 2009)
Portable fuel containers (domestic)	Petrol consumption	 NONROAD2008a Model (USEPA, 2009) using: Domestic Lawn Mowing Pollution Survey (TR, 2009); Forecasts for Total Dwelling from 2006 to 2036 (TDC, 2009); and NSW Lawn Mowing and Garden Equipment Sales, Unit Cost and Operating Life Data for 2000 to 2004 (AIA, 2005)
	Portable fuel container survey data	- Public Meeting to Consider Approval of California's Portable Gasoline Container Emissions Inventory (CARB, 1999)
Portable fuel containers (public open space)	Petrol consumption	 NONROAD2008a Model (USEPA, 2009) using: Public Open Space Lawn Mowing Pollution Survey (DECC, 2007b); Australian Course Directory (Iseekgolf.com, 2011); Forecasts for Population from 2006 to 2036 (TDC, 2009); and NSW Lawn Mowing and Garden Equipment Sales, Unit Cost and Operating Life Data for 2000 to 2004 (AIA, 2005)
	Portable fuel container survey data	- Public Meeting to Consider Approval of California's Portable Gasoline Container Emissions Inventory (CARB, 1999)
Solid fuel combustion (domestic)	Wood heater type, number and fuel consumption	- Domestic Wood Heater Pollution Survey (TR, 2009)
	Gridded 1 km x 1 km total dwelling estimates required to scale-up domestic survey	- Forecasts for Total Dwelling from 2006 to 2036 (TDC, 2009)
Surface coatings	Surface coating consumption	- Quarterly Industrial Sales Statistics Survey 2008 (APMF, 2009a to 2009d)

Source type	Activity data	Activity data source
(domestic, commercial and industrial)		 Quarterly Automotive Refinish Statistics 2008 (APMF, 2009e to 2009h) Quarterly Architectural & Decorative Paints & Enamels Sales Quantity 2008 (Informark, 2009a to 2009d) Quarterly Woodcare Products Sales Quantity 2008 (Informark, 2009e to 2009h)
	NSW total and gridded 1 km x 1 km population estimates required to scale surface coating consumption from NSW to GMR	NSW: - 83101.0 - Australian Demographic Statistics, Dec 2008 (ABS, 2009) GMR: - Forecasts for Population from 2006 to 2036 (TDC, 2009)

Source type	Spatial data	Spatial data source
Aerosols and solvents (domestic and commercial)	Gridded 1 km x 1 km population estimates	- Forecasts for Population from 2006 to 2036 (TDC, 2009)
Barbecues (domestic)	Gridded 1 km x 1 km total dwelling estimates	- Forecasts for Total Dwelling from 2006 to 2036 (TDC, 2009)
Cutback bitumen	Gridded 1 km x 1 km vehicle kilometres travelled (vkt) estimates	- Forecasts for VKT from 2006 to 2036 (TDC, 2009)
Gaseous fuel combustion (domestic and unaccounted)	Gridded 1 km x 1 km total dwelling estimates	- Forecasts for Total Dwelling from 2006 to 2036 (TDC, 2009)
Graphic arts (domestic and commercial)	Gridded 1 km x 1 km population estimates	- Forecasts for Population from 2006 to 2036 (TDC, 2009)
Lawn mowing and garden equipment (domestic)	Gridded 1 km x 1 km free standing dwelling estimates	 Forecasts for Free Standing Dwelling from 2006 to 2036 (TDC, 2009)
Lawn mowing and garden equipment (public open space)	Gridded 1 km x 1 km population estimates (≥ 50 per grid cell)	- Forecasts for Population from 2006 to 2036 (TDC, 2009)
Liquid fuel combustion (domestic)	Gridded 1 km x 1 km total dwelling estimates	- Forecasts for Total Dwelling from 2006 to 2036 (TDC, 2009)
Natural gas leakage	Gridded 1 km x 1 km total dwelling estimates	- Forecasts for Total Dwelling from 2006 to 2036 (TDC, 2009)
Portable fuel containers (domestic)	Gridded 1 km x 1 km free standing dwelling estimates	 Forecasts for Free Standing Dwelling from 2006 to 2036 (TDC, 2009)
Portable fuel containers (public open space)	Gridded 1 km x 1 km population estimates (≥ 50 per grid cell)	- Forecasts for Population from 2006 to 2036 (TDC, 2009)
Solid fuel combustion (domestic)	Gridded 1 km x 1 km free standing dwelling estimates	 Forecasts for Free Standing Dwelling from 2006 to 2036 (TDC, 2009)
Surface coatings (domestic, commercial and industrial)	Gridded 1 km x 1 km total dwelling estimates	- Forecasts for Total Dwelling from 2006 to 2036 (TDC, 2009)

Table 2-5: Domestic-commercial temporal data			
Source type	Temporal data	Temporal data source	
Aerosols and solvents (domestic and commercial)	Monthly, daily and hourly: Source type specific temporal allocation factors	- CAIR Platform Temporal Allocation (USEPA, 2005)	
Barbecues (domestic)	Monthly, daily and hourly: Derived from domestic survey	- Domestic Barbecue Pollution Survey (TR, 2009)	
	Monthly: Cutback bitumen and cutter consumption combined with time varying emissions	 Cutback Bitumen and Cutter Consumption in the NSW GMR (AAPA, 2009) AP-42, Fifth Edition, Volume I, Chapter 4: Evaporation Loss Sources, 4.5 Asphalt Paving Operations (USEPA, 1979) 	
Cutback bitumen	Daily: VKT combined with time varying emissions	 Air Emissions Inventory for the Greater Metropolitan Region in NSW, On-Road Mobile Emissions Module: Results (DECC, 2007c) AP-42, Fifth Edition, Volume I, Chapter 4: Evaporation Loss Sources, 4.5 Asphalt Paving Operations (USEPA, 1979) 	
	Hourly: VKT combined with time varying emissions	 Forecasts for VKT from 2006 to 2036 (TDC, 2009) AP-42, Fifth Edition, Volume I, Chapter 4: Evaporation Loss Sources, 4.5 Asphalt Paving Operations (USEPA, 1979) 	
Gaseous fuel combustion (domestic	Monthly and daily: Daily natural gas flow	- National Gas Market Bulletin Board, Daily Natural Gas Flow, 1 August 2008 to 31 July 2009 (AEMOL, 2009)	
and unaccounted)	Hourly: Source type specific temporal allocation factors	- CAIR Platform Temporal Allocation (USEPA, 2005)	
Graphic arts (domestic and commercial)	Monthly, daily and hourly: Source type specific temporal allocation factors	- CAIR Platform Temporal Allocation (USEPA, 2005)	
Lawn mowing and garden equipment (domestic)	Monthly, daily and hourly: Derived from domestic survey	- Domestic Lawn Mowing Pollution Survey (TR, 2009)	
Lawn mowing and garden equipment	Monthly: Derived from domestic survey	- Domestic Lawn Mowing Pollution Survey (TR, 2009)	
(public open space)	Daily and hourly: Derived from commercial survey	- Public Open Space Lawn Mowing Pollution Survey (DECC, 2007b)	
Liquid fuel combustion (domestic)	Monthly, daily and hourly: Derived from domestic survey	- Domestic Liquid Fuel Combustion Pollution Survey (TR, 2009)	
Natural gas leakage	Monthly and daily: Daily natural gas flow	 National Gas Market Bulletin Board, Daily Natural Gas Flow, 1 August 2008 to 31 July 2009 (AEMOL, 2009) 	
	Hourly: Source type specific temporal allocation factors	- CAIR Platform Temporal Allocation (USEPA, 2005)	


Table 2-5: Domestic-commercial temporal data

Source type	Temporal data	Temporal data source
Portable fuel containers (domestic)	Monthly, daily and hourly: Derived from domestic survey combined with hourly meteorological data (temperature (Kelvin) and monthly petrol Reid vapour pressure (RVP)	 Domestic Lawn Mowing Pollution Survey (TR, 2009) The Air Pollution Model (TAPM) Version 3 (Hurley, 2005) Protection of the Environment Operations (Clean Air) Regulation 2010 (PCO, 2011)
Portable fuel containers (public open space)	Monthly, daily and hourly: Derived from commercial survey combined with hourly meteorological data (temperature (Kelvin) and monthly petrol Reid vapour pressure (RVP)	 Public Open Space Lawn Mowing Pollution Survey (DECC, 2007b) The Air Pollution Model (TAPM) Version 3 (Hurley, 2005) Protection of the Environment Operations (Clean Air) Regulation 2010 (PCO, 2011)
Solid fuel combustion	Monthly, daily and hourly: Derived from	- Domestic Wood Heater Pollution
(domestic)	domestic survey	Survey (TR, 2009)
Surface coatings (domestic, commercial and industrial)	Monthly: Surface coating consumption	 Quarterly Industrial Sales Statistics Survey 2008 (APMF, 2009a to 2009d) Quarterly Automotive Refinish Statistics 2008 (APMF, 2009e to 2009h) Quarterly Architectural & Decorative Paints & Enamels Sales Quantity 2008 (Informark, 2009a to 2009d) Quarterly Woodcare Products Sales Quantity 2008 (Informark, 2009e to 2009h)
	Daily and hourly: Source type specific temporal allocation factors	- CAIR Platform Temporal Allocation (USEPA, 2005)

A detailed discussion of the activity, spatial and temporal data acquired for each domestic-commercial source is presented in Section 3.

2.6.4 Design and Implement Emission Estimation Techniques

All emissions have been calculated within the Domestic-Commercial Emissions Data Management System v1.0, which is a Microsoft® Access[™] 2003 relational database that includes all the data necessary for estimating emissions to air from domestic-commercial sources, including: activity data; emission factors; particulate matter (PM) and volatile organic compound (VOC) speciation profiles; spatial allocation data; hourly, daily and monthly temporal variation data; and emission projection factors. The Domestic-Commercial Emissions Data Management System v1.0 start-up form is shown in Figure 2-3.

Figure 2-3: Domestic-commercial Emissions Data Management System v1.0 start-up form

In general, emissions have been estimated using Equation 1:

$$E_{i,j} = A_j \times EF_{i,j} \times (1 - ER_{i,j} / 100)$$
 Equation 1

where:			
E _{i,j}	=	Emissions of substance i from source j	(kg/year)
Aj	=	Activity rate for source j	(activity unit/year)
EF _{i,j}	=	Emission factor for substance i from source j	(kg/activity unit)
ER _{i, j}	=	Emission reduction efficiency for substance i for source j	(%)

Detailed emission estimation techniques for each domestic-commercial source are presented in Section 3.

2.6.5 Derive Source Type Specific Emission Projection Factors

Emission projection factors have been derived based on either:

- > Total final energy consumption by industry and fuel, New South Wales (ABARE, 2006);
- > Total primary energy consumption by industry and fuel, New South Wales (ABARE, 2006);

- > Free standing dwelling growth, Greater Metropolitan Region (TDC, 2009);
- > Population growth, Greater Metropolitan Region (TDC, 2009);
- > Total dwelling growth, Greater Metropolitan Region (TDC, 2009); and
- > Vehicle kilometres travelled growth, Greater Metropolitan Region (TDC, 2009).

Projection factors have been developed for every year from 2009 to 2036 (emissions for the base year 2008 are based on activity data and emission estimation methodologies).

In general, future emissions have been estimated from base year 2008 emissions using Equation 2:

$$E_{i,j,n} = E_{i,j,2008} \times PF_{j,n}$$
 Equation 2

where:			
E _{i,j,n}	=	Emission of substance i from source j for year n	(kg/year)
E _{i,j,2008}	=	Emission of substance i from source j for the base year, 2008	(kg/year)
PF _{j,n}	=	Projection factor for source j for year n (relative to the base	(tonne.year-1/ tonne.year-
		year)	1)

Projection factors have been sourced from references presented in Table 2-6.

Source type	Projection factor surrogate	Projection factor source		
Aerosols and solvents (domestic and commercial)	Population growth	- Forecasts for Population from 2006 to 2036 (TDC, 2009)		
Barbecues (domestic)	Total dwelling growth	- Forecasts for Total Dwelling from 2006 to 2036 (TDC, 2009)		
Cutback bitumen	Vehicle kilometres travelled growth	- Forecasts for VKT from 2006 to 2036 (TDC, 2009)		
Gaseous fuel combustion (domestic and unaccounted)	Final energy consumption for residential using liquid petroleum gas and natural gas	- Australian Energy, National and State Projections to 2029-30, ABARE Research Report 06.26 (ABARE, 2006)		
Graphic arts (domestic and commercial)	Population growth	- Forecasts for Population from 2006 to 2036 (TDC, 2009)		
Lawn mowing and garden equipment (domestic)	Total dwelling growth	- Forecasts for Total Dwelling from 2006 to 2036 (TDC, 2009)		
Lawn mowing and garden equipment (public open space)	Final energy consumption for commercial and services using petroleum	- Australian Energy, National and State Projections to 2029-30, ABARE Research Report 06.26 (ABARE, 2006)		
Liquid fuel combustion (domestic)	Final energy consumption for residential using petroleum	- Australian Energy, National and State Projections to 2029-30, ABARE Research Report 06.26 (ABARE, 2006)		
Natural gas leakage	Primary energy consumption for all sectors using natural gas	- Australian Energy, National and State Projections to 2029-30, ABARE Research Report 06.26 (ABARE, 2006)		
Portable fuel containers	Total dwelling growth	- Forecasts for Total Dwelling from 2006 to		

Table 2-6: Domestic-commercial projection factors

2008 Calendar Year Domestic-Commercial Emissions: Results 2. Inventory Specifications

Source type	Projection factor surrogate	Projection factor source
(domestic)		2036 (TDC, 2009)
Portable fuel containers (public open space)	Final energy consumption for commercial and services using petroleum	 Australian Energy, National and State Projections to 2029-30, ABARE Research Report 06.26 (ABARE, 2006)
Solid fuel combustion (domestic)	Final energy consumption for residential using biomass	 Australian Energy, National and State Projections to 2029-30, ABARE Research Report 06.26 (ABARE, 2006)
Surface coatings (domestic, commercial and industrial)	Total dwelling growth	- Forecasts for Total Dwelling from 2006 to 2036 (TDC, 2009)

Detailed emission projection factors for each domestic-commercial source are presented in Section 3.

3 DATA SOURCES AND RESULTS

This section presents the: detailed emission estimation methodologies; activity, spatial, temporal and projection factor data sources used; and the associated emission estimates for the 2008 calendar year for the following domestic-commercial sources:

- > Aerosols and solvents (domestic and commercial);
- Barbecues (domestic);
- Cutback bitumen;
- Gaseous fuel combustion (domestic and unaccounted);
- > Graphic arts (domestic and commercial);
- > Lawn mowing and garden equipment (domestic and public open space);
- Liquid fuel combustion (domestic);
- Natural gas leakage;
- > Portable fuel containers (domestic and public open space);
- > Solid fuel combustion (domestic); and
- > Surface coatings (domestic, commercial and industrial).

For each domestic-commercial source type, the information in this section is structured as follows:

- > Emission Source Description;
- Emission Estimation Methodology;
- Activity Data;
- > Emission and Speciation Factors;
- > Spatial Distribution of Emissions;
- > Temporal Variation of Emissions;
- > Emission Estimates; and
- > Emission Projection Methodology.

Domestic-commercial emissions have been estimated by combining activity data with emission factors. The emissions have been allocated spatially to each 1 km by 1 km grid cell, and temporally to months, weekdays/weekend days and hours. Activity, spatial and temporal data have been acquired from a number of government departments and service providers. All emissions have been calculated

within the Domestic-Commercial Emissions Data Management System v1.0, which is a Microsoft® AccessTM 2003 relational database that includes all the data necessary for estimating emissions to air from domestic-commercial sources, including: activity data; emission factors; particulate matter (PM) and volatile organic compound (VOC) speciation profiles; spatial allocation data; hourly, daily and monthly temporal variation data; and emission projection factors.

Where reference is made to:

- Combustion products, this includes CO, NO_x, PM_{2.5}, PM₁₀, TSP, SO₂ and VOC (total and speciated); and
- > *Particulate matter*, this includes PM_{2.5}, PM₁₀ and TSP.

In this section total estimated emissions are presented for each domestic-commercial source type in the whole GMR and the Sydney, Newcastle and Wollongong regions. Total estimated emissions are also presented for the region defined as Non Urban. This region is the area of the GMR minus the combined areas of the Sydney, Newcastle and Wollongong regions. Emissions are presented for the following pollutants only:

- ▶ 1,3-Butadiene
- Acetaldehyde
- Benzene
- Carbon monoxide (CO)
- Formaldehyde
- Isomers of xylene
- Lead & compounds
- Oxides of nitrogen (NO_x)
- ▶ Particulate matter $\leq 10 \ \mu m \ (PM_{10})$
- \triangleright Particulate matter ≤ 2.5 μm (PM_{2.5})
- > Perchloroethylene
- > Polycyclic aromatic hydrocarbons (PAH)
- Sulfur dioxide (SO₂)
- Toluene
- > Total suspended particulate (TSP)
- > Total volatile organic compounds (VOC)
- > Trichloroethylene

These substances were selected since they:

Are the most common air pollutants found in airsheds according to the National Pollutant Inventory NEPM (NEPC, 2008);

- > Are referred to in National Environment Protection Measures (NEPMs) for ambient air quality (NEPC, 2003) and air toxics (NEPC, 2004); and
- > Have been classified as priority air pollutants (NEPC, 2006).

Total domestic-commercial emissions of all substances emitted in the whole GMR and the Sydney, Newcastle, Wollongong and Non Urban regions are presented in Appendix A: Estimated Annual Emissions of all Substances from Domestic-Commercial Sources.

3.1 Aerosols and Solvents

3.1.1 Emission Source Description

The domestic-commercial air emissions inventory includes emissions of evaporative VOC from consumer and commercial aerosol and solvent products that serve as either: propellants; aid in product drying (through evaporation); act as co-solvents and cleaning agents; or are emitted during product use.

To estimate emissions from these sources, the following have been considered:

> USEPA Report to Congress and Comprehensive Emissions Inventory

The *Study of Volatile Organic Compound Emissions from Consumer and Commercial Products* includes a *Report to Congress* (USEPA, 1995b), which is supported by a *Comprehensive Emissions Inventory* (USEPA, 1995c). The study presents per capita based emission factors by product group and category, which have been adopted for the GMR as they are representative of a developed economy in the absence of product regulations.

> SLR Desktop Literature Review of Aerosols and Solvents Emission Source Category

The *Desktop Literature Review of Aerosols and Solvents Emission Source Category* (SLR, 2011) presents revisions to the per capita based emission factors by product group and category (i.e. for coatings and related products; household cleaning products; pesticide and herbicide products; and personal care products) (USEPA, 1995c), which use Australian market volume and formulation data. The revised per capita based emission factors have been adopted for the GMR where relevant.

> Product Groups

Table 3-1 presents the consumer and commercial aerosols and solvents product groups and categories included in the inventory.

Personal care products	Household products
Deodorants and antiperspirants Facial and body treatments Fragrance products Hair care products Health use products Miscellaneous personal care products Nail care products Oral care products Powders	Air fresheners Dishwashing products Fabric and carpet care products Hard surface cleaners Laundry products Miscellaneous household products Shoe and leather care products Waxes and polishes

Table 3-1: Aerosols and solvents product groups and categories

Automotive aftermarket products - detailing products	Automotive aftermarket products - maintenance and repair products
Body cleaning compounds Bug and tar removers Car washing products Fibreglass polish Glass, plexiglass and plastic window cleaner/treatment Metal polish and chrome cleaner Polishes Rubber, vinyl and leather protectants and dressings, vinyl top cleaners and waxes Rust-proofing and other exterior treatment compounds Tyre coatings and paints Upholstery cleaners and interior cleaners Waxes Wheel, tyre and mat cleaners Antifreeze and coolant	Belt dressings Engine cleaners, degreasers and parts cleaners Engine starting fluids Fuel system antifreeze Lubricants Motor flush and crankcase cleaner Transmission sealer, conditioner, additive and leak-stop Tyre cement, sealant and inflators Windshield de-icer Windshield washer fluid
Adhesives and sealants	Coatings and related products
Consumer adhesives (e.g. cements, glues and pastes) Sealants	Aerosol spray paints Coating related products (e.g. paint removers)
Insecticide, fungicide, rodenticide and herbicide products	Miscellaneous products (not otherwise covered)
Antimicrobial agents Fungicides and nematicides Herbicides Insecticides Other products	Arts and crafts supplies Non-pesticidal veterinary and pet products Office supplies Pressurised food products

3.1.2 Emission Estimation Methodology

Table 3-2 summarises the emission estimation methodology used for consumer and commercial aerosols and solvents.

Table 3-2: Aerosols and	solvents	emission	estimation	methodology
Table 5-2. Actosols allu	solvenus	emission	estimation	memouology

Emission source	Emission estimation methodology source		
Evaporative emissions from consumer and commercial aerosols	- Consumer and Commercial Solvent Use		
and solvents	(ERG, 1996a)		

Evaporative VOC emissions from consumer and commercial aerosols and solvents have been estimated using per capita based emission factors combined with population in the GMR (TDC, 2009). Emissions have been determined using Equation 3 (ERG, 1996a):

where:			
E _{VOC,i}	=	Emissions of VOC from product group i	(kg/year)
Р	=	Population	(capita)
EF _{VOC,i}	=	Emission factor for VOC from product group 1	(kg/capita/year)
i	=	Product group (either "adhesives and sealant products", "coatings	(-)
		and related products", "household cleaning products",	
		"miscellaneous products", "motor vehicle aftermarket products",	
		"personal care products" or "pesticide and herbicide products"	

3.1.3 Activity Data

Table 3-3 summarises the activity data used for consumer and commercial aerosols and solvents.

Table 3-3: Aerosols and solvents activity data				
Activity data	Activity data source			
Gridded 1 km x 1 km population estimates required for per	- Forecasts for Population from 2006 to 2036			
capita emission factors	(TDC, 2009)			

The consumer and commercial aerosols and solvents VOC emissions in the GMR (i.e. 25,273,588 kg/year) have been estimated by multiplying the VOC emission factors by the GMR population (i.e. 5,284,560) (TDC, 2009).

3.1.4 Emission and Speciation Factors

Table 3-4 summarises the emission and speciation factors used for consumer and commercial aerosols and solvents.

Substance	Emission source	Emission and speciation factor source
	Adhesives and sealant products	 Study of Volatile Organic Compound Emissions from Consumer and Commercial Products, Volume 1 (USEPA, 1995b) Study of Volatile Organic Compound Emissions from Consumer and Commercial Products, Volume 2 (USEPA, 1995c) Study of Volatile Organic Compound Emissions from Consumer
Criteria pollutants: VOC	Coatings and related products	 Study of Volatile Organic Compound Emissions from Consumer and Commercial Products, Volume 1 (USEPA, 1995b) Study of Volatile Organic Compound Emissions from Consumer and Commercial Products, Volume 2 (USEPA, 1995c) Desktop Literature Review of Aerosols and Solvents Emission Source Category (SLR Consulting, 2011)
	Household cleaning products	 Study of Volatile Organic Compound Emissions from Consumer and Commercial Products, Volume 1 (USEPA, 1995b) Study of Volatile Organic Compound Emissions from Consumer and Commercial Products, Volume 2 (USEPA, 1995c) Desktop Literature Review of Aerosols and Solvents Emission Source Category (SLR Consulting, 2011)
	Miscellaneous products	- Study of Volatile Organic Compound Emissions from Consumer and Commercial Products, Volume 1 (USEPA, 1995b)

Table 3-4: Aerosols and solvents emission and speciation factors

Air Emissions Inventory for the Greater Metropolitan Region of New South Wales 3. *Data Sources and Results*

Substance	Emission source	Emission and speciation factor source
		- Study of Volatile Organic Compound Emissions from Consumer and Commercial Products, Volume 2 (USEPA, 1995c)
	Motor vehicle aftermarket products	 Study of Volatile Organic Compound Emissions from Consumer and Commercial Products, Volume 1 (USEPA, 1995b) Study of Volatile Organic Compound Emissions from Consumer and Commercial Products, Volume 2 (USEPA, 1995c)
	Personal care products	 Study of Volatile Organic Compound Emissions from Consumer and Commercial Products, Volume 1 (USEPA, 1995b) Study of Volatile Organic Compound Emissions from Consumer and Commercial Products, Volume 2 (USEPA, 1995c) Desktop Literature Review of Aerosols and Solvents Emission Source Category (SLR Consulting, 2011)
	Pesticide and herbicide products	 Study of Volatile Organic Compound Emissions from Consumer and Commercial Products, Volume 1 (USEPA, 1995b) Study of Volatile Organic Compound Emissions from Consumer and Commercial Products, Volume 2 (USEPA, 1995c) Desktop Literature Review of Aerosols and Solvents Emission Source Category (SLR Consulting, 2011)
	Adhesives and sealant products	 Consumer and Commercial Solvent Use (ERG, 1996a) Profile number 8523 Consumer and Commercial Products: Adhesives and Sealants: All Adhesives and Sealants - Speciate 4.2 Database Development Documentation (Pechan, 2009a)
	Coatings and related products	 Consumer and Commercial Solvent Use (ERG, 1996a) Profile number 8532 Consumer and Commercial Products: Coatings and Related Products: All Coatings and Related Products - Speciate 4.2 Database Development Documentation (Pechan, 2009a)
	Household cleaning products	 Consumer and Commercial Solvent Use (ERG, 1996a) Profile number 8511 Consumer and Commercial Products: Household Products: All Household Products - Speciate 4.2 Database Development Documentation (Pechan, 2009a)
Speciated VOC	Miscellaneous products	 Consumer and Commercial Solvent Use (ERG, 1996a) Profile number 8535 Consumer and Commercial Products: Miscellaneous Products: All Miscellaneous Products - Speciate 4.2 Database Development Documentation (Pechan, 2009a)
	Motor vehicle aftermarket products	 Consumer and Commercial Solvent Use (ERG, 1996a) Profile number 8520 Consumer and Commercial Products: Automotive Aftermarket Products: All Automotive Aftermarket Products - Speciate 4.2 Database Development Documentation (Pechan, 2009a)
	Personal care products	 Consumer and Commercial Solvent Use (ERG, 1996a) Profile number 8501 Consumer and Commercial Products: Personal Care Products: All Personal Care Products - Speciate 4.2 Database Development Documentation (Pechan, 2009a)
	Pesticide and herbicide products	 Consumer and Commercial Solvent Use (ERG, 1996a) Profile number 8526 Consumer and Commercial Products: Fifra Related Products: All Fifra Related Products - Speciate 4.2 Database Development Documentation (Pechan, 2009a)
Organic air toxics	Adhesives and sealant products	 Consumer and Commercial Solvent Use (ERG, 1996a) Profile number 8523 Consumer and Commercial Products: Adhesives and Sealants: All Adhesives and Sealants -Speciate 4.2 Database Development Documentation (Pechan, 2009a)

2008 Calendar Year Domestic-Commercial Emissions: Results3. Data Sources and Results

Substance	Emission source	Emission and speciation factor source
	Coatings and related products	 Consumer and Commercial Solvent Use (ERG, 1996a) Profile number 8532 Consumer and Commercial Products: Coatings and Related Products: All Coatings and Related Products - Speciate 4.2 Database Development Documentation (Pechan, 2009a)
	Household cleaning products	 Consumer and Commercial Solvent Use (ERG, 1996a) Profile number 8511 Consumer and Commercial Products: Household Products: All Household Products - Speciate 4.2 Database Development Documentation (Pechan, 2009a)
	Miscellaneous products	 Consumer and Commercial Solvent Use (ERG, 1996a) Profile number 8535 Consumer and Commercial Products: Miscellaneous Products: All Miscellaneous Products - Speciate 4.2 Database Development Documentation (Pechan, 2009a)
	Motor vehicle aftermarket products	 Consumer and Commercial Solvent Use (ERG, 1996a) Profile number 8520 Consumer and Commercial Products: Automotive Aftermarket Products: All Automotive Aftermarket Products - Speciate 4.2 Database Development Documentation (Pechan, 2009a)
	Personal care products	 Consumer and Commercial Solvent Use (ERG, 1996a) Profile number 8501 Consumer and Commercial Products: Personal Care Products: All Personal Care Products - Speciate 4.2 Database Development Documentation (Pechan, 2009a)
	Pesticide and herbicide products	 Consumer and Commercial Solvent Use (ERG, 1996a) Profile number 8526 Consumer and Commercial Products: Fifra Related Products: All Fifra Related Products - Speciate 4.2 Database Development Documentation (Pechan, 2009a)
	Adhesives and sealant products	 Study of Volatile Organic Compound Emissions from Consumer and Commercial Products, Volume 1 (USEPA, 1995b) Study of Volatile Organic Compound Emissions from Consumer and Commercial Products, Volume 2 (USEPA, 1995c)
Polycyclic aromatic	Coatings and related products	- Consumer and Commercial Solvent Use (ERG, 1996a)
hydrocarbons: PAH	Household cleaning products	- Consumer and Commercial Solvent Use (ERG, 1996a)
	Motor vehicle aftermarket products	 Study of Volatile Organic Compound Emissions from Consumer and Commercial Products, Volume 1 (USEPA, 1995b) Consumer and Commercial Solvent Use (ERG, 1996a)
	Pesticide and herbicide products	 Consumer and Commercial Solvent Use (ERG, 1996a) Study of Volatile Organic Compound Emissions from Consumer and Commercial Products, Volume 1 (USEPA, 1995b)

Table 3-5 presents the VOC emission factors for consumer and commercial aerosols and solvents by product group and category. The consumer and commercial aerosols and solvents VOC emissions in the GMR (i.e. 25,273,588 kg/year) have been estimated by multiplying the VOC emission factors by the GMR population (i.e. 5,284,560) (TDC, 2009).

Product group	Product category	VOC emission factor (kg/capita/year)
	Consumer Adhesives	0.28
Adhesives and Sealant Products	Sealants	3.39×10^{-2}
Adhesives and Sealant Products To	otal	0.31
	Aerosol Spray Paints	0.43
Coatings and Related Products	Coating-Related Products	0.29
Coatings and Related Products Tot	al	0.72
	Air Fresheners	0.15
	Dishwashing Products	7.05×10^{-3}
	Fabric and Carpet Care Products	2.34×10^{-2}
	Hard Surface Cleaners	0.10
Household Cleaning Products	Laundry Products	3.44×10^{-2}
	Miscellaneous Household Products	6.19 × 10 ⁻²
	Shoe and Leather Care Products	1.36×10^{-3}
	Waxes and Polishes	3.95×10^{-2}
Household Cleaning Products Tota	al	0.42
	Arts and Crafts Supplies	$7.95 imes 10^{-3}$
	Non-Pesticidal Veterinary and Pet	2.20 103
Miscellaneous Products	Products	3.30×10^{-3}
	Office Supplies	1.12×10^{-2}
	Pressurised Food Products	1.10×10^{-2}
Miscellaneous Products Total	·	3.34×10^{-2}
Motor Vehicle Aftermarket	Detailing Products	3.42×10^{-2}
Products	Maintenance and Repair Products	0.63
Motor Vehicle Aftermarket Produc	ets Total	0.67
	Deodorants and Antiperspirants	0.18
	Facial and Body Treatments	4.21 × 10 ⁻²
	Fragrance Products	0.11
	Hair Care Products	1.09
Personal Care Products	Health Use Products	3.70×10^{-2}
	Miscellaneous Personal Care Products	0.17
	Nail Care Products	5.41×10^{-2}
	Oral Care Products	1.05×10^{-2}
	Powders	2.10×10^{-2}
Personal Care Products Total		1.72
	Antimicrobial Agents	7.82×10^{-2}
	Fungicides & Nematicides	0.12
Pesticide and Herbicide Products	Herbicides	0.28
	Insecticides	0.26
	Other Products	0.17
Pesticide and Herbicide Products	0.91	
Grand Total	4.78	

Table 3-5: Aerosols and solvents emission factors

3.1.5 Spatial Distribution of Emissions

Table 3-6 summarises the data used for spatially allocating emissions from consumer and commercial aerosols and solvents.

Tuble 5 of Helbools and soft ends spatial and						
Emission source	Spatial data	Spatial data source				
Evaporative emissions from consumer and	Gridded 1 km x 1 km	- Forecasts for Population from				
commercial aerosols and solvents	population estimates	2006 to 2036 (TDC, 2009)				

Table 3-6: Aerosols and solvents spatial data


Emissions from consumer and commercial aerosols and solvents have been spatially distributed according to the proportion of population within each 1 km by 1 km grid cell (TDC, 2009). The proportion of population by LGA and region is presented in Table 3-7 and shown in Figure 3-1.

Table 3-7: Aerosols and solvents spatial distribution of population by LGA and region

	2008 proportion of population (%)				
LGA	Newcastle	Non Urban	Sydney	Wollongong	Grand Total
Ashfield	-	-	0.91	-	0.91
Auburn	-	-	1.32	-	1.32
Bankstown	-	-	3.30	-	3.30
Bathurst Regional	-	$2.84\times10^{\text{-}3}$	-	-	2.84×10^{-3}
Baulkham Hills	-	$2.44 imes 10^{-3}$	3.23	-	3.24
Blacktown	-	-	5.42	-	5.42
Blue Mountains	-	0.48	1.00	-	1.48
Botany Bay	-	-	0.63	-	0.63
Burwood	-	-	0.57	-	0.57
Camden	-	-	1.05	-	1.05
Campbelltown	-	-	2.85	-	2.85
Canada Bay	-	-	1.12	-	1.12
Canterbury	-	-	2.62	-	2.62
Cessnock	4.36×10^{-2}	0.88	-	-	0.92
Dungog	-	0.14	-	-	0.14
Fairfield	-	-	3.58	-	3.58
Gosford	-	0.89	2.19	-	3.08
Goulburn Mulwaree	-	$5.98 imes 10^{-3}$	-	-	$5.98 imes 10^{-3}$
Great Lakes	-	7.21×10^{-2}	-	-	7.21×10^{-2}
Hawkesbury	-	$2.30\times10^{\text{-}2}$	1.16	-	1.18
Holroyd	-	-	1.80	-	1.80
Hornsby	-	3.61×10^{-3}	3.04	-	3.04
Hunters Hill	-	-	0.18	-	0.18
Hurstville	-	-	1.55	-	1.55
Kiama	-	0.28	-	-	0.28
Kogarah	-	-	1.09	-	1.09
Ku-ring-gai	-	-	2.03	-	2.03
Lake Macquarie	1.96	1.74	-	-	3.70
Lane Cove	-	-	0.54	-	0.54

Air Emissions Inventory for the Greater Metropolitan Region of New South Wales 3. Data Sources and Results

LGA		2008 proportion of population (%)							
LUA	Newcastle	Non Urban	Sydney	Wollongong	Grand Total				
Leichhardt	-	-	0.75	-	0.75				
Lithgow	-	0.36	-	-	0.36				
Liverpool	-	-	3.38	-	3.38				
Maitland	0.10	1.16	-	-	1.26				
Manly	-	-	0.64	-	0.64				
Marrickville	-	-	1.65	-	1.65				
Mid-western Regional	-	$5.42 imes 10^{-2}$	-	-	$5.42 imes 10^{-2}$				
Mosman	-	-	0.59	-	0.59				
Muswellbrook	-	0.27	-	-	0.27				
N/A	2.48×10^{-2}	5.23×10^{-2}	0.35	6.03×10^{-2}	0.49				
Newcastle	2.86	-	-	-	2.86				
North Sydney	-	-	1.02	-	1.02				
Oberon	-	3.10×10^{-2}	-	-	3.10×10^{-2}				
Parramatta	-	-	2.89	-	2.89				
Penrith	-	-	3.36	-	3.36				
Pittwater	-	-	1.03	-	1.03				
Port Stephens	6.56 × 10 ⁻²	1.05	-	-	1.12				
Randwick	-	-	2.48	-	2.48				
Rockdale	-	-	1.70	-	1.70				
Ryde	-	-	1.99	-	1.99				
Shellharbour	-	0.94	-	0.29	1.23				
Shoalhaven	-	1.45×10^{-3}	-	-	1.45×10^{-3}				
Singleton	-	0.41	-	-	0.41				
Strathfield	-	-	0.73	-	0.73				
Sutherland	-	-	4.03	-	4.03				
Sydney	-	-	3.17	-	3.17				
Unincorporated	-	-	0.81	-	0.81				
Upper Hunter	-	4.22×10^{-3}	-	-	4.22×10^{-3}				
Upper Lachlan	-	5.94×10^{-3}	_	-	5.94×10^{-3}				
Warringah	-	-	2.67	-	2.67				
Waverley	-	-	1.08	-	1.08				
Willoughby	-	-	1.32	-	1.32				
Wingecarribee	-	0.85	5.04×10^{-3}	1.49×10^{-3}	0.86				
Wollondilly	-	1.23 × 10-2	0.80	4.13×10^{-4}	0.81				
Wollongong	-	-	0.30	3.36	3.66				
Woollahra	-	-	0.85	-	0.85				
Wyong	-	2.75	-	-	2.75				
Grand Total	5.05	12.48	78.76	3.72	100.00				

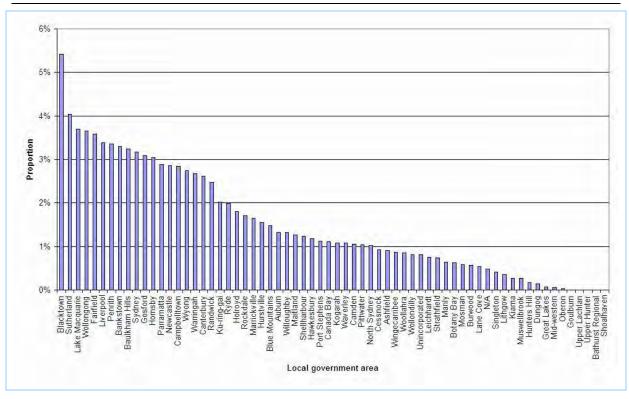


Figure 3-1: Aerosols and solvents spatial distribution of population by LGA

Figure 3-2 shows the spatial distribution of emissions from consumer and commercial aerosols and solvents.

Air Emissions Inventory for the Greater Metropolitan Region of New South Wales 3. *Data Sources and Results*

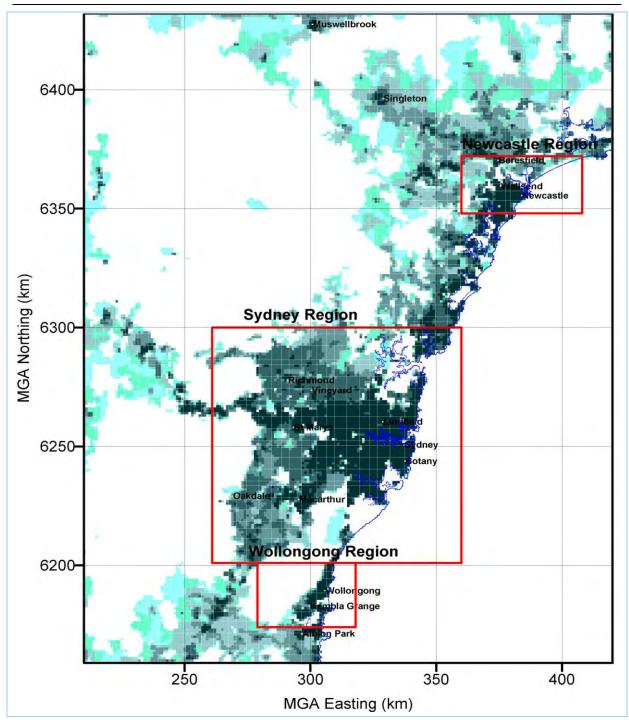
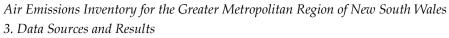


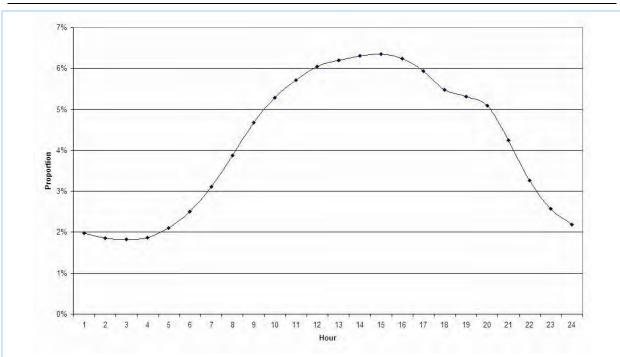
Figure 3-2: Aerosols and solvents spatial distribution of emissions

3.1.6 Temporal Variation of Emissions

Table 3-8 summarises the data used to estimate the temporal variation in emissions from consumer and commercial aerosols and solvents.

Emission source	Temporal data	Temporal data source
Evaporative emissions from consumer and commercial aerosols and solvents	Monthly: Source type specific temporal allocation factors Daily: Source type specific temporal allocation factors	 Misc Non-indus: Consumer & Comm /All Processes /Total: All Solvent Types – Monthly profile number 260 - CAIR Platform Temporal Allocation (USEPA, 2005) Misc Non-indus: Consumer & Comm /All Processes /Total: All Solvent Types – Weekly profile number 7 - CAIR Platform Temporal Allocation (USEPA, 2005)
aerosois and solvents	Hourly: Source type specific temporal allocation factors	 Misc Non-indus: Consumer & Comm /All Processes /Total: All Solvent Types – Weekday diurnal profile number 26 and Weekend diurnal profile number 26 - CAIR Platform Temporal Allocation (USEPA, 2005)


Table 3-8: Aerosols and solvents temporal data


The hourly, daily and monthly temporal variations in emissions from consumer and commercial aerosols and solvents have been estimated from generic temporal profiles (USEPA, 2005).

Hourly temporal variation profiles are presented in Table 3-9 and shown in Figure 3-3.

		5	1 1
Hour	Week day and weekend proportion (%)	Hour	Week day and weekend proportion (%)
1	1.98	13	6.20
2	1.86	14	6.31
3	1.82	15	6.35
4	1.87	16	6.24
5	2.10	17	5.94
6	2.50	18	5.48
7	3.11	19	5.31
8	3.88	20	5.09
9	4.67	21	4.25
10	5.28	22	3.27
11	5.71	23	2.57
12	6.04	24	2.18

Table 3-9: Aerosols and solvents hourly temporal profile

Figure 3-3: Aerosols and solvents hourly temporal profile

Daily temporal variation profiles are presented in Table 3-10 and shown in Figure 3-4.

				J 1	1		
Day	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday	Sunday
Proportion (%)	14.29	14.29	14.29	14.29	14.29	14.29	14.29

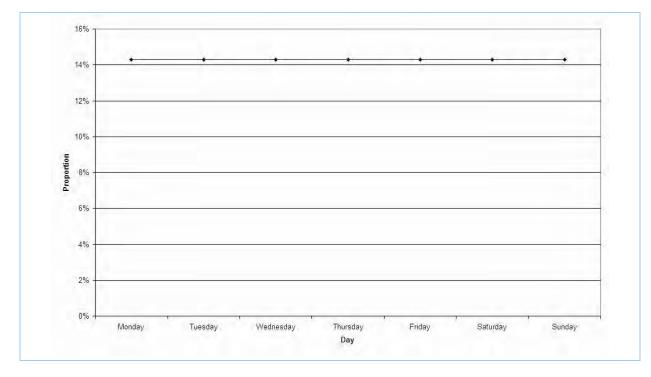
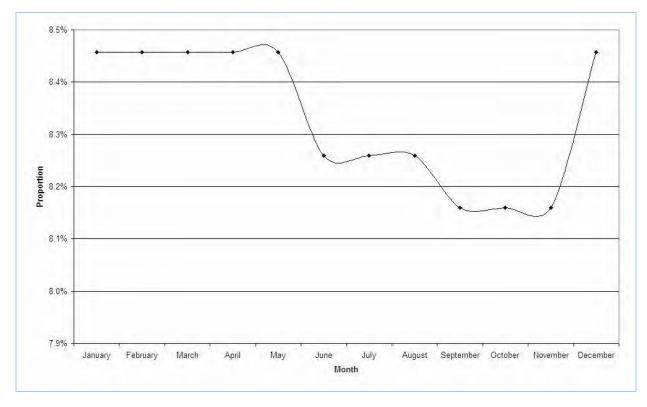



Figure 3-4: Aerosols and solvents daily temporal profile

Monthly temporal variation profiles are presented in Table 3-11 and shown in Figure 3-5.

		5 1	*
Month	Proportion (%)	Month	Proportion (%)
January	8.46	July	8.26
February	8.46	August	8.26
March	8.46	September	8.16
April	8.46	October	8.16
May	8.46	November	8.16
June	8.26	December	8.46

Figure 3-5: Aerosols and solvents monthly temporal profile

3.1.7 *Emission Estimates*

Table 3-12 presents annual emissions of selected substances from consumer and commercial aerosols and solvents by activity.

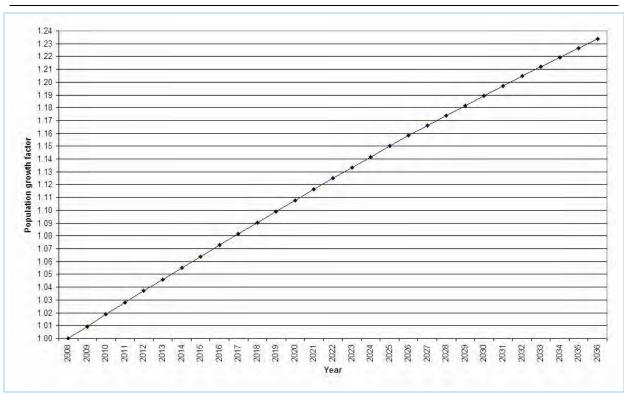
Tuble 5 12. Actosofs and solvents emissions by activity									
		Emissions (kg/year)							
Activity	Substance	Newcastle	Non Urban	Sydney	Wollongong	GMR			
	BENZENE	0.57	1.41	8.91	0.42	11			
	FORMALDEHYDE	582	1,439	9,084	429	11,534			
	ISOMERS OF XYLENE	34,384	84,993	536,438	25,322	681,138			
Consumer and	PERCHLOROETHYLENE	4,661	11,521	72,718	3,433	92,333			
Commercial Aerosols and	POLYCYCLIC AROMATIC HYDROCARBONS	4,607	11,389	71,882	3,393	91,272			
Solvents	TOLUENE	42,719	105,598	666,486	31,461	846,265			
	TOTAL VOLATILE ORGANIC COMPOUNDS	1,275,809	3,153,674	19,904,515	939,590	25,273,588			
	TRICHLOROETHYLENE	281	693	4,377	207	5 <i>,</i> 558			

Table 3-12: Aerosols and solvents emissions by activity

Table 3-13 presents annual emissions of selected substances from consumer and commercial aerosols and solvents by source type.

		Emissions (kg/year)						
Source type	Substance	Newcastle	Non Urban	Sydney	Wollongong	GMR		
	FORMALDEHYDE	3.04	7.51	47	2.24	60		
	ISOMERS OF XYLENE	1,368	3,381	21,340	1,007	27,096		
	PERCHLOROETHYLENE	92	228	1,440	68	1,829		
Adhesives and Sealant Products	POLYCYCLIC AROMATIC HYDROCARBONS	84	207	1,309	62	1,662		
Scalari Products	TOLUENE	11,756	29,061	183,418	8,658	232,894		
	TOTAL VOLATILE ORGANIC COMPOUNDS	83,915	207,429	1,309,195	61,800	1,662,339		
	TRICHLOROETHYLENE	8.39	21	131	6.18	166		
	FORMALDEHYDE	482	1,191	7,517	355	9,545		
	ISOMERS OF XYLENE	13,626	33,681	212,582	10,035	269,924		
	PERCHLOROETHYLENE	77	191	1,203	57	1,527		
Coatings and Related Products	POLYCYCLIC AROMATIC HYDROCARBONS	0.70	1.72	11	0.51	14		
Related Froducts	TOLUENE	25,767	63,695	402,011	18,977	510,449		
	TOTAL VOLATILE ORGANIC COMPOUNDS	192,726	476,399	3,006,810	141,936	3,817,872		
	TRICHLOROETHYLENE	231	572	3,608	170	4,581		
	FORMALDEHYDE	0.82	2.02	13	0.60	16		
Household	ISOMERS OF XYLENE	180	444	2,801	132	3,557		
Cleaning Products	PERCHLOROETHYLENE	954	2,358	14,882	703	18,897		
	POLYCYCLIC AROMATIC	6.68×10^{-2}	0.17	1.04	4.92×10^{-2}	1.32		

Table 3-13: Aerosols and solvents emissions by source type


			Em	issions (kg/	'year)	
Source type	ource type Substance		Non Urban	Sydney	Wollongong	GMR
	HYDROCARBONS					
	TOLUENE	56	139	875	41	1,112
	TOTAL VOLATILE ORGANIC COMPOUNDS	112,225	277,408	1,750,873	82,650	2,223,155
	TRICHLOROETHYLENE	5.25	13	82	3.87	104
	ISOMERS OF XYLENE	21	53	334	16	424
Miscellaneous	PERCHLOROETHYLENE	128	317	2,003	95	2,544
Products	TOLUENE	0.30	0.74	4.64	0.22	5.90
Froducts	TOTAL VOLATILE ORGANIC COMPOUNDS	8,918	22,044	139,132	6,568	176,661
	BENZENE	0.57	1.41	8.91	0.42	11
	ISOMERS OF XYLENE	2,334	5,769	36,413	1,719	46,235
	PERCHLOROETHYLENE	3,385	8,368	52,813	2,493	67,058
Motor Vehicle Aftermarket	POLYCYCLIC AROMATIC HYDROCARBONS	18	45	282	13	358
Products	TOLUENE	4,543	11,230	70,880	3,346	89,999
	TOTAL VOLATILE ORGANIC COMPOUNDS	178,163	440,402	2,779,614	131,211	3,529,391
	TRICHLOROETHYLENE	36	88	556	26	706
Personal Care	TOLUENE	596	1,473	9,297	439	11,805
Products	TOTAL VOLATILE ORGANIC COMPOUNDS	458,382	1,133,074	7,151,431	337,582	9,080,468
	FORMALDEHYDE	97	239	1,507	71	1,913
	ISOMERS OF XYLENE	16,855	41,665	262,969	12,413	333,902
Pesticide and	PERCHLOROETHYLENE	24	60	377	18	478
Herbicide Products	POLYCYCLIC AROMATIC HYDROCARBONS	4,505	11,135	70,279	3,318	89,236
	TOTAL VOLATILE ORGANIC COMPOUNDS	241,481	596,917	3,767,460	177,842	4,783,700

3.1.8 Emission Projection Methodology

Table 3-14 summarises the data used to estimate the emission projection factors for consumer and commercial aerosols and solvents, while Figure 3-6 shows the emission projection factors for calendar years 2009 to 2036.

Emission source	Projection factor surrogate	Projection factor source
Evaporative emissions from consumer and commercial aerosols and solvents	Population growth	- Forecasts for Population from 2006 to 2036 (TDC, 2009)

Table 3-14: Aerosols and solvents emission projection factors

Air Emissions Inventory for the Greater Metropolitan Region of New South Wales 3. Data Sources and Results

Figure 3-6: Aerosols and solvents emission projection factors

3.2 Barbecues

3.2.1 Emission Source Description

The domestic-commercial air emissions inventory includes emissions of combustion products from gas, liquid and solid fuel fired barbecues, outdoor stoves and portable stoves.

To estimate emissions from these sources, the following have been considered:

> Domestic survey

A domestic survey of gas, liquid and solid fuel fired barbecue, outdoor stove and portable stove ownership and usage has been conducted, which includes each of the 64 local government areas (LGA)⁶ located in the GMR. The survey results include data about: barbecue/outdoor stove/portable stove number; fuel type; quantity of fuel used; and frequency and duration of barbecue/outdoor stove/portable stove use by hour, day and season (TR, 2009).

> Barbecue type

The inventory includes small outdoor cooking appliances used in residential applications as follows:

- Barbecue;
- Outdoor stove; and
- Portable stove.

➤ Fuel type

The inventory includes residential barbecues, outdoor stoves and portable stoves that use natural gas, liquid petroleum gas (LPG), butane, briquettes⁷ and wood.

Table 3-15 presents the barbecue, outdoor stove and portable stove fuel type and properties used in the inventory (ABARE, 2009b; AGL, 2008; Auschar, 2009; DPI, 2007; Kleenheat Gas, 2008; USEPA, 1998a; USEPA, 2000 and USEPA, 2008a).

Fuel type	Sulfur content		Density		Effective heating value		Carbon content (%)
Natural gas	3.36	ppm	0.753	kg/m ³	38.3	MJ/m ³	76
Liquid petroleum gas (LPG)	12.88	ppm	0.510	kg/L	25.5	MJ/L	82
Butane	12.88	ppm	0.568	kg/L	28.1	MJ/L	83

Table 3-15: Barbecues fuel type and properties

⁶ The GMR includes 64 local government areas (LGA), plus two areas designated N/A and unincorporated. N/A areas are those located near the coastline and the majority area within the 1 km by 1 km grid cell lies over water. Unincorporated areas are those areas which are not under the responsibility of an incorporated local government. Emissions have been estimated for 64 LGA plus the two areas designated N/A and unincorporated.

⁷ Charcoal manufactured from brown coal (Auschar, 2009).

Air Emissions Inventory for the Greater Metropolitan Region of New South Wales 3. Data Sources and Results

Fuel type	Sulfur	content	Density		Effective	heating value	Carbon content (%)		
Briquettes	0.3	%		-		MJ/kg	66		
Wood	-	-	769 kg/m ³		769 kg/m ³		16.2	MJ/kg	45

3.2.2 Emission Estimation Methodology

Table 3-16 summarises the emission estimation methodology used for barbecues, outdoor stoves and portable stoves.

Table 3-16: Barbecues emission estimation methodology

Emission source		Emission estimation methodology source
Exhaust emissions from gas, liquid and solid	-	Documentation for the Final 2002 NonPoint Sector (FEB 06
fuel combustion in barbecues, outdoor stoves		version) National Emission Inventory for Criteria and Hazardous
and portable stoves		Air Pollutants (Pechan, 2006)

Emissions of combustion products from barbecues, outdoor stoves and portable stoves have been estimated using fuel consumption based emission factors combined with activity rates. Activity rates include barbecue/outdoor stove/portable stove number, fuel type and quantity of fuel used (TR, 2009). Emissions have been determined using Equation 4 (Pechan, 2006):

where:			
E _{i,j}	=	Emissions of substance i from fuel type j	(kg/year)
Cj	=	Fuel consumption for fuel type j	
		natural gas	(Mm ³ /year)
		LPG	(kL/year)
		butane	(kL/year)
		briquettes	(tonne/year)
		wood	(tonne/year)
EF _{i,j}	=	Emission factor for substance i and fuel type j	
		natural gas	(kg/Mm³)
		LPG	(kg/kL)
		butane	(kg/kL)
		briquettes	(kg/tonne)
		wood	(kg/tonne)
i	=	Substance (either "criteria pollutants", "speciated NO_x ", "speciated	(-)
		VOC", "organic air toxics", "metal air toxics", "PAH", "PCDD and	
		PCDF", "ammonia" or "greenhouse gases")	
j	=	Fuel type (either "natural gas", "LPG", "butane", "briquettes" or "wood")	(-)

3.2.3 Activity Data

Table 3-17 summarises the activity data used for barbecues, outdoor stoves and portable stoves.

Table 3-17: Barbecues	activity data
-----------------------	---------------

Activity data	Activity data source					
Barbecue/outdoor stove/portable stove type, number and fuel consumption	 Domestic Barbecue Pollution Survey (TR, 2009) 					
Gridded 1 km x 1 km total dwelling estimates required to scale- up domestic survey	- Forecasts for Total Dwelling from 2006 to 2036 (TDC, 2009)					

A domestic survey of gas, liquid and solid fuel fired barbecue, outdoor stove and portable stove ownership and usage has been conducted, which includes each of the 64 local government areas (LGA) located in the GMR. The survey results include data about: barbecue/outdoor stove/portable stove number; fuel type; quantity of fuel used; and frequency and duration of barbecue/outdoor stove/portable stove use by hour, day and season (TR, 2009).

The key considerations in designing and conducting a domestic survey include:

Survey method - The domestic survey has been conducted using the computer assisted telephone interview (CATI) method for recruiting households to complete either an on-line or mail-out questionnaire.

Sample size - To provide a reasonable level of precision for estimating barbecue, outdoor stove and portable stove activity rates across all households in the GMR, the survey sample was sized accordingly. While a total of 832 households were recruited, 31 households were outside the GMR so they were excluded from the survey. Activity rates for barbecues, outdoor stoves and portable stoves have been based on survey responses from 801 households in the GMR.

Confidence interval and confidence level - The confidence interval quantifies the uncertainty or range in possible values. For example, for a confidence interval of 3.5% and where 47% percent of the sample picks a particular answer one can be "sure" that if the question has been asked of the entire relevant population, between 43.5% (47-3.5) and 50.5% (47+3.5) would have picked that answer.

The confidence level quantifies the level of certainty to which an estimate can be trusted. It is expressed as a percentage and represents how often the true percentage of the population who would pick an answer lies within the confidence interval. The 95% confidence level means one can be 95% certain. Most researchers use the 95% confidence level.

When combining the confidence level and confidence interval together, one can be 95% sure that the true answer for the entire relevant population is between 43.5% and 50.5% for the example described above.

Table 3-18 presents the theoretical confidence intervals for samples of varied sizes for characteristics with a population incidence of 50% or 50%, 75% or 25% and 90% or 10%.

	Confidence interval at 95% confidence level			
Sample size	Endorsement rate of 50%/50%	Endorsement rate of 75%/25%	Endorsement rate of 90%/10%	
100	9.8	8.5	5.9	
150	8.0	6.9	4.8	
200	6.9	6.0	4.2	
300	5.7	4.9	3.4	
400	4.9	4.2	2.9	
500	4.4	3.8	2.6	
600	4.0	3.5	2.4	
800	3.5	3.0	2.1	
1,000	3.1	2.7	1.9	

Table 3-18: Confidence intervals at 95% confidence level b	y sample size for barbecue survey

The domestic survey of barbecues, outdoor stoves and portable stoves randomly sampled 801 households from a population of 5,284,560 in 1,901,680 households, so survey items with a true population incidence of 50% will produce estimates within $\pm 3.5\%$ of the true population value in 95% of the samples.

Random sampling and stratification - Households were selected at random across the GMR to limit bias. In practice, actual samples are not truly random since respondents always have the right to decline an interview and others cannot be reached for a variety of reasons. To reduce the standard error of estimated population values, samples were stratified on a geographic basis into the following subpopulations by location:

Sydney region, sub-grouped into

- 0 North East
- 0 North West
- South East
- South West

Newcastle region

Wollongong region

Development of survey questionnaires – Three survey questionnaires were developed including: initial recruitment using the computer assisted telephone interview (CATI) method to capture household details using pre-coded questions within OzQuest on-line software; self complete main survey using pre-coded questions within OzQuest on-line software; and self complete main survey using a traditional hard copy mail-out with a reply paid envelope. The questionnaires request information about: barbecue/outdoor stove/portable stove number; fuel type; quantity of fuel used; and frequency and duration of barbecue/outdoor stove/portable stove use by hour, day and season. The domestic survey questionnaire form is included at Appendix B: Domestic Survey Form (TR, 2009).

Recruitment and data collection - A random sample of phone numbers was selected from the 64 local government areas (LGA) located in the GMR, stratified into Sydney, Newcastle and Wollongong regions.

As part of the computer assisted telephone interview (CATI), households were phoned up to five times to make contact and the interviewer asked to speak to an "adult household member who is familiar with any devices the household uses that might burn solid fuel (like wood or coal heaters), liquid fuel (like kerosene heaters or petrol lawn mowers) or gas fuel (like natural gas cooktops or heaters)". If required, arrangements were made to call back at a more convenient time when an appropriate adult household member would be available.

When an adult household member was available for interview, respondents were asked what LGA they lived in. If not in the GMR they were thanked and the interview was terminated. If in the GMR, they were then asked about the number of residents in the household, the dwelling type and which of the fuel burning devices were used by the household. All were then asked for their postcode and age group. Respondents in households that had none of the fuel burning devices were thanked and the interview terminated. All other respondents were then asked if they would be willing to complete a further questionnaire either on-line or by mail. If willing, contact details were recorded, and the interview concluded. Those who initially declined were read material emphasizing the importance of obtaining data from all households, whether they make little use of fuel burning devices or not and asked again if they would be willing to take part.

Consenting respondents were then either e-mailed a link to a self complete on-line main survey or mailed a self complete hard copy main survey. The mailed questionnaires included an identifying serial number on the front page with a letter from DECCW encouraging completion of the survey.

Main survey completions on-line and mail-out were closely monitored and households were phoned on two occasions in order to remind them to complete. Some respondents indicated they preferred to go through the questions on the phone. Data for these were entered into the on-line version of the questionnaire.

Data capture – Data from the three survey questionnaires (i.e. CATI, on-line main survey and hard copy main survey) have all been entered into a database which captures pre-coded questions using OzQuest on-line software. All data was then checked, cleaned and saved in a Microsoft® Excel[™] 2003 workbook.

Survey timeframe - The survey took approximately 15 weeks to complete, from the time that questionnaire development commenced to the date data analysis and report were completed. The key tasks and milestones for the domestic survey are presented in Table 3-19.

Task	Milestones
Questionnaire development commenced	11 August 2009
CATI recruitment commenced	18 September 2009
CATI recruitment completed	21 October 2009
Main survey completed	12 November 2009
Data analysis and report completed	26 November 2009

Table 3-19: Barbecue survey milestones

Gridded 1 km by 1 km dwelling estimates (TDC, 2009) have been used to scale-up the barbecue survey results (TR, 2009). Table 3-20 presents a summary of the population and dwelling by LGA data used to scale-up the domestic survey results to the GMR.

	2008 population and dwelling					
LGA	Population	Flat, unit or apartment	Semi- detached, row, terrace or town house	Separate house	Other dwelling ⁸	Total dwelling
Ashfield	47,887	7,660	2,728	7,882	142	18,412
Auburn	69,555	7,358	2,326	11,421	284	21,390
Bankstown	174,326	7,781	8,028	41,407	287	57,503
Bathurst Regional	157	-	-	41	1	41
Baulkham Hills	170,925	2,345	5,004	46,441	137	53,928
Blacktown	286,162	3,915	9,712	77,217	700	91,544
Blue Mountains	78,427	777	1,030	27,952	63	29,822
Botany Bay	33,316	4,244	1,974	5,777	100	12,095
Burwood	30,277	3,332	1,108	5,770	65	10,275
Camden	55,287	258	499	16,910	161	17,828
Campbelltown	150,373	1,333	8,057	39,856	97	49,343
Canada Bay	58,880	6,445	2,342	13,157	137	22,080
Canterbury	138,343	16,795	4,851	25,673	328	47,647
Cessnock	48,845	562	339	16,615	150	17,667
Dungog	7,659	23	60	2,581	38	2,702
Fairfield	189,024	7,302	6,172	43,571	198	57,243
Gosford	162,826	5,481	8,288	49,407	676	63,852
Goulburn Mulwaree	341	-	1	79	-	80
Great Lakes	4,062	10	29	1,301	44	1,383
Hawkesbury	62,416	899	1,674	18,441	241	21,254
Holroyd	95,192	6,969	3,562	22,399	144	33,074
Hornsby	160,612	9,018	4,454	40,736	265	54,472
Hunters Hill	9,295	898	318	1,892	3	3,111
Hurstville	81,935	7,352	3,548	18,534	111	29,545
Kiama	14,586	580	338	4,433	75	5,426
Kogarah	57,349	6,558	1,565	11,945	81	20,148
Ku-ring-gai	106,943	3,805	1,253	30,103	73	35,235
Lake Macquarie	195,295	3,160	4,849	63,598	926	72,532
Lane Cove	28,511	4,473	652	5,687	92	10,904

Table 3-20: Population and dwelling by LGA used to scale-up barbecue survey

⁸ Caravan, cabin, houseboat, improvised home, tent, sleepers out, house or flat attached to a shop or office (TDC, 2009).

	2008 population and dwelling					
LGA	Population	Flat, unit or apartment	Semi- detached, row, terrace or town house	Separate house	Other dwelling ^s	Total dwelling
Leichhardt	39,692	4,537	6,175	5,998	278	16,988
Lithgow	19,595	227	341	6,350	59	6,977
Liverpool	178,554	6,938	5,352	42,517	317	55,125
Maitland	66,554	1,330	1,049	21,169	117	23,666
Manly	33,804	5,898	1,520	5,676	97	13,192
Marrickville	86,873	13,062	10,292	11,838	553	35,744
Mid-western Regional	3,412	25	14	1,149	17	1,205
Mosman	30,915	6,692	1,506	4,604	104	12,905
Muswellbrook	15,221	364	121	4,582	62	5,128
N/A	25,875	4,778	1,262	4,329	119	10,488
Newcastle	150,930	8,242	6,306	44,792	500	59,840
North Sydney	53,850	17,299	4,228	3,854	252	25,633
Oberon	1,803	4	5	438	5	452
Parramatta	152,570	16,729	6,975	29,743	348	53,796
Penrith	177,459	3,483	4,905	51,040	349	59,776
Pittwater	54,586	2,542	1,577	15,389	183	19,690
Port Stephens	59,017	756	1,587	18,809	482	21,634
Randwick	130,955	25,728	8,002	16,752	370	50,853
Rockdale	89,735	12,199	4,159	16,242	256	32,856
Ryde	105,073	11,196	5,519	22,448	111	39,275
Shellharbour	65,104	1,282	2,369	18,768	328	22,747
Shoalhaven	81	-	-	30	-	30
Singleton	22,222	405	275	6,357	132	7,169
Strathfield	38,732	5,612	806	6,543	45	13,006
Sutherland	212,924	16,252	8,522	52,450	274	77,498
Sydney	167,382	52,686	17,811	4,651	1,028	76,176
Unincorporated	42,682	9,672	2,028	5,866	146	17,713
Upper Hunter	350	-	-	66	-	66
Upper Lachlan	502	-	-	92	-	92
Warringah	141,123	16,643	3,029	32,008	175	51,854
Waverley	57,147	14,769	4,430	5,038	245	24,481
Willoughby	69,528	11,760	2,038	12,473	82	26,353
Wingecarribee	45,480	537	1,113	15,131	144	16,924
Wollondilly	42,871	168	292	13,634	133	14,227
Wollongong	193,292	11,210	7,296	52,219	992	71,717
Woollahra	44,773	12,138	3,128	4,232	71	19,569
Wyong	145,088	2,801	4,575	47,918	1,006	56,300
Grand Total	5,284,560	417,295	213,366	1,256,021	14,998	1,901,680

The total population of in-service barbecues, outdoor stoves and portable stoves have been estimated by combining the domestic survey results (TR, 2009) and gridded 1 km by 1 km dwelling estimates 50

(TDC, 2009). In-service barbecue, outdoor stove and portable stove population by dwelling type for the GMR is presented in Table 3-21 and shown in Figure 3-7.

	2008 statistics				
Dwelling type	Dwelling number	Barbecue number	Proportion of dwelling type with barbecue (%)		
Flat, unit or apartment	417,295	142,155	34.07		
Semi detached, terrace house or townhouse	213,366	162,737	76.27		
Separate house	1,256,021	967,659	77.04		
Other dwelling	14,998	-	-		
Grand Total	1,901,680	1,272,551	66.92		

Table 3-21: Barbecues population by dwelling type in the GMR

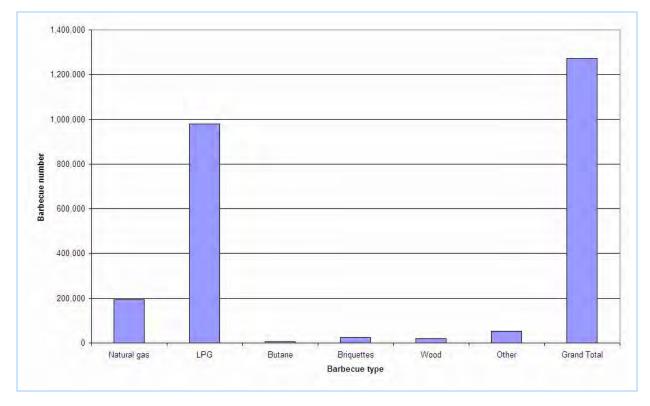


Figure 3-7: Barbecues population by dwelling type in the GMR

In-service barbecue, outdoor stove and portable stove population by fuel type for the GMR are presented in Table 3-22 and shown in Figure 3-8.

Table 3-22: Barbecues population l	by fuel type in the GMR
------------------------------------	-------------------------

Barbecue type	2008 barbecue number
Natural gas	193,958
LPG	979,249
Butane	4,731
Briquettes	23,653
Wood	18,923
Other ⁹	52,037
Grand Total	1,272,551

Figure 3-8: Barbecues population by fuel type in the GMR

The total consumption of natural gas, liquid petroleum gas (LPG), butane, briquettes and wood have been estimated by combining the domestic survey results (TR, 2009) and gridded 1 km by 1 km dwelling estimates (TDC, 2009). Table 3-23 presents the barbecue, outdoor stove and portable stove fuel consumption estimates.

⁹ The barbecue type could not be determined from the domestic survey, so emissions from other barbecues have not been estimated (TR, 2009).

Table 3-23: Barbecues fuel consumption in the GMK									
	2008 fuel consumption								
Dwelling type	Natural gas (Mm³/year)	LPG (kL/year)	Butane (kL/year)	Briquettes (tonne/year)	Wood (tonne/year)				
Flat, unit or apartment	0.7	5,568	4	251	144				
Semi detached, terrace house or townhouse	0.8	6,374	5	287	164				
Separate house	5.0	37,902	28	1,709	977				
Other dwelling	-	-	-	-	-				
Grand Total	6.6	49,845	37	2,247	1,285				

Table 3-23: Barbecues fuel consumption in the GMR

3.2.4 Emission and Speciation Factors

Table 3-24 summarises the emission and speciation factors used for barbecues, outdoor stoves and portable stoves.

Substance	Emission source	Emission and speciation factor source ¹⁰
	Natural gas combustion	- Table 1.4-1 Residential furnaces and Table 1.4-2 - AP 42, Fifth Edition, Volume I, Chapter 1: External Combustion Sources, 1.4 Natural Gas Combustion (USEPA, 1998a)
	LPG combustion	 Table 1.5-1 Propane - AP 42, Fifth Edition, Volume I, Chapter 1: External Combustion Sources, 1.5 Liquified Petroleum Gas Combustion (USEPA, 2008a)
	Butane combustion	- Table 1.5-1 Butane - AP 42, Fifth Edition, Volume I, Chapter 1: External Combustion Sources, 1.5 Liquified Petroleum Gas Combustion (USEPA, 2008a)
Criteria pollutants: CO, NO _x , PM _{2.5} , PM ₁₀ , SO ₂ and VOC	Briquettes combustion	 Table 1.1-3 Hand-fed units - AP 42, Fifth Edition, Volume I, Chapter 1: External Combustion Sources, 1.1 Bituminous And Subbituminous Coal Combustion (USEPA, 1998b) Table 1.1-4 Hand-fed units - AP 42, Fifth Edition, Volume I, Chapter 1: External Combustion Sources, 1.1 Bituminous And Subbituminous Coal Combustion (USEPA, 1998b) Table 1.1-5 Spreader stoker, travelling grate, overfeed stoker and underfeed stoker - AP 42, Fifth Edition, Volume I, Chapter 1: External Combustion Sources, 1.1 Bituminous And Subbituminous Coal Combustion (USEPA, 1998b) Table 1.1-11 - AP 42, Fifth Edition, Volume I, Chapter 1: External Combustion Sources, 1.1 Bituminous And Subbituminous Coal Combustion (USEPA, 1998b) Table 1.1-11 - AP 42, Fifth Edition, Volume I, Chapter 1: External Combustion Sources, 1.1 Bituminous And

Table 3-24: Barbecues emission and speciation factors

¹⁰ Where references are marked with an asterisk (i.e. *), LPG fired barbecues and outdoor stoves use natural gas emission data, which have been adjusted to LPG equivalent based on effective heating value of 25.5 MJ/L for LPG and 38.3 MJ/m³ for natural gas (ABARE, 2009b). Where references are marked with a hash (i.e. #), butane fired portable stoves use natural gas emission data, which have been adjusted to butane equivalent based on effective heating value of 28.1 MJ/L for butane and 38.3 MJ/m³ for natural gas (ABARE, 2009b).

Substance	Emission source	Emission and speciation factor source ¹⁰
		Subbituminous Coal Combustion (USEPA, 1998b) - Table 1.9-1 - AP 42, Fifth Edition, Volume I, Chapter 1:
	Wood combustion	 External Combustion Sources, 1.9 Residential Fireplaces (USEPA, 1996a) PMPROF 424 - California Emission Inventory and Reporting System (CEIDARS), Particulate Matter (PM) Speciation Profiles (CARB, 2008b)
	Natural gas combustion	- Table 1.4-2 - AP 42, Fifth Edition, Volume I, Chapter 1: External Combustion Sources, 1.4 Natural Gas Combustion (USEPA, 1998a)
	LPG combustion	 Table 1.5-1 Propane - AP 42, Fifth Edition, Volume I, Chapter 1: External Combustion Sources, 1.5 Liquified Petroleum Gas Combustion (USEPA, 2008a)
Criteria pollutants:	Butane combustion	- Table 1.5-1 Butane - AP 42, Fifth Edition, Volume I, Chapter 1: External Combustion Sources, 1.5 Liquified Petroleum Gas Combustion (USEPA, 2008a)
TSP	Briquettes combustion	 Table 1.1-4 Hand-fed units - AP 42, Fifth Edition, Volume I, Chapter 1: External Combustion Sources, 1.1 Bituminous And Subbituminous Coal Combustion (USEPA, 1998b) Table 1.1-5 Spreader stoker, travelling grate, overfeed stoker and underfeed stoker - AP 42, Fifth Edition, Volume I, Chapter 1: External Combustion Sources, 1.1 Bituminous And Subbituminous Coal Combustion (USEPA, 1998b)
	Wood combustion	- PMPROF 424 - California Emission Inventory and Reporting System (CEIDARS), Particulate Matter (PM) Speciation Profiles (CARB, 2008b)
Speciated NO _x	Natural gas, LPG, butane, briquettes and wood combustion	- Technology Transfer Network - Clearinghouse for Inventories & Emissions Factors (USEPA, 2003)
	Natural gas combustion	- Table 1.4-3 - AP 42, Fifth Edition, Volume I, Chapter 1: External Combustion Sources, 1.4 Natural Gas Combustion (USEPA, 1998a)
	LPG combustion	 Table 1.4-3 - AP 42, Fifth Edition, Volume I, Chapter 1: External Combustion Sources, 1.4 Natural Gas Combustion (USEPA, 1998a)*
Speciated VOC	Butane combustion	- Table 1.4-3 - AP 42, Fifth Edition, Volume I, Chapter 1: External Combustion Sources, 1.4 Natural Gas Combustion (USEPA, 1998a)#
	Briquettes combustion	 Table 1.1-14 - AP 42, Fifth Edition, Volume I, Chapter 1: External Combustion Sources, 1.1 Bituminous And Subbituminous Coal Combustion (USEPA, 1998b) Profile number 1185 Coal fired boiler industrial - Speciate 4.2 Database Development Documentation (Pechan, 2009a)
	Wood combustion	 Profile number 4642 Fireplace wood combustion pine wood - Speciate 4.2 Database Development Documentation (Pechan, 2009a)
Organic air toxics	Natural gas combustion	- Table 1.4-3 - AP 42, Fifth Edition, Volume I, Chapter 1: External Combustion Sources, 1.4 Natural Gas Combustion (USEPA, 1998a)
	LPG combustion	- Table 1.4-3 - AP 42, Fifth Edition, Volume I, Chapter 1: External Combustion Sources, 1.4 Natural Gas Combustion

Air Emissions Inventory for the Greater Metropolitan Region of New South Wales 3. *Data Sources and Results*

Substance	Emission source	Emission and speciation factor source ¹⁰
		(USEPA, 1998a)*
	Butane combustion	- Table 1.4-3 - AP 42, Fifth Edition, Volume I, Chapter 1: External Combustion Sources, 1.4 Natural Gas Combustion (USEPA, 1998a)#
	Briquettes combustion	 Table 1.1-14 - AP 42, Fifth Edition, Volume I, Chapter 1: External Combustion Sources, 1.1 Bituminous And Subbituminous Coal Combustion (USEPA, 1998b) Profile number 1185 Coal fired boiler industrial - Speciate 4.2 Database Development Documentation (Pechan, 2009a)
	Wood combustion	 Profile number 4642 Fireplace wood combustion pine wood - Speciate 4.2 Database Development Documentation (Pechan, 2009a)
	Natural gas combustion	- Table 1.4-4 - AP 42, Fifth Edition, Volume I, Chapter 1: External Combustion Sources, 1.4 Natural Gas Combustion (USEPA, 1998a)
Metal air toxics	LPG combustion	- Table 1.4-4 - AP 42, Fifth Edition, Volume I, Chapter 1: External Combustion Sources, 1.4 Natural Gas Combustion (USEPA, 1998a)*
	Butane combustion	- Table 1.4-4 - AP 42, Fifth Edition, Volume I, Chapter 1: External Combustion Sources, 1.4 Natural Gas Combustion (USEPA, 1998a)#
	Briquettes combustion	 Table 1.1-18 - AP 42, Fifth Edition, Volume I, Chapter 1: External Combustion Sources, 1.1 Bituminous And Subbituminous Coal Combustion (USEPA, 1998b) Profile number 4320130 Residential space heating coal - Speciate 4.2 Database Development Documentation (Pechan, 2009a)
	Wood combustion	- Composite profile number 3831, 3832, 3833, 3835, 3846 and 3856 Residential wood burning - Speciate 4.2 Database Development Documentation (Pechan, 2009a)
	Natural gas combustion	- Table 1.4-3 – AP 42, Fifth Edition, Volume I, Chapter 1: External Combustion Sources, 1.4 Natural Gas Combustion (USEPA, 1998a)
	LPG combustion	- Table 1.4-3 – AP 42, Fifth Edition, Volume I, Chapter 1: External Combustion Sources, 1.4 Natural Gas Combustion (USEPA, 1998a)*
Polycyclic aromatic hydrocarbons: PAH	Butane combustion	- Table 1.4-3 – AP 42, Fifth Edition, Volume I, Chapter 1: External Combustion Sources, 1.4 Natural Gas Combustion (USEPA, 1998a)#
	Briquettes combustion	- Table 1.1-13 - AP 42, Fifth Edition, Volume I, Chapter 1: External Combustion Sources, 1.1 Bituminous And Subbituminous Coal Combustion (USEPA, 1998b)
	Wood combustion	- Table 1.10-3 Conventional stove - AP 42, Fifth Edition, Volume I, Chapter 1: External Combustion Sources, 1.10 Residential Wood Stoves (USEPA, 1996b)
Polychlorinated dibenzo-p-dioxins and Polychlorinated	Natural gas combustion	- Table 4.54 Emission Factors – Household Heating and Cooking (Fossil Fuels) Natural gas - Australian Inventory of Dioxin Emissions 2004, National Dioxins Program Technical Report No. 3 (Bawden et. al., 2004)
dibenzofurans:	LPG combustion	- Table 4.54 Emission Factors – Household Heating and Cooking (Fossil Fuels) Natural gas - Australian Inventory of Dioxin

Substance	Emission source	Emission and speciation factor source ¹⁰
PCDD and PCDF		<i>Emissions</i> 2004, <i>National Dioxins Program Technical Report</i> No. 3 (Bawden et. al., 2004)*
	Butane combustion	 Table 4.54 Emission Factors – Household Heating and Cooking (Fossil Fuels) Natural gas - Australian Inventory of Dioxin Emissions 2004, National Dioxins Program Technical Report No. 3 (Bawden et. al., 2004)#
	Briquettes combustion	 Table 4.54 Emission Factors – Household Heating and Cooking (Fossil Fuels) Coal - Australian Inventory of Dioxin Emissions 2004, National Dioxins Program Technical Report No. 3 (Bawden et. al., 2004)
	Wood combustion	 Table 4.51 Emission Factors – Household Heating and Cooking (Biomass) - Australian Inventory of Dioxin Emissions 2004, National Dioxins Program Technical Report No. 3 (Bawden et. al., 2004)
	Natural gas combustion	- Table III-1 Residential natural gas combustion - Estimating Ammonia Emissions from Anthropogenic Non-Agricultural Sources - Draft Final Report (Pechan, 2004)
	LPG combustion	- Table III-1 Residential natural gas combustion - Estimating Ammonia Emissions from Anthropogenic Non-Agricultural Sources – Draft Final Report (Pechan, 2004)*
Ammonia	Butane combustion	- Table III-1 Residential natural gas combustion - Estimating Ammonia Emissions from Anthropogenic Non-Agricultural Sources – Draft Final Report (Pechan, 2004)#
	Briquettes combustion	 Table III-1 Residential coal combustion - Estimating Ammonia Emissions from Anthropogenic Non-Agricultural Sources – Draft Final Report (Pechan, 2004)
	Wood combustion	- Table III-8 Stationary Source Fuel Combustion, Residential Wood, Fireplaces - Estimating Ammonia Emissions from Anthropogenic Non-Agricultural Sources – Draft Final Report (Pechan, 2004)
	Natural gas combustion	- Table 1.4-2 - AP 42, Fifth Edition, Volume I, Chapter 1: External Combustion Sources, 1.4 Natural Gas Combustion (USEPA, 1998a)
	LPG combustion	- Table 1.5-1 Propane - AP 42, Fifth Edition, Volume I, Chapter 1: External Combustion Sources, 1.5 Liquified Petroleum Gas Combustion (USEPA, 2008a)
Greenhouse gases: CH4	Butane combustion	- Table 1.5-1 Butane - AP 42, Fifth Edition, Volume I, Chapter 1: External Combustion Sources, 1.5 Liquified Petroleum Gas Combustion (USEPA, 2008a)
	Briquettes combustion	- Table 1.1-19 Hand-fed units - AP 42, Fifth Edition, Volume I, Chapter 1: External Combustion Sources, 1.1 Bituminous And Subbituminous Coal Combustion (USEPA, 1998b)
	Wood combustion	 Profile number 4642 Fireplace wood combustion pine wood - Speciate 4.2 Database Development Documentation (Pechan, 2009a)
Greenhouse gases:	Natural gas combustion	 Table 1.4-2 - AP 42, Fifth Edition, Volume I, Chapter 1: External Combustion Sources, 1.4 Natural Gas Combustion (USEPA, 1998a)
CO ₂	LPG combustion	 Table 1.5-1 Propane - AP 42, Fifth Edition, Volume I, Chapter 1: External Combustion Sources, 1.5 Liquified Petroleum Gas Combustion (USEPA, 2008a)

Air Emissions Inventory for the Greater Metropolitan Region of New South Wales 3. *Data Sources and Results*

Substance	Emission source	Emission and speciation factor source ¹⁰
	Butane combustion	- Table 1.5-1 Butane - AP 42, Fifth Edition, Volume I, Chapter 1: External Combustion Sources, 1.5 Liquified Petroleum Gas Combustion (USEPA, 2008a)
	Briquettes combustion	 Table 1.1-20 - AP 42, Fifth Edition, Volume I, Chapter 1: External Combustion Sources, 1.1 Bituminous And Subbituminous Coal Combustion (USEPA, 1998b)
	Wood combustion	- Table 1.9-1 - AP 42, Fifth Edition, Volume I, Chapter 1: External Combustion Sources, 1.9 Residential Fireplaces (USEPA, 1996a)
	Natural gas combustion	 Table 1.4-2 - AP 42, Fifth Edition, Volume I, Chapter 1: External Combustion Sources, 1.4 Natural Gas Combustion (USEPA, 1998a)
	LPG combustion	 Table 1.5-1 Propane - AP 42, Fifth Edition, Volume I, Chapter 1: External Combustion Sources, 1.5 Liquified Petroleum Gas Combustion (USEPA, 2008a)
Greenhouse gases: N2O	Butane combustion	- Table 1.5-1 Butane - AP 42, Fifth Edition, Volume I, Chapter 1: External Combustion Sources, 1.5 Liquified Petroleum Gas Combustion (USEPA, 2008a)
	Briquettes combustion	- Table 1.1-19 Hand-fed units - AP 42, Fifth Edition, Volume I, Chapter 1: External Combustion Sources, 1.1 Bituminous And Subbituminous Coal Combustion (USEPA, 1998b)
	Wood combustion	- Table 1.9-1 - AP 42, Fifth Edition, Volume I, Chapter 1: External Combustion Sources, 1.9 Residential Fireplaces (USEPA, 1996a)

3. Data Sources and Results

Table 3-25 presents emission factors for natural gas, liquid petroleum gas (LPG), butane, briquettes and wood fired residential barbecues, outdoor stoves and portable stoves.

Emission source	Emission factors											
Linission source	NO _x	N ₂ O	NH ₃	SO ₂	PM_{10}	PM _{2.5}	VOC	CH ₄	СО	CO ₂	РАН	PCDF and PCDF
Natural gas combustion (kg/Mm ³)	1,505.59	35.237	320.339	9.610	121.73	121.73	88.09	36.839	640.68	1,922,033.90	0.0112	$4.98 imes 10^{-8}$
LPG and butane ¹¹ combustion (kg/kL)	1.56	0.108	0.213	0.013	0.08	0.08	0.06	0.024	0.90	1,498.02	$7.45 imes 10^{-6}$	3.32×10^{-11}
Briquettes combustion (kg/tonne)	4.55	0.020	1.000	4.650	3.12	1.92	5.00	2.500	137.50	2,401.20	1.04×10^{-5}	1.75×10^{-9}
Wood combustion (kg/tonne)	1.30	0.150	0.900	0.200	17.30	16.65	114.50	34.312	126.30	1,700.00	0.3650	$4.10 imes 10^{-9}$

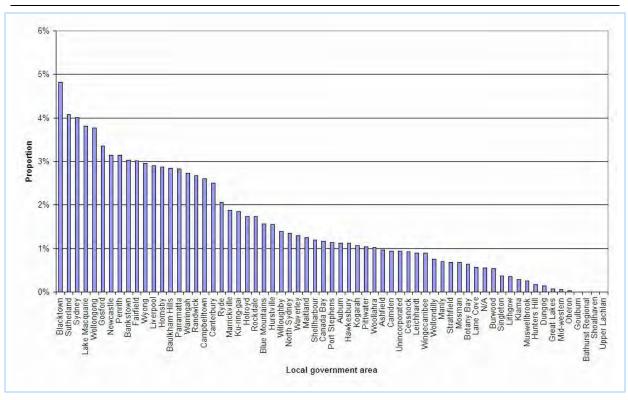
Table 3-25: Barbecues emission factors

¹¹ LPG equivalent based on effective heating value of 25.5 MJ/L for LPG and 28.1 MJ/L for butane (ABARE, 2009b).

3.2.5 Spatial Distribution of Emissions

Table 3-26 summarises the data used for spatially allocating emissions from barbecues, outdoor stoves and portable stoves.

Table 5-20. Dalbecues spatial data						
Emission source	Spatial data	Spatial data source				
Exhaust emissions from gas, liquid and solid fuel combustion in barbecues, outdoor stoves and portable stoves	Gridded 1 km x 1 km total dwelling estimates	 Forecasts for Total Dwelling from 2006 to 2036 (TDC, 2009) 				


Table 3-26: Barbecues spatial data

Emissions from barbecues, outdoor stoves and portable stoves have been spatially distributed according to natural gas, liquid petroleum gas (LPG), butane, briquettes and wood consumption, which are proportional to total dwellings in each 1 km by 1 km grid cell (TDC, 2009). The proportion of natural gas, liquid petroleum gas (LPG), butane, briquettes and wood consumption by LGA and region are presented in Table 3-27 and shown in Figure 3-9.

Table 3-27: Barbecues spatial distribution of fuel consumption by LGA and region

LGA	2008 proport	2008 proportion of annual natural gas, liquid petroleum gas (LPG), butane, briquettes and wood consumption (%)							
	Newcastle	Non Urban	Sydney	Wollongong	Grand Total				
Ashfield	-	-	0.97	-	0.97				
Auburn	-	-	1.13	-	1.13				
Bankstown	-	-	3.03	-	3.03				
Bathurst Regional	-	2.18×10^{-3}	-	-	2.18×10^{-3}				
Baulkham Hills	-	2.39×10^{-3}	2.84	-	2.84				
Blacktown	-	-	4.82	-	4.82				
Blue Mountains	-	0.56	1.00	-	1.57				
Botany Bay	-	-	0.64	-	0.64				
Burwood	-	-	0.54	-	0.54				
Camden	-	-	0.94	-	0.94				
Campbelltown	-	-	2.60	-	2.60				
Canada Bay	-	-	1.16	-	1.16				
Canterbury	-	-	2.51	-	2.51				
Cessnock	3.84 × 10-2	0.89	-	-	0.93				
Dungog	-	0.14	-	-	0.14				
Fairfield	-	-	3.01	-	3.01				
Gosford	-	0.91	2.45	-	3.36				
Goulburn Mulwaree	-	4.14×10^{-3}	-	-	4.14×10^{-3}				
Great Lakes	-	6.80×10^{-2}	-	-	6.80×10^{-2}				
Hawkesbury	-	2.30×10^{-2}	1.10	-	1.12				
Holroyd	-	-	1.74	-	1.74				
Hornsby	-	3.62 × 10 ⁻³	2.86	-	2.87				
Hunters Hill	-	-	0.16	-	0.16				
Hurstville	-	-	1.55	-	1.55				
Kiama	-	0.29	-	-	0.29				

LGA	2008 proportion of annual natural gas, liquid petroleum gas (LPG), butane, briquettes and wood consumption (%)							
	Newcastle	Non Urban	Sydney	Wollongong	Grand Total			
Kogarah	-	-	1.06	-	1.06			
Ku-ring-gai	-	-	1.85	-	1.85			
Lake Macquarie	2.00	1.82	-	-	3.82			
Lane Cove	-	-	0.57	-	0.57			
Leichhardt	-	-	0.89	-	0.89			
Lithgow	-	0.36	-	-	0.36			
Liverpool	-	-	2.90	-	2.90			
Maitland	9.39 × 10 ⁻²	1.15	-	-	1.25			
Manly	-	-	0.69	-	0.69			
Marrickville	-	-	1.88	-	1.88			
Mid-western Regional	-	$5.16 imes 10^{-2}$	-	-	5.16×10^{-2}			
Mosman	-	-	0.68	-	0.68			
Muswellbrook	-	0.26	-	-	0.26			
N/A	3.05×10^{-2}	$5.58 imes 10^{-2}$	0.39	7.60×10^{-2}	0.55			
Newcastle	3.15	-	-	-	3.15			
North Sydney	-	-	1.35	-	1.35			
Oberon	-	2.26×10^{-2}	-	-	2.26×10^{-2}			
Parramatta	-	-	2.83	-	2.83			
Penrith	-	-	3.15	-	3.15			
Pittwater	-	-	1.04	-	1.04			
Port Stephens	6.97 × 10-2	1.07	-	-	1.14			
Randwick	-	-	2.68	-	2.68			
Rockdale	-	-	1.73	-	1.73			
Ryde	-	-	2.07	-	2.07			
Shellharbour	-	0.89	-	0.31	1.20			
Shoalhaven	-	1.50×10^{-3}	-	-	1.50×10^{-3}			
Singleton	-	0.37	-	-	0.37			
Strathfield	-	-	0.68	-	0.68			
Sutherland	-	-	4.08	-	4.08			
Sydney	-	-	4.01	-	4.01			
Unincorporated	-	-	0.93	-	0.93			
Upper Lachlan	-	$6.05 imes 10^{-4}$	-	-	$6.05 imes 10^{-4}$			
Warringah	-	-	2.73	-	2.73			
Waverley	-	-	1.29	-	1.29			
Willoughby	-	-	1.39	-	1.39			
Wingecarribee	-	0.88	4.72×10^{-3}	1.50×10^{-3}	0.89			
Wollondilly	-	1.16 × 10-2	0.74	3.91 × 10-4	0.75			
Wollongong	-	-	0.27	3.50	3.77			
Woollahra	-	-	1.03	-	1.03			
Wyong	-	2.96	-	-	2.96			
Grand Total	5.38	12.78	77.95	3.89	100.00			

Air Emissions Inventory for the Greater Metropolitan Region of New South Wales 3. Data Sources and Results

Figure 3-9: Barbecues spatial distribution of fuel consumption by LGA

Figure 3-10 shows the spatial distribution of barbecue, outdoor stove and portable stove emissions.

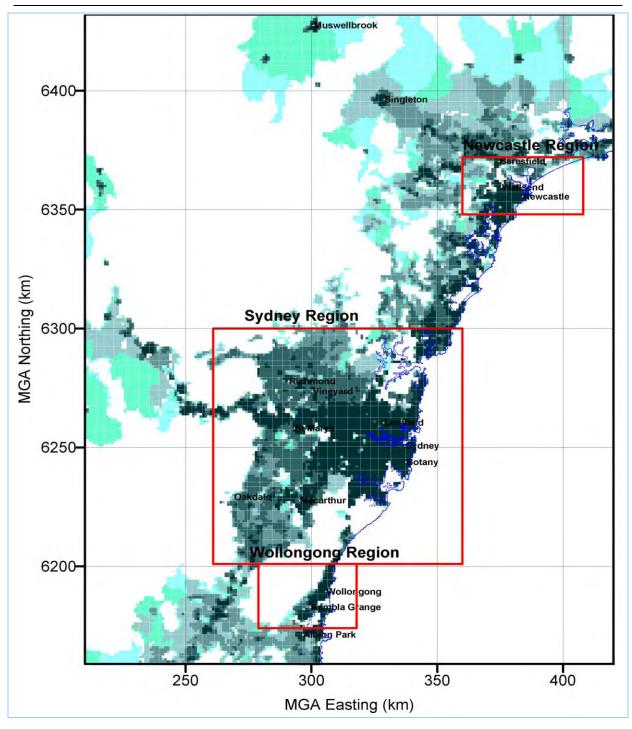
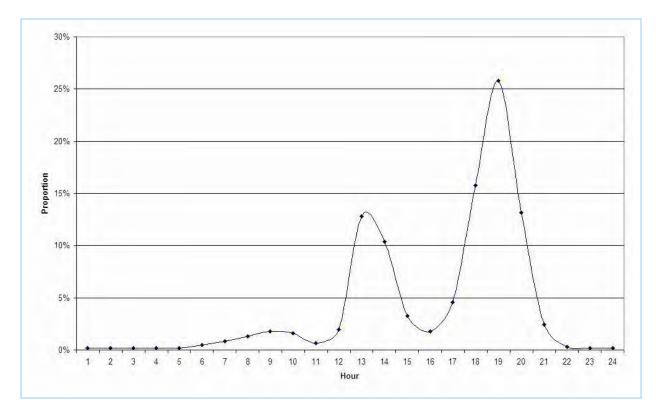


Figure 3-10: Barbecues spatial distribution of emissions

3.2.6 Temporal Variation of Emissions

Table 3-28 summarises the data used to estimate the temporal variation in emissions from barbecues, outdoor stoves and portable stoves.

	-	
Emission source	Temporal data	Temporal data source
Exhaust emissions from gas, liquid and solid fuel	Monthly, daily and hourly:	- Domestic Barbecue
combustion in barbecues, outdoor stoves and	Derived from domestic	Pollution Survey (TR,
portable stoves	survey	2009)


Table 3-28: Barbecues temporal data

The temporal variation in emissions from barbecues, outdoor stoves and portable stoves have been estimated from barbecue/outdoor stove/portable stove number, fuel type, quantity of fuel used and frequency and duration of barbecue/outdoor stove/portable stove use by hour, day and season data (TR, 2009).

Hourly temporal variation profiles are presented in Table 3-29 and shown in Figure 3-11.

Hour	Week day and weekend proportion (%)	Hour	Week day and weekend proportion (%)
1	0.16	13	10.39
2	0.16	14	3.25
3	0.16	15	1.79
4	0.16	16	4.55
5	0.16	17	15.75
6	0.49	18	25.81
7	0.81	19	13.15
8	1.30	20	2.44
9	1.79	21	0.32
10	1.62	22	0.16
11	0.65	23	0.16
12	1.95	24	10.39

Table 3-29: Barbecues hourly temporal profile

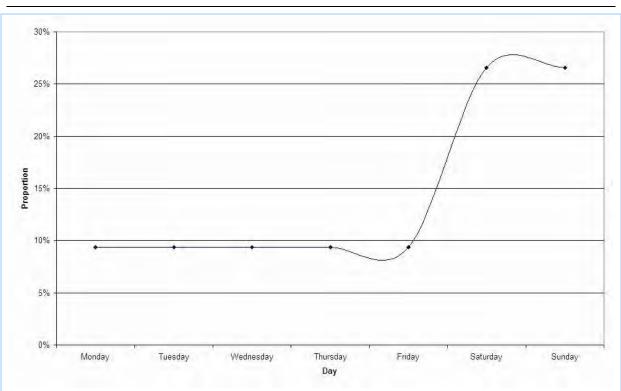


Figure 3-11: Barbecues hourly temporal profile

Daily temporal variation profiles are presented in Table 3-30 and shown in Figure 3-12.

Day	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday	Sunday
Proportion (%)	9.37	9.37	9.37	9.37	9.37	26.58	26.58

Table 3-30: Barbecues daily temporal profile

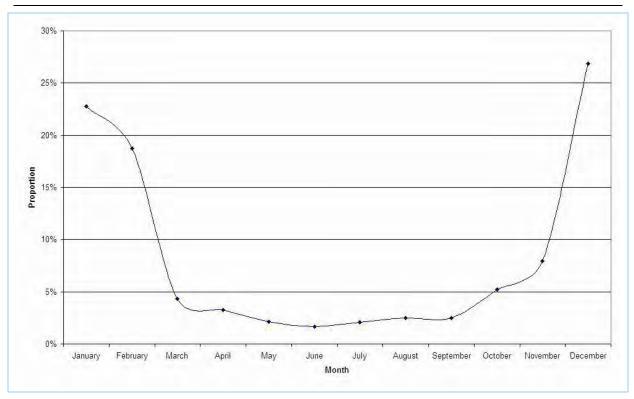

Air Emissions Inventory for the Greater Metropolitan Region of New South Wales 3. *Data Sources and Results*

Figure 3-12: Barbecues daily temporal profile

Monthly temporal variation profiles are presented in Table 3-31 and shown in Figure 3-13.

Month	Proportion (%)	Month	Proportion (%)
January	22.79	July	2.05
February	18.74	August	2.46
March	4.36	September	2.50
April	3.26	October	5.23
May	2.16	November	7.96
June	1.64	December	26.85

Table 3-31: Barbecues monthly temporal profile

Figure 3-13: Barbecues monthly temporal profile

3.2.7 *Emission Estimates*

Table 3-32 presents annual emissions of selected substances from barbecues, outdoor stoves and portable stoves by activity.

Activity		Emissions (kg/year)					
incurry	Substance	Newcastle	Non Urban	Sydney	Wollongong	GMR	
	1,3-BUTADIENE	67	160	976	49	1,252	
	ACETALDEHYDE	981	2,332	14,219	709	18,241	
	BENZENE	221	524	3,198	159	4,103	
	CARBON MONOXIDE	27,988	66,525	405,620	20,224	520,357	
	FORMALDEHYDE	673	1,600	9,758	487	12,519	
	ISOMERS OF XYLENE	45	107	652	32	836	
	LEAD & COMPOUNDS	0.16	0.39	2.37	0.12	3.04	
Barbecues	OXIDES OF NITROGEN	5,352	12,722	77,568	3,867	99,510	
	PARTICULATE MATTER ≤ 10	1,841	4,376	26,684	1,330	34,232	
	μm	1,011	1,070	20,001	1,000	01/202	
	PARTICULATE MATTER	1,652	3,926	23,935	1,193	30,705	
	≤ 2.5 μm	1,002	0,720	20,000	1)1)0	00,00	
	PERCHLOROETHYLENE	2.60×10^{-3}	$6.18 imes 10^{-3}$	$3.77\times10^{\text{-}2}$	$1.88 imes 10^{-3}$	$4.83\times10^{\text{-}2}$	
	POLYCYCLIC AROMATIC	25	60	366	18	470	
	HYDROCARBONS	25	00	500	10	470	
	SULFUR DIOXIDE	614	1,461	8 <i>,</i> 905	444	11,425	

Table 3-32: Barbecues emissions by activity

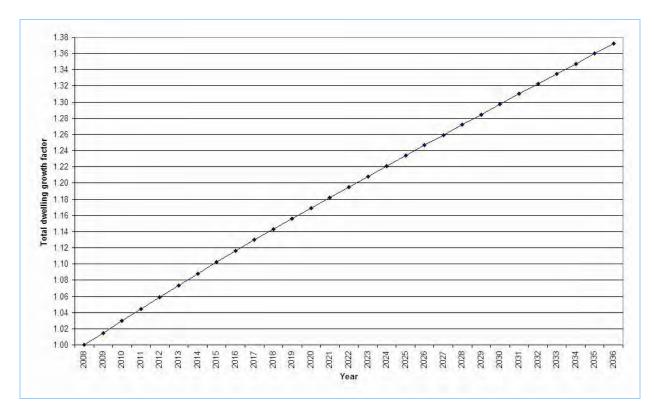
Air Emissions Inventory for the Greater Metropolitan Region of New South Wales 3. *Data Sources and Results*

Activity		Emissions (kg/year)					
Activity	Substance	Newcastle	Non Urban	Sydney	Wollongong	GMR	
	TOLUENE	91	217	1,320	66	1,694	
	TOTAL SUSPENDED PARTICULATE	2,456	5,838	35,598	1,775	45,667	
	TOTAL VOLATILE ORGANIC COMPOUNDS	8,708	20,699	126,209	6,293	161,910	

Table 3-33 presents annual emissions of selected substances from barbecues, outdoor stoves and portable stoves by source type.

Source	Substance	Emissions (kg/year)					
type		Newcastle	Non Urban	Sydney	Wollongong	GMR	
	ACETALDEHYDE	3.44×10^{-2}	$8.19\times10^{\text{-}2}$	0.50	2.49×10^{-2}	0.64	
	BENZENE	$7.86 imes 10^{-2}$	0.19	1.14	5.68×10^{-2}	1.46	
	CARBON MONOXIDE	16,618	39,501	240,845	12,008	308,972	
	FORMALDEHYDE	$1.45 imes 10^{-2}$	$3.45 imes 10^{-2}$	0.21	1.05×10^{-2}	0.27	
	ISOMERS OF XYLENE	2.24×10^{-3}	$5.31 imes 10^{-3}$	3.24×10^{-2}	1.62×10^{-3}	$4.16\times10^{\text{-2}}$	
	LEAD & COMPOUNDS	$2.54\times10^{\text{-}2}$	$6.03 imes 10^{-2}$	0.37	1.83×10^{-2}	0.47	
	OXIDES OF NITROGEN	550	1,307	7,970	397	10,224	
	PARTICULATE MATTER ≤ 10 µm	377	896	5,465	272	7,011	
Briquettes	PARTICULATE MATTER ≤ 2.5 μm	232	552	3,363	168	4,314	
	PERCHLOROETHYLENE	2.60 × 10-3	$6.18 imes10^{-3}$	3.77×10^{-2}	1.88×10^{-3}	$4.83 imes 10^{-2}$	
	POLYCYCLIC AROMATIC HYDROCARBONS	1.25 × 10 ⁻³	2.98 × 10 ⁻³	1.82 × 10-2	9.06 × 10 ⁻⁴	2.33 × 10-2	
	SULFUR DIOXIDE	562	1,336	8,145	406	10,449	
	TOLUENE	$1.45 imes 10^{-2}$	$3.45 imes 10^{-2}$	0.21	1.05×10^{-2}	0.27	
	TOTAL SUSPENDED PARTICULATE	909	2,160	13,172	657	16,898	
	TOTAL VOLATILE ORGANIC COMPOUNDS	604	1,436	8,758	437	11,235	
	ACETALDEHYDE	$3.81 imes 10^{-4}$	$9.05 imes 10^{-4}$	5.52×10^{-3}	$2.75 imes 10^{-4}$	7.08×10^{-3}	
	BENZENE	6.01×10^{-2}	0.14	0.87	4.34×10^{-2}	1.12	
	CARBON MONOXIDE	2,412	5,732	34,951	1,743	44,837	
	FORMALDEHYDE	2.15	5.10	31	1.55	40	
LPG and	LEAD & COMPOUNDS	$1.43 imes 10^{-2}$	$3.40 imes 10^{-2}$	0.21	1.03×10^{-2}	0.27	
Butane	OXIDES OF NITROGEN	4,180	9,936	60,581	3,021	77,718	
Dutaile	PARTICULATE MATTER ≤ 10 µm	225	535	3,262	163	4,185	
	PARTICULATE MATTER ≤ 2.5 μm	225	535	3,262	163	4,185	
	POLYCYCLIC AROMATIC	2.0 × 10-2	4.75×10^{-2}	0.29	1.44×10^{-2}	0.37	

Table 3-33: Barbecues emissions by source type


2008 Calendar Year Domestic-Commercial Emissions: Results 3. Data Sources and Results

Source	ource Substance		Em	issions (kg/y	rear)	
type	Substance	Newcastle	Non Urban	Sydney	Wollongong	GMR
	HYDROCARBONS					
	SULFUR DIOXIDE	35	84	511	25	655
	TOLUENE	9.73×10^{-2}	0.23	1.41	7.03×10^{-2}	1.81
	TOTAL SUSPENDED	225	535	3,262	163	4,185
	PARTICULATE	225	555	3,202	105	4,100
	TOTAL VOLATILE	157	374	2,281	114	2,926
	ORGANIC COMPOUNDS					
	ACETALDEHYDE	$7.53 imes 10^{-5}$	$1.79 imes 10^{-4}$	1.09×10^{-3}	$5.44 imes 10^{-5}$	1.40×10^{-3}
	BENZENE	1.19 × 10-2	2.83×10^{-2}	0.17	8.59×10^{-3}	0.22
	CARBON MONOXIDE	227	538	3,283	164	4,211
	FORMALDEHYDE	0.42	1.01	6.16	0.31	7.90
	LEAD & COMPOUNDS	2.83×10^{-3}	6.73 × 10 ⁻³	$4.10\times10^{\text{-2}}$	2.05×10^{-3}	$5.26 imes 10^{-2}$
	OXIDES OF NITROGEN	532	1,265	7,714	385	9,897
	PARTICULATE MATTER ≤ 10 µm	43	102	624	31	800
Natural Gas	PARTICULATE MATTER ≤ 2.5 µm	43	102	624	31	800
	POLYCYCLIC AROMATIC HYDROCARBONS	3.95 × 10 ⁻³	9.40 × 10 ⁻³	5.73 × 10 ⁻²	2.86 × 10 ⁻³	7.35 × 10 ⁻²
	SULFUR DIOXIDE	3.40	8.08	49	2.46	63
	TOLUENE	1.93 × 10-2	4.58×10^{-2}	0.28	1.39 × 10-2	0.36
	TOTAL SUSPENDED PARTICULATE	43	102	624	31	800
	TOTAL VOLATILE ORGANIC COMPOUNDS	31	74	451	23	579
	1,3-BUTADIENE	67	160	976	49	1,252
	ACETALDEHYDE	981	2,332	14,218	709	18,240
	BENZENE	221	524	3,196	159	4,100
	CARBON MONOXIDE	8,731	20,754	126,542	6,309	162,336
	FORMALDEHYDE	671	1,594	9,721	485	12,471
	ISOMERS OF XYLENE	45	107	652	32	836
	LEAD & COMPOUNDS	0.12	0.29	1.75	$8.74 imes 10^{-2}$	2.25
	OXIDES OF NITROGEN	90	214	1,302	65	1,671
X47 1	PARTICULATE MATTER ≤ 10 µm	1,196	2,843	17,333	864	22,236
Wood	PARTICULATE MATTER ≤ 2.5 µm	1,151	2,737	16,686	832	21,406
	POLYCYCLIC AROMATIC HYDROCARBONS	25	60	366	18	469
	SULFUR DIOXIDE	14	33	200	9.99	257
	TOLUENE	91	216	1,318	9.99	1,691
	TOTAL SUSPENDED	71	210	1,310	00	1,071
	PARTICULATE	1,279	3,041	18,540	924	23,784
	TOTAL VOLATILE ORGANIC COMPOUNDS	7,916	18,815	114,719	5,720	147,170

3.2.8 Emission Projection Methodology

Table 3-34 summarises the data used to estimate the emission projection factors for barbecues, outdoor stoves and portable stoves, while Figure 3-14 shows the emission projection factors for calendar years 2009 to 2036.

Table 3-34: Barbecues emission projection factors				
Emission source	Projection factor surrogate	Projection factor source		
Exhaust emissions from gas, liquid and solid fuel combustion in barbecues, outdoor stoves and portable stoves	Total dwelling growth	- Forecasts for Total Dwelling from 2006 to 2036 (TDC, 2009)		

Figure 3-14: Barbecues emission projection factors

3.3 Cutback Bitumen

3.3.1 Emission Source Description

The domestic-commercial air emissions inventory includes emissions of evaporative VOC from the construction of roads, which occur when cutter volatilises while bitumen cures.

To estimate emissions from these sources, the following have been considered:

> Road construction survey

A survey of the road construction industry has been undertaken by the Australian Asphalt Pavement Association (AAPA). The survey represents greater than 95% of cutback bitumen consumption in the GMR and includes the following organisations: Boral Asphalt; Downer EDI; Fulton Hogan; Pioneer Road Services; NSW Roads and Traffic Authority; SAMI Bitumen Technologies; and SRS Roads. The survey results include data about cutback bitumen and cutter consumption by month (AAPA, 2009).

> Road construction type

The NSW road network is largely constructed from petroleum bitumen. Bitumen acts as a thermoplastic binder of the aggregate components to provide a durable and waterproof road surface.

The main bitumen surface types used in NSW include (Environ, 2010):

- Asphalt or bituminous concrete consists of a mixture of coarse and fine aggregates held together with a bituminous binder. While hot, warm and cold mix asphalts are currently used, hot mix asphalt is more common in urban areas and has minimal VOC emissions; and
- Sprayed seal or spray and chip seal is a layer of aggregate that is glued to the road surface using a bitumen binder. Cutback bitumen is widely used in sprayed seal surfacing, where solvent is used to reduce bitumen viscosity during application. The solvent is referred to as a cutter, while the bitumen and solvent together are known as cutback bitumen. Cutback bitumen is more common in rural areas and has relatively high VOC emissions since a significant amount of cutter is used. Cutter is typically kerosene.
- > Cutter type

The inventory includes kerosene-like medium cure asphalt cutter.

Table 3-35 presents the cutback bitumen cutter type and properties used in the inventory (ABARE, 2009b; and USEPA, 2008b).

Cutter type	Density (kg/L)	Effective heating value (MJ/L)	Carbon content (%)
Power kerosene (Medium cure asphalt)	0.813	37.5	85

Table 3-35: Cutback bitumen cutter type and properties

3.3.2 *Emission Estimation Methodology*

Table 3-36 summarises the emission estimation methodologies used for cutback bitumen

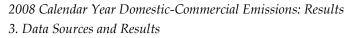
Emission source	Emission estimation methodology source
Evaporative emissions from cutback bitumen	 Asphalt Paving (ERG, 2001) AP-42, Fifth Edition, Volume I, Chapter 4: Evaporation Loss Sources, 4.5 Asphalt Paving Operations (USEPA, 1979)

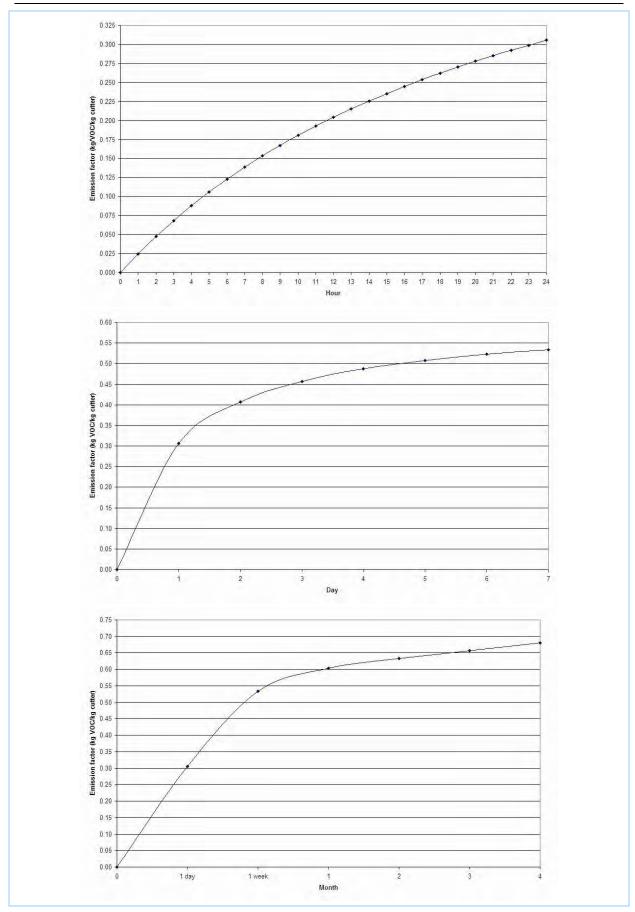
Table 3-36: Cutback bitumen emission estimation methodologies

The major factors influencing the quantity and period over which the VOC emissions occur, include the type and quantity of cutter. For medium cure cutback bitumen, a maximum of ~70% of the more volatile components of the cutter evaporate over a 4 month period, while ~30% of the less volatile components are retained in the road surface (USEPA, 1979). Evaporative VOC emissions from the application of cutback bitumen have been estimated using an emission factor combined with bitumen and cutter consumption data within Equation 5 (ERG, 2001):

$E_{VOC,i} = EF_{VOC,i,t} \times V_i \times \rho_i \times 1000$

where:			
E _{VOC,i}	=	Emissions of VOC from cutter type i	(kg/year)
EF _{VOC,i,t}	=	Cumulative VOC emission factor for cutter type i after	(kg VOC/kg cutter)
		time t (Equation 6)	
V_i	=	Volume of cutter type i applied	(kL/year)
ρ_i	=	Density of cutter type i	(kg/L)
i	=	Cutter type (kerosene like "medium cure")	(-)
t	=	Time elapsed after single application of cutter	(month)
1000	=	Conversion factor	(L/kL)


The cumulative VOC emission factor for cutter evaporation has been estimated using Equation 6 by fitting an inverse second order polynomial to the data presented in *AP-42, Fifth Edition, Volume I, Chapter 4: Evaporation Loss Sources, 4.5 Asphalt Paving Operations* (Figure 4.5-1. Percent of diluent evaporated from cutback asphalt over time; USEPA, 1979):


$EF_{VOC,i,t} = \left\{ t / (5.3360 \times 10^{-4} + 1.6516 \times 10^{-2} \times t - 4.8412 \times 10^{-4} \times t^2) \right\} \text{ for } 0 \le t \le 4$	Equation 6
--	------------

where:			
E _{VOC,i,t}	=	Cumulative VOC emission factor for cutter type i after	(kg VOC/kg cutter)
		time t	
i	=	Cutter type (kerosene like "medium cure")	(-)
t	=	Time elapsed after single application of cutter	(month)

The cumulative VOC emission factor for cutter evaporation is shown in Figure 3-15 as a function of elapsed hour, day and month after a single application of cutter.

Equation 5

3.3.3 Activity Data

Table 3-37 summarises the activity data used for cutback bitumen.

Table 3-37: Cutback bitumen activity data

Activity data	Activity data source
Cutback bitumen and cutter	- Cutback Bitumen and Cutter Consumption in the NSW GMR (AAPA,
consumption	2009)

A survey of the road construction industry has been undertaken by AAPA, which represents greater than 95% of cutback bitumen consumption in the GMR (AAPA, 2009). Table 3-38 presents cutback bitumen and cutter consumption by month in the GMR.

Table 3-38: Cutback bitumen and cutter consumption in the GMR

Month	2008 product consumption (kL/year)			
	Cutback bitumen	Cutter		
January	605.5	21.4		
February	672.7	30.5		
March	672.7	30.5		
April	672.7	24.4		
May	336.4	15.3		
June	336.4	15.3		
July	336.4	21.4		
August	336.4	21.4		
September	605.5	27.5		
October	672.7	36.6		
November	672.7	36.6		
December	740.0	24.4		
Total	6,660	305		

3.3.4 Emission and Speciation Factors

Table 3-39 summarises the emission and speciation factors used for cutback bitumen.

Emission source	Substance	Emission and speciation factor source
	Criteria pollutants: VOC	- AP-42, Fifth Edition, Volume I, Chapter 4: Evaporation Loss Sources, 4.5 Asphalt Paving Operations (USEPA, 1979)
Evaporative emissions from cutback bitumen	Speciated VOC	 ORGPROF 716 - California Emission Inventory and Reporting System (CEIDARS), Organic Gas Speciation Profiles (CARB, 2005)
	Organic air toxics	 ORGPROF 716 - California Emission Inventory and Reporting System (CEIDARS), Organic Gas Speciation Profiles (CARB, 2005)

Table 3-39: Cutback bitumen emission and speciation factors

The cumulative VOC emission factor for cutter evaporation is 552.57 kg VOC/kL medium cure cutter applied. The VOC emissions occur over a 4 month period and have been estimated using Equation 5 (ERG, 2001) and Equation 6 (USEPA, 1979).

3.3.5 Spatial Distribution of Emissions

Table 3-40 summarises the data used for spatially allocating emissions from cutback bitumen.

Table 3-40: Cutback bitumen spatial data

Emission source	Spatial data	Spatial data source
Evaporative emissions from	Gridded 1 km x 1 km vehicle kilometres	- Forecasts for VKT from 2006 to
cutback bitumen	travelled (vkt) estimates	2036 (TDC, 2009)

Emissions from cutback bitumen have been spatially distributed according to cutter consumption, which is proportional to annual vehicle kilometres travelled (VKT) in each 1 km by 1 km grid cell (TDC, 2009). The proportion of cutter consumption by LGA and region is presented in Table 3-41 and shown in Figure 3-16.

				ter consumption (%	b)
LGA	Newcastle	Non Urban	Sydney	Wollongong	Grand Total
Ashfield	-	-	0.70	-	0.70
Auburn	-	-	1.44	-	1.44
Bankstown	-	-	3.34	-	3.34
Bathurst Regional	-	3.02×10^{-3}	-	-	3.02×10^{-3}
Baulkham Hills	-	6.63×10^{-3}	3.54	-	3.55
Blacktown	-	-	6.67	-	6.67
Blue Mountains	-	0.27	0.92	-	1.18
Botany Bay	-	-	1.05	-	1.05
Burwood	-	-	0.51	-	0.51
Camden	-	-	1.28	-	1.28
Campbelltown	-	-	2.85	-	2.85
Canada Bay	-	-	0.98	-	0.98
Canterbury	-	-	2.05	-	2.05
Cessnock	0.18	0.84	-	-	1.02
Dungog	-	0.15	-	-	0.15
Fairfield	-	-	3.15	-	3.15
Gosford	-	1.31	1.91	-	3.22
Goulburn Mulwaree	-	6.69 × 10 ⁻³	-	-	6.69 × 10 ⁻³
Great Lakes	-	$8.03\times10^{\text{-}2}$	-	-	$8.03\times10^{\text{-}2}$
Hawkesbury	-	$4.09\times10^{\text{-}2}$	1.51	-	1.55
Holroyd	-	-	2.04	-	2.04
Hornsby	-	1.75×10^{-3}	3.63	-	3.63
Hunters Hill	-	-	0.20	-	0.20
Hurstville	-	-	0.93	-	0.93
Kiama	-	0.19	-	-	0.19

Table 3-41: Cutback bitumen cutter consumption by LGA and region

Air Emissions Inventory for the Greater Metropolitan Region of New South Wales 3. *Data Sources and Results*

LGA		2008 proportion	of annual cutt	er consumption (%))
	Newcastle	Non Urban	Sydney	Wollongong	Grand Total
Kogarah	-	-	0.84	-	0.84
Ku-ring-gai	-	-	2.13	-	2.13
Lake Macquarie	2.16	1.93	-	-	4.10
Lane Cove	-	-	0.49	-	0.49
Leichhardt	-	-	0.48	-	0.48
Lithgow	-	0.38	-	-	0.38
Liverpool	-	-	4.46	-	4.46
Maitland	7.26×10^{-2}	0.93	-	-	1.00
Manly	-	-	0.35	-	0.35
Marrickville	-	-	1.13	-	1.13
Mid-western Regional	-	5.90×10^{-2}	-	-	$5.90 imes 10^{-2}$
Mosman	-	-	0.35	-	0.35
Muswellbrook	-	0.29	-	-	0.29
N/A	1.87×10^{-3}	$4.68\times10^{\text{-2}}$	$5.98 imes 10^{-2}$	$4.16\times10^{\text{-3}}$	0.11
Newcastle	2.78	-	-	-	2.78
North Sydney	-	-	1.30	-	1.30
Oberon	-	$3.34\times10^{\text{-2}}$	-	-	$3.34\times10^{\text{-}2}$
Parramatta	-	-	3.30	-	3.30
Penrith	-	-	3.67	-	3.67
Pittwater	-	-	0.62	-	0.62
Port Stephens	0.40	0.83	-	-	1.23
Randwick	-	-	0.83	-	0.83
Rockdale	-	-	1.69	-	1.69
Ryde	-	-	2.27	-	2.27
Shellharbour	-	0.72	-	0.15	0.86
Shoalhaven	-	1.26×10^{-2}	-	-	1.26×10^{-2}
Singleton	-	0.43	-	-	0.43
Strathfield	-	-	0.94	-	0.94
Sutherland	-	-	3.42	-	3.42
Sydney	-	-	3.90	-	3.90
Unincorporated	-	-	0.78	-	0.78
Upper Hunter	-	4.61×10^{-3}	-	-	4.61×10^{-3}
Upper Lachlan	-	6.21 × 10 ⁻³	-	-	6.21×10^{-3}
Warringah	-	-	1.90	-	1.90
Waverley	-	-	0.33	-	0.33
Willoughby	-	-	1.23	-	1.23
Wingecarribee	-	1.42	9.17 × 10-3	4.57×10^{-3}	1.43
Wollondilly	-	$5.12\times10^{\text{-}2}$	1.67	1.03×10^{-2}	1.73
Wollongong	-	-	0.81	3.01	3.82
Woollahra	-	-	0.36	-	0.36
Wyong	-	3.17	-	-	3.17
Grand Total	5.59	13.20	78.03	3.18	100.00

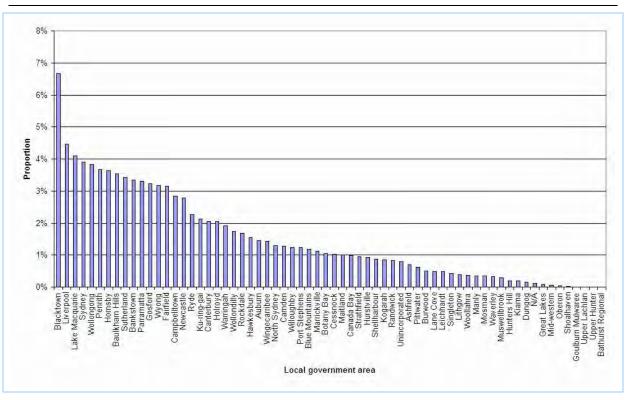


Figure 3-16: Cutback bitumen cutter consumption by LGA

Figure 3-17 shows the spatial distribution of cutback bitumen emissions.

Air Emissions Inventory for the Greater Metropolitan Region of New South Wales 3. *Data Sources and Results*

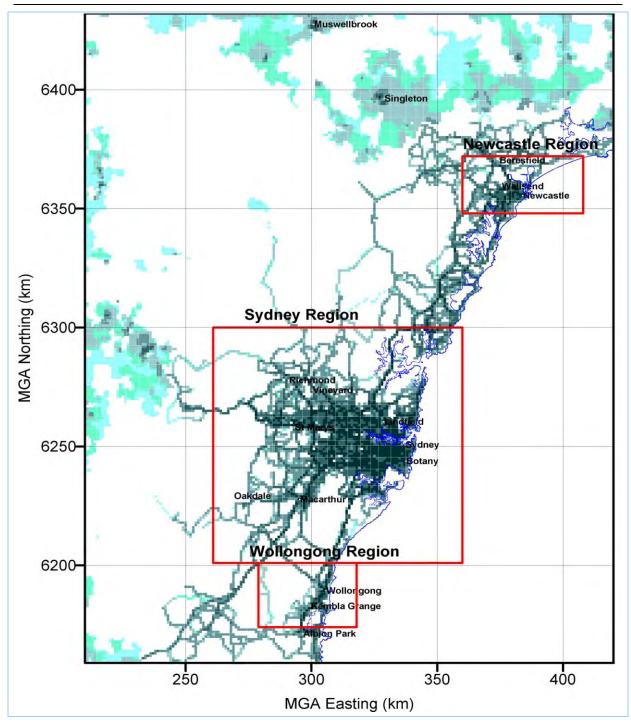


Figure 3-17: Cutback bitumen spatial distribution of emissions

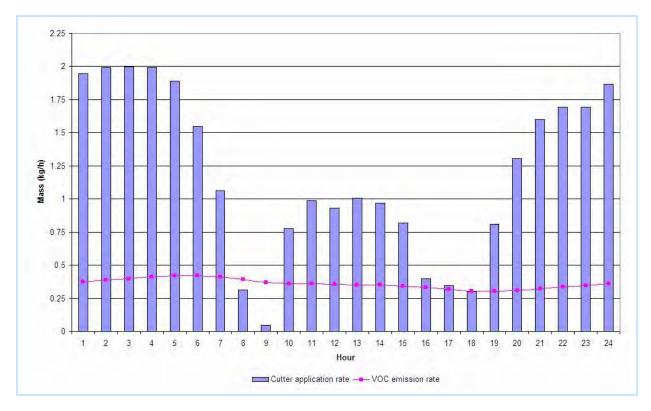
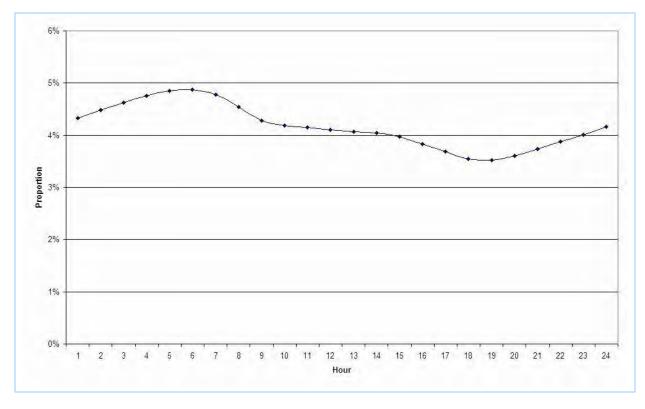

3.3.6 Temporal Variation of Emissions

Table 3-42 summarises the data used to estimate the temporal variation in emissions from cutback bitumen.

Emission source	Temporal data	Temporal data source
	Monthly: Cutback bitumen and cutter consumption combined with time varying emissions	 Cutback Bitumen and Cutter Consumption in the NSW GMR (AAPA, 2009) AP-42, Fifth Edition, Volume I, Chapter 4: Evaporation Loss Sources, 4.5 Asphalt Paving Operations (USEPA, 1979)
Evaporative emissions from cutback bitumen	Daily: VKT combined with time varying emissions	 Air Emissions Inventory for the Greater Metropolitan Region in NSW, On-Road Mobile Emissions Module: Results (DECC, 2007c) AP-42, Fifth Edition, Volume I, Chapter 4: Evaporation Loss Sources, 4.5 Asphalt Paving Operations (USEPA, 1979)
	Hourly: VKT combined with time varying emissions	 Forecasts for VKT from 2006 to 2036 (TDC, 2009) AP-42, Fifth Edition, Volume I, Chapter 4: Evaporation Loss Sources, 4.5 Asphalt Paving Operations (USEPA, 1979)

Table 3-42: Cutback bitumen temporal data

Since road construction is less likely to occur during peak hours, the inverse of hourly VKT (TDC, 2009) has been used to estimate the hourly cutter application rate from monthly cutter consumption data (AAPA, 2009). The cumulative VOC emissions associated with each hourly cutter application have been estimated using Equation 5 (ERG, 2001) and Equation 6 (USEPA, 1979). The hourly cutter application rate and cumulative VOC emissions associated with each hourly cutter application are shown in Figure 3-18.



Hourly temporal variation profiles are presented in Table 3-43 and shown in Figure 3-19.

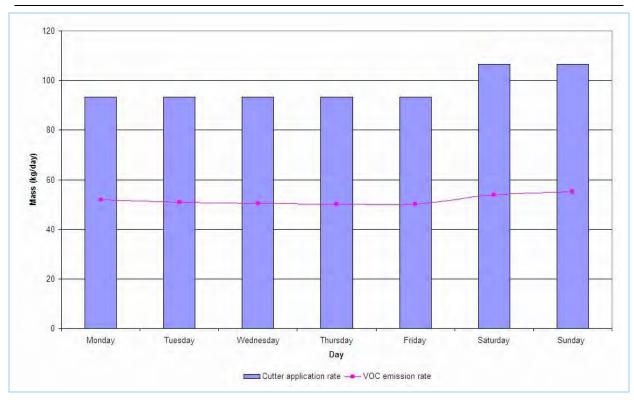

-		-	
Hour	Week day and weekend proportion (%)	Hour	Week day and weekend proportion (%)
1	4.33	13	4.07
2	4.48	14	4.04
3	4.62	15	3.98
4	4.75	16	3.83
5	4.85	17	3.68
6	4.87	18	3.54
7	4.78	19	3.52
8	4.55	20	3.60
9	4.28	21	3.74
10	4.19	22	3.88
11	4.15	23	4.01
12	4.10	24	4.17

Table 3-43: Cutback bitumen hourly temporal profile

Figure 3-19: Cutback bitumen hourly temporal profile

Since road construction is less likely to occur during week days, the inverse of daily VKT (DECC, 2007c) has been used to estimate the daily cutter application rate from monthly cutter consumption data (AAPA, 2009). The cumulative VOC emissions associated with each daily cutter application have been estimated using Equation 5 (ERG, 2001) and Equation 6 (USEPA, 1979). The daily cutter application rate and cumulative VOC emissions associated with each daily cutter application are shown in Figure 3-20.

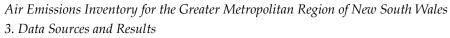


Figure 3-20: Cutback bitumen daily cutter application rate and cumulative VOC emissions

Daily temporal variation profiles are presented in Table 3-44 and shown in Figure 3-21.

Day	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday	Sunday
Proportion (%)	14.28	14.02	13.91	13.86	13.82	14.89	15.22

Table 3-44: Cutback bitumen daily temporal profile

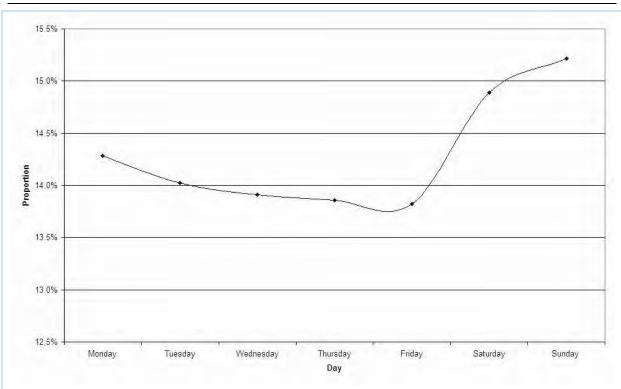


Figure 3-21: Cutback bitumen daily temporal profile

Monthly cutter consumption data (AAPA, 2009) has been used to estimate the monthly cutter application rate. The cumulative VOC emissions associated with each monthly cutter application have been estimated using Equation 5 (ERG, 2001) and Equation 6 (USEPA, 1979). The monthly cutter application rate and cumulative VOC emissions associated with each monthly cutter application are shown in Figure 3-22.

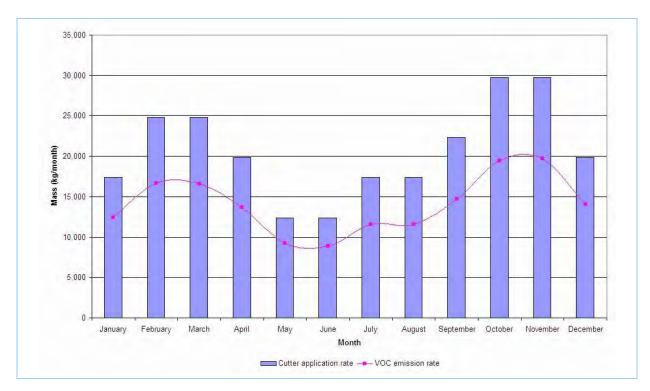
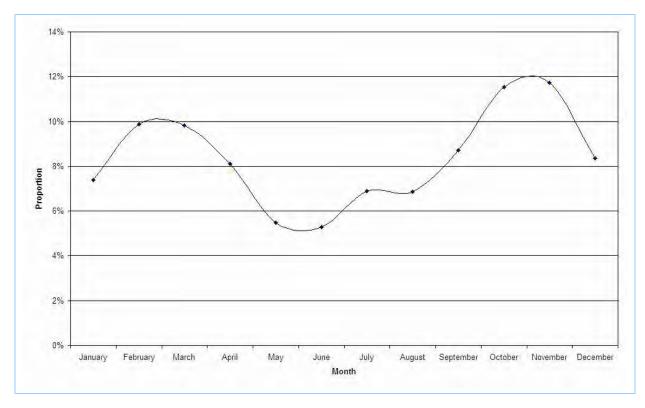



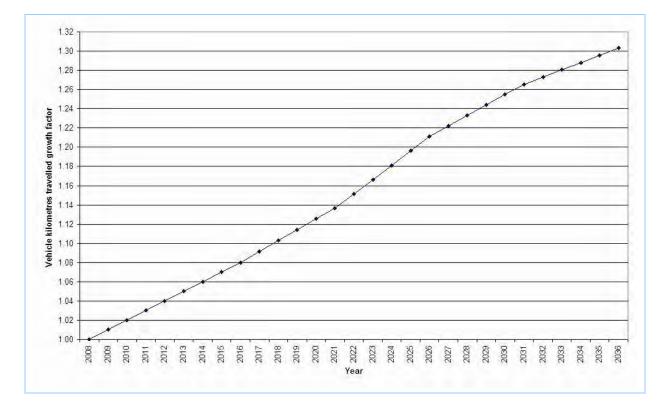
Figure 3-22: Cutback bitumen monthly cutter application rate and cumulative VOC emissions

Monthly temporal variation profiles are presented in Table 3-45 and shown in Figure 3-23.

Month	Proportion (%)	Month	Proportion (%)
monut		North	
January	7.39	July	6.88
February	9.87	August	6.86
March	9.83	September	8.71
April	8.12	October	11.53
May	5.47	November	11.72
June	5.28	December	8.34

Figure 3-23: Cutback bitumen monthly temporal profile

3.3.7 *Emission Estimates*


Table 3-46 presents annual emissions of selected substances from cutback bitumen by activity.

		Emissions (kg/year)					
Activity	Substance	Newcastle	Non Urban	Sydney	Wollongong	GMR	
	ISOMERS OF XYLENE	1,157	2,733	16,158	658	20,706	
Cutback	TOLUENE	607	1,434	8,476	345	10,862	
Bitumen	TOTAL VOLATILE ORGANIC COMPOUNDS	9,419	22,248	131,514	5,352	168,534	

3.3.8 Emission Projection Methodology

Table 3-47 summarises the data used to estimate the emission projection factors for cutback bitumen, while Figure 3-24 shows the emission projection factors for calendar years 2009 to 2036.

Emission source	Projection factor surrogate	Projection factor source
Evaporative emissions from cutback	Vehicle kilometres travelled	- Forecasts for VKT from 2006 to 2036
bitumen	growth	(TDC, 2009)

Figure 3-24: Cutback bitumen emission projection factors

Table 3-47: Cutback bitumen emission projection factors

3.4 Gaseous Fuel Combustion

3.4.1 Emission Source Description

The domestic-commercial air emissions inventory includes emissions of combustion products from gaseous fuel fired:

- > Residential cooktops, ovens, space heaters, stoves and water heaters; and
- > Unaccounted commercial business equipment.

To estimate emissions from these sources, the following have been considered:

> Domestic survey

A domestic survey of gaseous fuel fired residential appliance ownership and usage has been conducted, which includes each of the 64 local government areas (LGA)¹² located in the GMR. The survey results include data about: appliance number; fuel type; quantity of fuel used; and frequency and duration of appliance use by hour, day and season (TR, 2009).

> Commercial survey

A commercial survey of gaseous fuel fired commercial equipment ownership and usage has been conducted, which has provided activity data for commercial businesses (i.e. non-scheduled activity)¹³. The survey results include data about: equipment type, number and age; fuel used; and frequency and duration of equipment use by hour, day and month (DECC, 2007a). Emissions from gaseous fuel fired equipment used by commercial businesses are included in the commercial air emissions inventory.

> Industrial survey

An industrial survey of gaseous fuel fired industrial equipment ownership and usage has been conducted, which has provided activity data for EPA-licensed premises (i.e. scheduled activity)¹⁴. The survey results include data about: equipment type, number and age; fuel used; and frequency and duration of equipment use by hour, day and month (DECCW, 2009). Emissions from gaseous fuel fired equipment used by EPA-licensed premises are included in the industrial air emissions inventory.

¹² The GMR includes 64 local government areas (LGA), plus two areas designated N/A and unincorporated. N/A areas are those located near the coastline and the majority area within the 1 km by 1 km grid cell lies over water. Unincorporated areas are those areas which are not under the responsibility of an incorporated local government. Emissions have been estimated for 64 LGA plus the two areas designated N/A and unincorporated.

¹³ Non-scheduled activity means an activity that is not a scheduled activity and is not scheduled development work as defined in the *Protection of the Environment (Operations) Act 1997 (PCO, 2010a).*

¹⁴ Scheduled activity means an activity listed in Schedule 1 of the *Protection of the Environment (Operations) Act* 1997 (PCO, 2010a).

> ABARE energy consumption by industry and fuel type

Historical natural gas consumption for the period 1973-74 to 2007-08 in NSW (ABARE, 2009a) has been used in combination with energy projections for the period 2004-05 to 2029-30 (ABARE, 2006) and natural gas network access arrangement information (Jemena, 2009a; and Jemena, 2009b) to estimate total natural gas consumption in the GMR. The estimated residential, commercial and industrial natural gas consumption have been subtracted from total natural gas consumption in order to estimate unaccounted natural gas consumption by commercial business equipment.

> *Residential appliance type*

The inventory includes small indoor cooking appliances, boilers and heaters used in residential applications as follows:

- Cooktop;
- o Oven;
- Space heater;
- Stove; and
- Water heater.
- ➤ Fuel type

The inventory includes:

- Residential cooktops, ovens, space heaters, stoves and water heaters that use natural gas and liquid petroleum gas (LPG); and
- Unaccounted commercial business equipment that use natural gas.

Table 3-48 presents the gaseous fuel type and properties used in the inventory (ABARE, 2009b; AGL, 2008; Kleenheat Gas, 2008; USEPA, 1998a; and USEPA, 2008a).

Fuel type	Sulfur	content	De	nsity	Effective heating value		Carbon content (%)
Natural gas	3.36	ppm	0.753	kg/m ³	38.3	MJ/m ³	76
Liquid petroleum gas (LPG)	12.88	ppm	0.510	kg/L	25.5	MJ/L	82

Table 3-48: Gaseous fuel type and properties

3.4.2 Emission Estimation Methodology

Table 3-49 summarises the emission estimation methodology used for gaseous fuel fired residential appliances and unaccounted commercial business equipment.

Emission source	Emission estimation methodology source
Exhaust emissions from gaseous fuel	
combustion in: Residential cooktops, ovens, space heaters, stoves and water heaters; and Unaccounted commercial business equipment	- Documentation for the Final 2002 NonPoint Sector (FEB 06 version) National Emission Inventory for Criteria and Hazardous Air Pollutants (Pechan, 2006)

Table 3-49: Gaseous fuel combustion emission estimation methodology

Emissions of combustion products from gaseous fuel fired residential appliances and unaccounted commercial business equipment have been estimated using fuel consumption based emission factors combined with activity rates. Activity rates include fuel type and quantity of fuel used (ABARE, 2006; ABARE, 2009a; DECC, 2007a; DECCW, 2009; Jemena, 2009a; Jemena, 2009b; and TR, 2009). Emissions have been determined using Equation 7 (Pechan, 2006):

Equation 7

$$\mathbf{E}_{i,j,k} = \mathbf{C}_{j,k} \times \mathbf{E}\mathbf{F}_{i,j}$$

where:			
E _{i,j,k}	=	Emissions of substance i from gaseous fuel type j and source type k	(kg/year)
C _{j,k}	=	Fuel consumption for fuel type j and source type k	
		natural gas	(Mm ³ /year)
		LPG	(kL/year)
EF _{i,j}	=	Emission factor for substance i and fuel type j	
		natural gas	(kg/Mm³)
		LPG	(kg/kL)
i	=	Substance (either "criteria pollutants", "speciated NO_x ", "speciated	(-)
		VOC", "organic air toxics", "metal air toxics", "PAH", "PCDD and	
		PCDF", "ammonia" or "greenhouse gases")	
j	=	Fuel type (either "natural gas" or "LPG")	(-)
k	=	Source type (either "residential" or "unaccounted")	(-)

3.4.3 Activity Data

Table 3-50 summarises the activity data used for gaseous fuel fired residential appliances and unaccounted commercial business equipment.

Activity data	Activity data source
	- Energy update 2009 (ABARE, 2009a)
	- Australian Energy, National and State Projections
Natural and concurrentian in regidential confidence over	to 2029-30 (ABARE, 2006)
Natural gas consumption in residential cooktops, ovens,	- Jemena Gas Networks (NSW) Ltd Access
space heaters, stoves and water heaters	Arrangement (JEMENA, 2009a)
	- Jemena Gas Networks (NSW) Ltd Access
	Arrangement Information (JEMENA, 2009b)

Table 3-50: Gaseous fuel combustion activity data

Activity data	Activity data source
LPG consumption in residential cooktops, ovens, space	- Domestic Fuel Combustion Pollution Survey (TR,
heaters, stoves and water heaters	2009)
Natural gas consumption in unaccounted commercial	 2008 Survey of EPA-Licensed Premises (DECCW, 2009
business equipment	 2004 Survey of Commercial Businesses (DECC, 2007a)
Gridded 1 km x 1 km total dwelling estimates for domestic	- Forecasts for Total Dwelling from 2006 to 2036
LPG required to scale-up domestic survey	(TDC, 2009)

A domestic survey of gas fired residential appliance ownership and usage has been conducted, which includes each of the 64 local government areas (LGA) located in the GMR. The survey results include data about: number of households that use gas fired appliances; fuel type; and quantity of fuel used (TR, 2009).

The key considerations in designing and conducting a domestic survey include:

Survey method - The domestic survey has been conducted using the computer assisted telephone interview (CATI) method for recruiting households to complete either an on-line or mail-out questionnaire.

Sample size - To provide a reasonable level of precision for estimating gas fired residential appliance activity rates across all households in the GMR, the survey sample was sized accordingly. While a total of 832 households were recruited, 31 households were outside the GMR so they were excluded from the survey. Activity rates for gas fired residential appliances have been based on survey responses from 801 households in the GMR.

Confidence interval and confidence level - The confidence interval quantifies the uncertainty or range in possible values. For example, for a confidence interval of 3.5% and where 47% percent of the sample picks a particular answer one can be "sure" that if the question has been asked of the entire relevant population, between 43.5% (47-3.5) and 50.5% (47+3.5) would have picked that answer.

The confidence level quantifies the level of certainty to which an estimate can be trusted. It is expressed as a percentage and represents how often the true percentage of the population who would pick an answer lies within the confidence interval. The 95% confidence level means one can be 95% certain. Most researchers use the 95% confidence level.

When combining the confidence level and confidence interval together, one can be 95% sure that the true answer for the entire relevant population is between 43.5% and 50.5% for the example described above.

Table 3-51 presents the theoretical confidence intervals for samples of varied sizes for characteristics with a population incidence of 50% or 50%, 75% or 25% and 90% or 10%.

contraction our vey								
	Confidence interval at 95% confidence level							
Sample size	Endorsement rate of 50%/50%	Endorsement rate of 75%/25%	Endorsement rate of 90%/10%					
100	9.8	8.5	5.9					
150	8.0	6.9	4.8					
200	6.9	6.0	4.2					
300	5.7	4.9	3.4					
400	4.9	4.2	2.9					
500	4.4	3.8	2.6					
600	4.0	3.5	2.4					
800	3.5	3.0	2.1					
1,000	3.1	2.7	1.9					

Table 3-51: Confidence intervals at 95% confidence level by sample size for gaseous fuel combustion survey

The domestic survey of gas fired residential appliances randomly sampled 801 households from a population of 5,284,560 in 1,901,680 households, so survey items with a true population incidence of 50% will produce estimates within $\pm 3.5\%$ of the true population value in 95% of the samples.

Random sampling and stratification - Households were selected at random across the GMR to limit bias. In practice, actual samples are not truly random since respondents always have the right to decline an interview and others cannot be reached for a variety of reasons. To reduce the standard error of estimated population values, samples were stratified on a geographic basis into the following subpopulations by location:

Sydney region, sub-grouped into

- North East
- North West
- South East
- South West

Newcastle region

Wollongong region

Development of survey questionnaires – Three survey questionnaires were developed including: initial recruitment using the computer assisted telephone interview (CATI) method to capture household details using pre-coded questions within OzQuest on-line software; self complete main survey using pre-coded questions within OzQuest on-line software; and self complete main survey using a traditional hard copy mail-out with a reply paid envelope. The questionnaires request information about: number of households that use gas fired appliances; fuel type; and quantity of fuel used. The domestic survey questionnaire form is included at Appendix B: Domestic Survey Form (TR, 2009).

Recruitment and data collection - A random sample of phone numbers was selected from the 64 local government areas (LGA) located in the GMR, stratified into Sydney, Newcastle and Wollongong regions.

As part of the computer assisted telephone interview (CATI), households were phoned up to five times to make contact and the interviewer asked to speak to an "adult household member who is familiar with any devices the household uses that might burn solid fuel (like wood or coal heaters), liquid fuel (like kerosene heaters or petrol lawn mowers) or gas fuel (like natural gas cooktops or heaters)". If required, arrangements were made to call back at a more convenient time when an appropriate adult household member would be available.

When an adult household member was available for interview, respondents were asked what LGA they lived in. If not in the GMR they were thanked and the interview was terminated. If in the GMR, they were then asked about the number of residents in the household, the dwelling type and which of the fuel burning devices were used by the household. All were then asked for their postcode and age group. Respondents in households that had none of the fuel burning devices were thanked and the interview terminated. All other respondents were then asked if they would be willing to complete a further questionnaire either on-line or by mail. If willing, contact details were recorded, and the interview concluded. Those who initially declined were read material emphasizing the importance of obtaining data from all households, whether they make little use of fuel burning devices or not and asked again if they would be willing to take part.

Consenting respondents were then either e-mailed a link to a self complete on-line main survey or mailed a self complete hard copy main survey. The mailed questionnaires included an identifying serial number on the front page with a letter from DECCW encouraging completion of the survey.

Main survey completions on-line and mail-out were closely monitored and households were phoned on two occasions in order to remind them to complete. Some respondents indicated they preferred to go through the questions on the phone. Data for these were entered into the on-line version of the questionnaire.

Data capture – Data from the three survey questionnaires (i.e. CATI, on-line main survey and hard copy main survey) have all been entered into a database which captures pre-coded questions using OzQuest on-line software. All data was then checked, cleaned and saved in a Microsoft® Excel[™] 2003 workbook.

Survey timeframe - The survey took approximately 15 weeks to complete, from the time that questionnaire development commenced to the date data analysis and report were completed. The key tasks and milestones for the domestic survey are presented in Table 3-52.

Task	Milestones
Questionnaire development commenced	11 August 2009
CATI recruitment commenced	18 September 2009
CATI recruitment completed	21 October 2009
Main survey completed	12 November 2009
Data analysis and report completed	26 November 2009

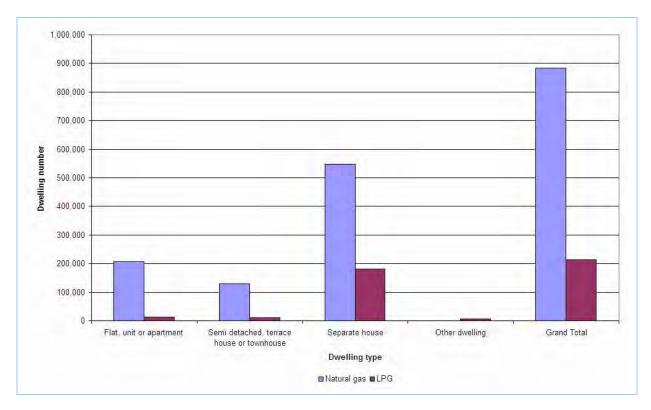
Table 3-52: Gaseous fuel combustion survey milestones

Gridded 1 km by 1 km dwelling estimates (TDC, 2009) have been used to scale-up the gaseous fuel combustion survey results (TR, 2009). Table 3-53 presents a summary of the population and dwelling by LGA data used to scale-up the domestic survey results to the GMR.

	2008 population and dwelling						
LGA	Population	Flat, unit or apartment	Semi- detached, row, terrace or town house	Separate house	Other dwelling ¹⁵	Total dwelling	
Ashfield	47,887	7,660	2,728	7,882	142	18,412	
Auburn	69,555	7,358	2,326	11,421	284	21,390	
Bankstown	174,326	7,781	8,028	41,407	287	57,503	
Bathurst Regional	157	-	-	41	1	41	
Baulkham Hills	170,925	2,345	5,004	46,441	137	53,928	
Blacktown	286,162	3,915	9,712	77,217	700	91,544	
Blue Mountains	78,427	777	1,030	27,952	63	29,822	
Botany Bay	33,316	4,244	1,974	5,777	100	12,095	
Burwood	30,277	3,332	1,108	5,770	65	10,275	
Camden	55,287	258	499	16,910	161	17,828	
Campbelltown	150,373	1,333	8,057	39,856	97	49,343	
Canada Bay	58,880	6,445	2,342	13,157	137	22,080	
Canterbury	138,343	16,795	4,851	25,673	328	47,647	
Cessnock	48,845	562	339	16,615	150	17,667	
Dungog	7,659	23	60	2,581	38	2,702	
Fairfield	189,024	7,302	6,172	43,571	198	57,243	
Gosford	162,826	5,481	8,288	49,407	676	63,852	
Goulburn Mulwaree	341	-	1	79	-	80	
Great Lakes	4,062	10	29	1,301	44	1,383	
Hawkesbury	62,416	899	1,674	18,441	241	21,254	
Holroyd	95,192	6,969	3,562	22,399	144	33,074	
Hornsby	160,612	9,018	4,454	40,736	265	54,472	
Hunters Hill	9,295	898	318	1,892	3	3,111	
Hurstville	81,935	7,352	3,548	18,534	111	29,545	
Kiama	14,586	580	338	4,433	75	5,426	
Kogarah	57,349	6,558	1,565	11,945	81	20,148	
Ku-ring-gai	106,943	3,805	1,253	30,103	73	35,235	
Lake Macquarie	195,295	3,160	4,849	63,598	926	72,532	
Lane Cove	28,511	4,473	652	5,687	92	10,904	

Table 3-53: Population and dwelling by LGA used to scale-up gaseous fuel combustion survey

¹⁵ Caravan, cabin, houseboat, improvised home, tent, sleepers out, house or flat attached to a shop or office (TDC, 2009).


	2008 population and dwelling							
LGA	Population	Flat, unit or apartment	Semi- detached, row, terrace or town house	Separate house	Other dwelling ¹⁵	Total dwelling		
Leichhardt	39,692	4,537	6,175	5,998	278	16,988		
Lithgow	19,595	227	341	6,350	59	6,977		
Liverpool	178,554	6,938	5,352	42,517	317	55,125		
Maitland	66,554	1,330	1,049	21,169	117	23,666		
Manly	33,804	5,898	1,520	5,676	97	13,192		
Marrickville	86,873	13,062	10,292	11,838	553	35,744		
Mid-western Regional	3,412	25	14	1,149	17	1,205		
Mosman	30,915	6,692	1,506	4,604	104	12,905		
Muswellbrook	15,221	364	121	4,582	62	5,128		
N/A	25,875	4,778	1,262	4,329	119	10,488		
Newcastle	150,930	8,242	6,306	44,792	500	59,840		
North Sydney	53,850	17,299	4,228	3,854	252	25,633		
Oberon	1,803	4	5	438	5	452		
Parramatta	152,570	16,729	6,975	29,743	348	53,796		
Penrith	177,459	3,483	4,905	51,040	349	59,776		
Pittwater	54,586	2,542	1,577	15,389	183	19,690		
Port Stephens	59,017	756	1,587	18,809	482	21,634		
Randwick	130,955	25,728	8,002	16,752	370	50,853		
Rockdale	89,735	12,199	4,159	16,242	256	32,856		
Ryde	105,073	11,196	5,519	22,448	111	39,275		
Shellharbour	65,104	1,282	2,369	18,768	328	22,747		
Shoalhaven	81	-	-	30	-	30		
Singleton	22,222	405	275	6,357	132	7,169		
Strathfield	38,732	5,612	806	6,543	45	13,006		
Sutherland	212,924	16,252	8,522	52,450	274	77,498		
Sydney	167,382	52,686	17,811	4,651	1,028	76,176		
Unincorporated	42,682	9,672	2,028	5,866	146	17,713		
Upper Hunter	350	-	-	66	-	66		
Upper Lachlan	502	-	-	92	-	92		
Warringah	141,123	16,643	3,029	32,008	175	51,854		
Waverley	57,147	14,769	4,430	5,038	245	24,481		
Willoughby	69,528	11,760	2,038	12,473	82	26,353		
Wingecarribee	45,480	537	1,113	15,131	144	16,924		
Wollondilly	42,871	168	292	13,634	133	14,227		
Wollongong	193,292	11,210	7,296	52,219	992	71,717		
Woollahra	44,773	12,138	3,128	4,232	71	19,569		
Wyong	145,088	2,801	4,575	47,918	1,006	56,300		
Grand Total	5,284,560	417,295	213,366	1,256,021	14,998	1,901,680		

The total number of households that use gas fired appliances have been estimated by combining the domestic survey results (TR, 2009) and gridded 1 km by 1 km dwelling estimates (TDC, 2009).

Households that use gas fired appliances by fuel type and dwelling type in the GMR are presented in Table 3-54 and shown in Figure 3-25.

Table 5-54. Gaseous fuel filed residential appliance usage in the Gwik									
	2008 statistics								
Dwelling type	Dwelling number	Households that use natural gas	Proportion of dwelling type with natural gas (%)	Households that use LPG	Proportion of dwelling type with LPG (%)				
Flat, unit or apartment	417,295	206,355	49.45	13,757	3.30				
Semi detached, terrace house or townhouse	213,366	130,190	61.02	10,849	5.08				
Separate house	1,256,021	547,695	43.61	181,920	14.48				
Other dwelling	14,998	-	-	7,499	50.00				
Grand Total ¹⁶	1,901,680	884,239	46.50	214,025	11.25				

Figure 3-25: Gaseous fuel fired residential appliance usage in the GMR

The total consumption of LPG in households has been estimated by combining the domestic survey results (TR, 2009) and gridded 1 km by 1 km dwelling estimates (TDC, 2009). Table 3-55 presents residential LPG consumption in the GMR.

¹⁶ Includes natural gas and LPG consumed indoors in residential cooktops, ovens, space heaters, stoves and water heaters.

1						
Dwelling type	2008 LPG consumption (kL/year)					
Flat, unit or apartment	3,213					
Semi detached, terrace house or townhouse	2,534					
Separate house	42,486					
Other dwelling	1,751					
Grand Total ¹⁷	49,984					

Table 3-55: Residential LPG consumption in the GMR

Historical energy consumption for the period 1973-74 to 2007-08 in NSW (ABARE, 2009a) has been used in combination with energy projections for the period 2004-05 to 2029-30 (ABARE, 2006) and natural gas network access arrangement information (Jemena, 2009a; and Jemena, 2009b) to estimate total natural gas consumption in households. Table 3-56 presents residential natural gas consumption in NSW and the GMR.

Table 3-56: Residential natural gas consumption in NSW and the GMR

	Nat	ural gas cons	sumption in	n NSW	Natura	l gas consun	ption in th	e GMR ¹⁸
Sector	2007-08 (PJ/year)	2008-09 (PJ/year)	2008 (PJ/year)	2008 (Mm³/year)	2007-08 (PJ/year)	2008-09 (PJ/year)	2008 (PJ/year)	2008 (Mm³/year)
Residential ¹⁹	21.3	21.6	21.4	559.7	19.6	19.8	19.7	514.5

The estimated residential (ABARE, 2006; and ABARE, 2009a), commercial business (DECC, 2007a) and EPA-licensed premises (DECCW, 2009) natural gas consumption have been subtracted from total (ABARE, 2006; and ABARE, 2009a) natural gas consumption in order to estimate unaccounted natural gas consumption by commercial business equipment. Table 3-57 presents total natural gas consumption by sector in NSW, while Table 3-58 presents natural gas consumption by activity in the GMR.

Tuble o or i four futurul gao consumption in 1000								
	Natural gas consumption in NSW							
Sector	2007-08 (PJ/year)	2008-09 (PJ/year)	2008 (PJ/year)	2008 (Mm³ /year)				
Div. A Agriculture, forestry and fishing	-	-	-	-				
Div. B Mining	2.6	2.7	2.6	68.8				
Div. C Manufacturing	80.4	81.2	80.8	2,109.6				
Div. D Electricity, gas and water	16.8	17.7	17.3	451.0				

Table 3-57: Total natural gas consumption in NSW

¹⁷ Includes LPG consumed indoors in residential cooktops, ovens, space heaters, stoves and water heaters.

¹⁸ Approximately 91.9% of natural gas for NSW is consumed in the GMR (Jemena, 2009a; and Jemena, 2009b).

¹⁹ Includes natural gas consumed indoors in residential cooktops, ovens, space heaters, stoves and water heaters and outdoors in barbecues, outdoor stoves and portable stoves.

2008 Calendar Year Domestic-Commercial Emissions: Results 3. Data Sources and Results

	Natural gas consumption in NSW						
Sector	2007-08 (PJ/year)	2008-09 (PJ/year)	2008 (PJ/year)	2008 (Mm³ /year)			
Div. E Construction	0.2	0.2	0.2	5.2			
Div. I Transport & storage	1.4	1.4	1.4	36.8			
Commercial and services	9.0	9.2	9.1	237.3			
Residential ²⁰	21.3	21.6	21.4	559.7			
Grand Total	131.7	134.0	132.8	3,468.5			

Table 3-58: Total natural gas consumption in the GMR

Activity	2008 natural gas consumption in the GMR ²¹ (Mm ³ /year)
EPA-licensed premises	1,760.0
Commercial businesses	148.3
Residential ²²	514.5
Unaccounted commercial business equipment	765.9
Grand Total	3,188.6

Table 3-151 presents the residential appliances and unaccounted commercial business equipment natural gas and LPG consumption estimates.

Table 3-59: Gaseous fuel fired residential appliances and commercial business equipment fuel consumption in the GMR

Activity	Dwelling/business type	2008 fuel consumption			
Activity	Dwenngbusiness type	Natural gas (Mm³/year)	LPG (kL/year)		
	Flat, unit or apartment	119	3,213		
	Semi detached, terrace house or townhouse	75	2,534		
Residential	Separate house	315	42,486		
	Other dwelling	-	1,751		
	Residential Total ²³	508	49,984		
Unaccounted	Unaccounted Commercial business equipment		-		
Grand Total		1,274	49,984		

²⁰ Includes natural gas consumed indoors in residential cooktops, ovens, space heaters, stoves and water heaters and outdoors in barbecues, outdoor stoves and portable stoves.

²¹ Approximately 91.9% of natural gas for NSW is consumed in the GMR (Jemena, 2009a; and Jemena, 2009b).

²² Includes natural gas consumed indoors in residential cooktops, ovens, space heaters, stoves and water heaters and outdoors in barbecues, outdoor stoves and portable stoves.

²³ Includes natural gas and LPG consumed indoors in residential cooktops, ovens, space heaters, stoves and water heaters.

3.4.4 Emission and Speciation Factors

Table 3-60 summarises the emission and speciation factors used for gaseous fuel fired residential appliances and unaccounted commercial business equipment.

Substance	Emission source	Emission and speciation factor source ²⁴
Criteria pollutants: CO, NO _x , PM _{2.5} , PM ₁₀ ,	Natural gas combustion	- Table 1.4-1 Residential furnaces and Table 1.4-2 - AP 42, Fifth Edition, Volume I, Chapter 1: External Combustion Sources, 1.4 Natural Gas Combustion (USEPA, 1998a)
SO ₂ and VOC	LPG combustion	 Table 1.5-1 Propane - AP 42, Fifth Edition, Volume I, Chapter 1: External Combustion Sources, 1.5 Liquified Petroleum Gas Combustion (USEPA, 2008a)
Criteria pollutants:	Natural gas combustion	- Table 1.4-2 - AP 42, Fifth Edition, Volume I, Chapter 1: External Combustion Sources, 1.4 Natural Gas Combustion (USEPA, 1998a)
TSP	LPG combustion	- Table 1.5-1 Propane - AP 42, Fifth Edition, Volume I, Chapter 1: External Combustion Sources, 1.5 Liquified Petroleum Gas Combustion (USEPA, 2008a)
Speciated NO _x	Natural gas and LPG combustion	- Technology Transfer Network - Clearinghouse for Inventories & Emissions Factors (USEPA, 2003)
Speciated VOC	Natural gas combustion	- Table 1.4-3 - AP 42, Fifth Edition, Volume I, Chapter 1: External Combustion Sources, 1.4 Natural Gas Combustion (USEPA, 1998a)
	LPG combustion	- Table 1.4-3 - AP 42, Fifth Edition, Volume I, Chapter 1: External Combustion Sources, 1.4 Natural Gas Combustion (USEPA, 1998a)*
Organic air toxics	Natural gas combustion	- Table 1.4-3 - AP 42, Fifth Edition, Volume I, Chapter 1: External Combustion Sources, 1.4 Natural Gas Combustion (USEPA, 1998a)
	LPG combustion	- Table 1.4-3 - AP 42, Fifth Edition, Volume I, Chapter 1: External Combustion Sources, 1.4 Natural Gas Combustion (USEPA, 1998a)*
Metal air toxics	Natural gas combustion	- Table 1.4-4 - AP 42, Fifth Edition, Volume I, Chapter 1: External Combustion Sources, 1.4 Natural Gas Combustion (USEPA, 1998a)
	LPG combustion	- Table 1.4-4 - AP 42, Fifth Edition, Volume I, Chapter 1: External Combustion Sources, 1.4 Natural Gas Combustion (USEPA, 1998a)*
Polycyclic aromatic hydrocarbons:	Natural gas combustion	- Table 1.4-3 – AP 42, Fifth Edition, Volume I, Chapter 1: External Combustion Sources, 1.4 Natural Gas Combustion (USEPA, 1998a)
РАН	LPG combustion	- Table 1.4-3 – AP 42, Fifth Edition, Volume I, Chapter 1: External Combustion Sources, 1.4 Natural Gas Combustion (USEPA, 1998a)*
Polychlorinated dibenzo-p-dioxins and	Natural gas combustion	 Table 4.54 Emission Factors – Household Heating and Cooking (Fossil Fuels) Natural gas - Australian Inventory of Dioxin Emissions 2004, National Dioxins Program Technical Report No. 3 (Bawden et. al., 2004)
Polychlorinated dibenzofurans: PCDD and PCDF	LPG combustion	- Table 4.54 Emission Factors – Household Heating and Cooking (Fossil Fuels) Natural gas - Australian Inventory of Dioxin Emissions 2004, National Dioxins Program Technical Report No. 3 (Bawden et. al., 2004)*

Table 3-60: Gaseous fuel combustion emission and speciation factors

 $^{^{24}}$ Where references are marked with an asterisk (i.e. *), LPG fired residential appliances use natural gas emission data, which have been adjusted to LPG equivalent based on effective heating value of 25.5 MJ/L for LPG and 38.3 MJ/m³ for natural gas (ABARE, 2009b).

2008 Calendar Year Domestic-Commercial Emissions: Results 3. Data Sources and Results

Substance	Emission source	Emission and speciation factor source ²⁴
Ammonia	Natural gas combustion	 Table III-1 Residential natural gas combustion - Estimating Ammonia Emissions from Anthropogenic Non-Agricultural Sources Draft Final Report (Pechan, 2004)
Ammonia LPG combustion		 Table III-1 Residential natural gas combustion - Estimating Ammonia Emissions from Anthropogenic Non-Agricultural Sources Draft Final Report (Pechan, 2004)*
Croophouse gases	Natural gas combustion	- Table 1.4-2 - AP 42, Fifth Edition, Volume I, Chapter 1: External Combustion Sources, 1.4 Natural Gas Combustion (USEPA, 1998a)
Greenhouse gases: CH4	LPG combustion	- Table 1.5-1 Propane - AP 42, Fifth Edition, Volume I, Chapter 1: External Combustion Sources, 1.5 Liquified Petroleum Gas Combustion (USEPA, 2008a)
Greenhouse gases:	Natural gas combustion	- Table 1.4-2 - AP 42, Fifth Edition, Volume I, Chapter 1: External Combustion Sources, 1.4 Natural Gas Combustion (USEPA, 1998a)
CO ₂ CO ₂ CO ₂ COmbusies		- Table 1.5-1 Propane - AP 42, Fifth Edition, Volume I, Chapter 1: External Combustion Sources, 1.5 Liquified Petroleum Gas Combustion (USEPA, 2008a)
Greenhouse gases:	Natural gas combustion	- Table 1.4-2 - AP 42, Fifth Edition, Volume I, Chapter 1: External Combustion Sources, 1.4 Natural Gas Combustion (USEPA, 1998a)
N ₂ O	LPG combustion	- Table 1.5-1 Propane - AP 42, Fifth Edition, Volume I, Chapter 1: External Combustion Sources, 1.5 Liquified Petroleum Gas Combustion (USEPA, 2008a)

Table 3-61 presents emission factors for natural gas and liquid petroleum gas (LPG) fired residential appliances and unaccounted commercial business equipment.

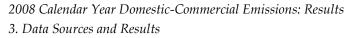
Emission source	Emission factors											
Emission source	NO _x	N_2O	NH ₃	SO ₂	PM_{10}	PM _{2.5}	VOC	CH_4	СО	CO ₂	РАН	PCDF and PCDF
Natural gas combustion (kg/Mm ³)	1,505.59	35.237	320.339	9.610	121.73	121.73	88.09	36.839	640.68	1,922,033.90	0.0112	$4.98 imes 10^{-8}$
LPG combustion (kg/kL)	1.56	0.108	0.213	0.013	0.08	0.08	0.06	0.024	0.90	1,498.02	$7.45 imes 10^{-6}$	$3.32\times10^{\text{-}11}$

Table 3-61: Gaseous fuel combustion emission factors

3.4.5 Spatial Distribution of Emissions

Table 3-62 summarises the data used for spatially allocating emissions from gaseous fuel fired residential appliances and unaccounted commercial business equipment.

Emission source	Spatial data	Spatial data source		
Exhaust emissions from gaseous fuel				
combustion in:				
Residential cooktops, ovens, space heaters,	Gridded 1 km x 1 km total	- Forecasts for Total Dwelling from		
stoves and water heaters; and	dwelling estimates	2006 to 2036 (TDC, 2009)		
Unaccounted commercial business				
equipment				


Emissions from gaseous fuel fired residential appliances and unaccounted commercial business equipment have been spatially distributed according to natural gas and liquid petroleum gas (LPG) consumption, which are proportional to total dwellings in each 1 km by 1 km grid cell (TDC, 2009). The proportion of natural gas and liquid petroleum gas (LPG) consumption by LGA and region are presented in Table 3-63 and shown in Figure 3-26.

LGA	2008 proportion of annual natural gas and liquid petroleum gas (LPG) consumption (%)							
	Newcastle	Non Urban	Sydney	Wollongong	Grand Total			
Ashfield	-	-	0.97	-	0.97			
Auburn	-	-	1.13	-	1.13			
Bankstown	-	-	3.03	-	3.03			
Bathurst Regional	-	2.18 × 10 ⁻³	-	-	2.18×10^{-3}			
Baulkham Hills	-	2.39 × 10-3	2.84	-	2.84			
Blacktown	-	-	4.82	-	4.82			
Blue Mountains	-	0.56	1.00	-	1.57			
Botany Bay	-	-	0.64	-	0.64			
Burwood	-	-	0.54	-	0.54			
Camden	-	-	0.94	-	0.94			
Campbelltown	-	-	2.60	-	2.60			
Canada Bay	-	-	1.16	-	1.16			
Canterbury	-	-	2.51	-	2.51			
Cessnock	3.84 × 10 ⁻²	0.89	-	-	0.93			
Dungog	-	0.14	-	-	0.14			
Fairfield	-	-	3.01	-	3.01			
Gosford	-	0.91	2.45	-	3.36			
Goulburn Mulwaree	-	4.14×10^{-3}	-	-	4.14×10^{-3}			
Great Lakes	-	6.80 × 10 ⁻²	-	-	6.80×10^{-2}			
Hawkesbury	-	2.30×10^{-2}	1.10	-	1.12			
Holroyd	-	-	1.74	-	1.74			
Hornsby	-	3.62×10^{-3}	2.86	-	2.87			

Table 3-63: Gaseous fuel combustion spatial distribution of fuel consumption by LGA and region

Air Emissions Inventory for the Greater Metropolitan Region of New South Wales 3. *Data Sources and Results*

LGA	2008 proportion of annual natural gas and liquid petroleum gas (LPG) consumption (%)								
	Newcastle	Non Urban	Sydney	Wollongong	Grand Total				
Hunters Hill	-	-	0.16	-	0.16				
Hurstville	-	-	1.55	-	1.55				
Kiama	-	0.29	-	-	0.29				
Kogarah	-	-	1.06	-	1.06				
Ku-ring-gai	-	-	1.85	-	1.85				
Lake Macquarie	2.00	1.82	-	-	3.82				
Lane Cove	-	-	0.57	-	0.57				
Leichhardt	-	-	0.89	-	0.89				
Lithgow	-	0.36	-	-	0.36				
Liverpool	-	-	2.90	-	2.90				
Maitland	9.39 × 10 ⁻²	1.15	-	-	1.25				
Manly	-	-	0.69	-	0.69				
Marrickville	-	-	1.88	-	1.88				
Mid-western Regional	-	5.16 × 10 ⁻²	-	-	5.16×10^{-2}				
Mosman	-	-	0.68	-	0.68				
Muswellbrook	-	0.26	-	-	0.26				
N/A	3.05 × 10-2	5.58×10^{-2}	0.39	7.60 × 10 ⁻²	0.55				
Newcastle	3.15	-	-	-	3.15				
North Sydney	-	-	1.35	-	1.35				
Oberon	-	2.26 × 10 ⁻²	-	-	2.26 × 10 ⁻²				
Parramatta	-	-	2.83	-	2.83				
Penrith	-	-	3.15	-	3.15				
Pittwater	-	-	1.04	-	1.04				
Port Stephens	6.97 × 10-2	1.07	-	-	1.14				
Randwick	-	-	2.68	-	2.68				
Rockdale	-	-	1.73	-	1.73				
Ryde	-	-	2.07	-	2.07				
Shellharbour	-	0.89	-	0.31	1.20				
Shoalhaven	-	1.50×10^{-3}	-	-	1.50 × 10 ⁻³				
Singleton	-	0.37	-	-	0.37				
Strathfield	-	-	0.68	-	0.68				
Sutherland	-	-	4.08	-	4.08				
Sydney	-	-	4.01	-	4.01				
Unincorporated	-	-	0.93	-	0.93				
Upper Lachlan	-	6.05×10^{-4}	-	-	6.05×10^{-4}				
Warringah	-	-	2.73	-	2.73				
Waverley	-	-	1.29	-	1.29				
Willoughby	-	-	1.39	-	1.39				
Wingecarribee	-	0.88	4.72 × 10 ⁻³	1.50 × 10 ⁻³	0.89				
Wollondilly	-	1.16 × 10-2	0.74	3.91 × 10-4	0.75				
Wollongong	-	-	0.27	3.50	3.77				
Woollahra	-	_	1.03	-	1.03				
Wyong	-	2.96	-	-	2.96				
Grand Total	5.38	12.78	77.95	3.89	100.00				

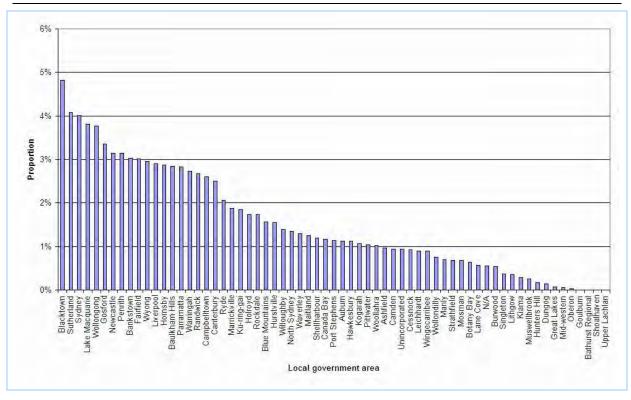
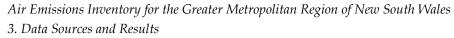



Figure 3-26: Gaseous fuel combustion spatial distribution of fuel consumption by LGA

Figure 3-27 shows the spatial distribution of gaseous fuel fired residential appliances and unaccounted commercial business equipment emissions.



Figure 3-27: Gaseous fuel combustion spatial distribution of emissions

3.4.6 Temporal Variation of Emissions

Table 3-64 summarises the data used to estimate the temporal variation in emissions from gaseous fuel fired residential appliances and unaccounted commercial business equipment.

Emission source	Temporal data	Temporal data source
Exhaust emissions from gaseous fuel combustion in: Residential cooktops,	Monthly and daily: Daily natural gas flow	- National Gas Market Bulletin Board, Daily Natural Gas Flow, 1 August 2008 to 31 July 2009 (AEMOL, 2009)
ovens, space heaters, stoves and water heaters; and Unaccounted commercial business equipment	Hourly: Source type specific temporal allocation factors	 Stationary Fuel Comb /Residential /Natural Gas /Total: All Combustor Types - Weekday diurnal profile number 26 and Weekend diurnal profile number 26 - CAIR Platform Temporal Allocation (USEPA, 2005)

Table 3-64: Gaseous fuel combustion temporal data

The daily and monthly temporal variation in emissions from gaseous fuel fired residential appliances and unaccounted commercial business equipment have been estimated from daily natural gas flow data (AEMOL, 2009), while the hourly temporal variation in emissions have been estimated from generic temporal profiles (USEPA, 2005).

Hourly temporal variation profiles are presented in Table 3-65 and shown in Figure 3-28.

		5	
Hour	Week day and weekend proportion (%)	Hour	Week day and weekend proportion (%)
1	1.98	13	6.20
2	1.86	14	6.31
3	1.82	15	6.35
4	1.87	16	6.24
5	2.10	17	5.94
6	2.50	18	5.48
7	3.11	19	5.31
8	3.88	20	5.09
9	4.67	21	4.25
10	5.28	22	3.27
11	5.71	23	2.57
12	6.04	24	2.18

Table 3-65: Gaseous fuel combustion hourly temporal profile

Air Emissions Inventory for the Greater Metropolitan Region of New South Wales 3. Data Sources and Results

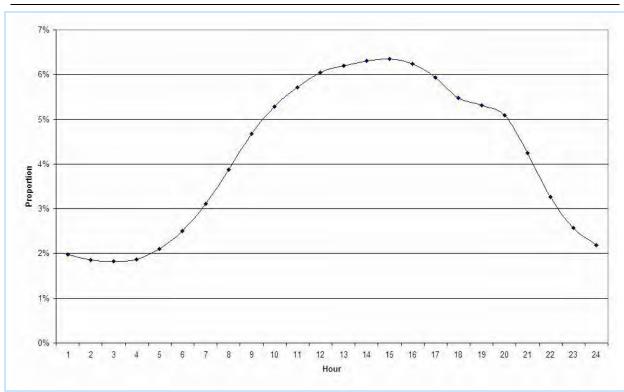
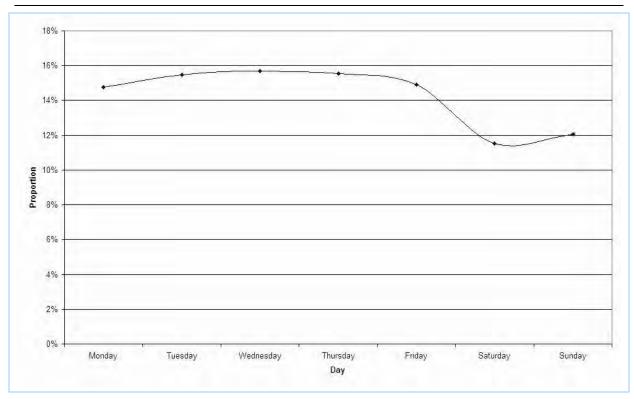



Figure 3-28: Gaseous fuel combustion hourly temporal profile

Daily temporal variation profiles are presented in Table 3-66 and shown in Figure 3-29.

Day	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday	Sunday
Proportion (%)	14.78	15.48	15.70	15.56	14.91	11.52	12.06

Table 3-66: Gaseous fuel combustion daily temporal profile

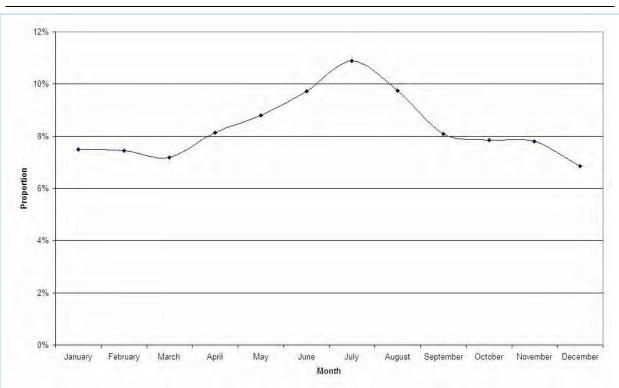


Figure 3-29: Gaseous fuel combustion daily temporal profile

Monthly temporal variation profiles are presented in Table 3-67 and shown in Figure 3-30.

Month	Proportion (%)	Month	Proportion (%)
January	7.48	July	10.87
February	7.44	August	9.76
March	7.18	September	8.09
April	8.14	October	7.84
May	8.81	November	7.81
June	9.72	December	6.86

Table 3-67: Gaseous fuel combustion monthly temporal profile

Air Emissions Inventory for the Greater Metropolitan Region of New South Wales 3. Data Sources and Results

Figure 3-30: Gaseous fuel combustion monthly temporal profile

3.4.7 *Emission Estimates*

Table 3-68 presents annual emissions of selected substances from gaseous fuel fired residential appliances and unaccounted commercial business equipment by activity.

Activity	Substance		Emi	ssions (kg/y	vear)	
retivity	oubstatee	Newcastle	Non Urban	Sydney	Wollongong	GMR
	ACETALDEHYDE	$1.50\times10^{\text{-}2}$	$3.56 imes 10^{-2}$	0.22	1.08×10^{-2}	0.28
	BENZENE	2.36	5.62	34	1.71	44
	CARBON MONOXIDE	46,312	110,080	671,183	33,464	861,039
	FORMALDEHYDE	84	201	1,224	61	1,570
	LEAD & COMPOUNDS	0.56	1.34	8.16	0.41	10
	OXIDES OF NITROGEN	107,342	255,145	1,555,685	77,564	1,995,737
Gaseous Fuel	PARTICULATE MATTER ≤ 10 µm	8,566	20,360	124,140	6,189	159,254
Combustion	PARTICULATE MATTER ≤ 2.5 μm	8,566	20,360	124,140	6,189	159,254
	POLYCYCLIC AROMATIC HYDROCARBONS	0.79	1.87	11	0.57	15
	SULFUR DIOXIDE	694	1,649	10,054	501	12,898
	TOLUENE	3.83	9.10	55	2.77	71
	TOTAL SUSPENDED PARTICULATE	8,566	20,360	124,140	6,189	159,254

Table 3-68: Gaseous	fuel con	nbustion	emissions	by activity

Activity	Activity Substance Emissions (kg/year)					
Activity		Newcastle	Non Urban	Sydney	Wollongong	GMR
	TOTAL VOLATILE ORGANIC COMPOUNDS	6,193	14,721	89,758	4,475	115,147

Table 3-69 presents annual emissions of selected substances from gaseous fuel fired residential appliances and unaccounted commercial business equipment by source type.

		Emissions (kg/year)				
Source type	Substance	Newcastle	Non Urban	Sydney	Wollongong	GMR
	ACETALDEHYDE	$3.81 imes 10^{-4}$	9.06 × 10-4	5.53×10^{-3}	2.76×10^{-4}	7.09 × 10 ⁻³
	BENZENE	6.02 × 10 ⁻²	0.14	0.87	4.35×10^{-2}	1.12
	CARBON MONOXIDE	2,416	5,744	35,020	1,746	44,927
	FORMALDEHYDE	2.15	5.11	31	1.55	40
	LEAD & COMPOUNDS	1.43 × 10 ⁻²	3.41×10^{-2}	0.21	1.04×10^{-2}	0.27
	OXIDES OF NITROGEN	4,188	9,956	60,702	3,027	77,873
LPG Combustion -	PARTICULATE MATTER ≤ 10 μm	226	536	3,269	163	4,193
Domestic	PARTICULATE MATTER ≤ 2.5 μm	226	536	3,269	163	4,193
	POLYCYCLIC AROMATIC HYDROCARBONS	2.0 × 10-2	4.76×10^{-2}	0.29	1.45×10^{-2}	0.37
	SULFUR DIOXIDE	35	84	512	26	657
	TOLUENE	9.75 × 10 ⁻²	0.23	1.41	7.04 × 10 ⁻²	1.81
	TOTAL SUSPENDED PARTICULATE	226	536	3,269	163	4,193
	TOTAL VOLATILE ORGANIC COMPOUNDS	158	375	2,285	114	2,932
	ACETALDEHYDE	5.82×10^{-3}	$1.38\times10^{\text{-}2}$	$8.44\times10^{\text{-}2}$	4.21×10^{-3}	0.11
	BENZENE	0.92	2.18	13	0.66	17
	CARBON MONOXIDE	17,504	41,607	253,688	12,649	325,448
	FORMALDEHYDE	33	78	476	24	610
Natural Gas	LEAD & COMPOUNDS	0.22	0.52	3.17	0.16	4.07
Combustion – Domestic	OXIDES OF NITROGEN	41,135	97,776	596,166	29,724	764,802
	PARTICULATE MATTER ≤ 10 μm	3,326	7,905	48,201	2,403	61,835
	PARTICULATE MATTER ≤ 2.5 μm	3,326	7,905	48,201	2,403	61,835
	POLYCYCLIC	0.31	0.73	4.43	0.22	5.68

Table 3-69: Gaseous fuel combustion emissions by source type

Air Emissions Inventory for the Greater Metropolitan Region of New South Wales 3. Data Sources and Results

Courses torses	C. Internet		Emi	issions (kg/y	rear)	
Source type	Substance	Newcastle	Non Urban	Sydney	Wollongong	GMR
	AROMATIC HYDROCARBONS					
	SULFUR DIOXIDE	263	624	3,805	190	4,882
	TOLUENE	1.49	3.54	22	1.08	28
	TOTAL SUSPENDED PARTICULATE	3,326	7,905	48,201	2,403	61,835
	TOTAL VOLATILE ORGANIC COMPOUNDS	2,407	5,721	34,882	1,739	44,749
	ACETALDEHYDE	8.77×10^{-3}	2.09×10^{-2}	0.13	$6.34 imes 10^{-3}$	0.16
	BENZENE	1.39	3.29	20	1.00	26
	CARBON MONOXIDE	26,391	62,729	382,475	19,070	490,665
	FORMALDEHYDE	49	118	717	36	920
	LEAD & COMPOUNDS	0.33	0.78	4.78	0.24	6.13
Natural Gas	OXIDES OF NITROGEN	62,018	147,413	898,817	44,814	1,153,062
Combustion – Unaccounted	PARTICULATE MATTER ≤ 10 μm	5,014	11,919	72,670	3,623	93,226
Commercial Business	PARTICULATE MATTER ≤ 2.5 μm	5,014	11,919	72,670	3,623	93,226
Equipment P A H SU T T	POLYCYCLIC AROMATIC HYDROCARBONS	0.46	1.09	6.68	0.33	8.56
	SULFUR DIOXIDE	396	941	5,737	286	7,360
	TOLUENE	2.24	5.33	33	1.62	42
	TOTAL SUSPENDED PARTICULATE	5,014	11,919	72,670	3,623	93,226
	TOTAL VOLATILE ORGANIC COMPOUNDS	3,629	8,625	52,590	2,622	67,466

3.4.8 Emission Projection Methodology

Table 3-70 summarises the data used to estimate the emission projection factors for gaseous fuel fired residential appliances and unaccounted commercial business equipment, while Figure 3-31 shows the emission projection factors for calendar years 2009 to 2036.

Emission source	Projection factor surrogate	Projection factor source
Exhaust emissions from gaseous fuel combustion in: Residential cooktops, ovens, space heaters, stoves and water	Final energy consumption for residential using liquid petroleum gas and natural gas	- Australian Energy, National and State Projections to 2029-30, ABARE Research Report 06.26 (ABARE, 2006)

Table 3-70: Gaseous fuel combustion emission projection factors

2008 Calendar Year Domestic-Commercial Emissions: Results 3. Data Sources and Results

Emission source	Projection factor surrogate	Projection factor source
heaters; and		
Unaccounted commercial		
business equipment		

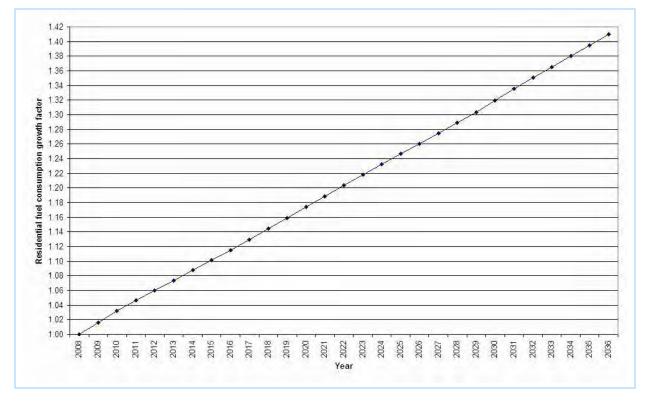


Figure 3-31: Gaseous fuel combustion emission projection factors

3.5 Graphic Arts

3.5.1 Emission Source Description

The domestic-commercial air emissions inventory includes emissions of evaporative VOC from unaccounted commercial businesses involved in graphic arts, which arise from inks, fountain solutions and cleaning solutions.

To estimate emissions from these sources, the following have been considered:

> IBISWorld industry report

The consumption of ink by the paper, printing, publishing and packaging industry in Australia in 2008 (IBISWorld, 2008) has been used in combination with Australia, NSW and GMR demographic statistics (ABS, 2009; and TDC, 2009) to estimate total printing ink consumption in the GMR.

> Commercial survey

A commercial survey has been conducted, which has provided activity data for commercial printing businesses (i.e. non-scheduled activity)²⁵ (DECC, 2007a). Emissions of evaporative VOC from commercial businesses within the Printing Australian and New Zealand Standard Industrial Classification (ANZSIC) class (ABS, 1993) are included in the commercial air emissions inventory.

> Industrial survey

An industrial survey has been conducted, which has provided activity data for EPA-licensed printing premises (i.e. scheduled activity)²⁶ (DECCW, 2009). Emissions of evaporative VOC from EPA-licensed premises within the Printing, packaging and visual media production *Protection of the Environment* (*Operations*) *Act* 1997 (POEO) scheduled activity (PCO, 2010a) are included in the industrial air emissions inventory.

> Printing process

The inventory includes unaccounted commercial businesses involved in graphic arts as follows (ERG, 1996b):

- *Rotogravure* includes packaging, advertising, greeting cards, art books, catalogues and directories;
- *Flexography* includes packaging, advertising newspapers, books, magazines, financial and legal document directories;

²⁵ Non-scheduled activity means an activity that is not a scheduled activity and is not scheduled development work as defined in the *Protection of the Environment (Operations) Act 1997* (PCO, 2010a).

²⁶ Scheduled activity means an activity listed in Schedule 1 of the *Protection of the Environment (Operations) Act* 1997 (PCO, 2010a).

- *Offset Lithography* (i.e. heatset, nonheatset web, nonheatset sheet and newspaper) includes magazines, catalogues and directories, newspapers, books, stationary, financial and legal documents, advertising, journals, packaging and metal cans;
- *Letterpress* includes magazines, catalogues and directories, newspapers, books, stationary, financial and legal documents, advertising, journals, packaging and metal cans;
- *Screen* includes signs, electronics, wallpaper, greeting cards, ceramics, decals, banners and plastic bottles; and
- *Plateless* includes images printed on paper by laser printers, xerographic copiers, fax machines and ink jets.

3.5.2 Emission Estimation Methodology

Table 3-71 summarises the emission estimation methodology used for unaccounted commercial businesses involved in graphic arts.

Table 3-71: Graphic arts emission estimation methodology

Emission source	Emission estimation methodology source
Evaporative emissions from unaccounted	- 2008 National Emissions Inventory, 2008 Nonpoint
commercial businesses involved in graphic arts	Emission Estimates, Solvent Usage – Other (Pechan, 2009b)

Evaporative VOC emissions from unaccounted commercial businesses involved in graphic arts have been estimated using a per capita based emission factor combined with population in the GMR (TDC, 2009). Emissions have been determined using Equation 8 (Pechan, 2009b):

$E_{VOC} = P \times EF_{VOC}$	Equation 8
-------------------------------	------------

where:			
E _{VOC}	=	Emissions of VOC	(kg/year)
Р	=	Population	(capita)
EFvoc	=	Emission factor for VOC	(kg/capita/year)

3.5.3 Activity Data

Table 3-72 summarises the activity data used for unaccounted commercial businesses involved in graphic arts.

Table 3-72:	Graphic arts	s activity data

Activity data	Activity data source	
Ink and solvent consumption	 Ink Manufacturing in Australia (IBISWorld, 2008) Australian Demographic Statistics (ABS, 2009) Graphic Arts (ERG, 1996b) 2008 Survey of EPA-Licensed Premises (DECCW, 2009) 2004 Survey of Commercial Businesses (DECC, 2007a) 	
Gridded 1 km x 1 km population estimates required for per	- Forecasts for Population from 2006 to 2036	
capita emission factors	(TDC, 2009)	

Table 3-73 presents graphic arts ink solvent use and component VOC emission factors by printing process (ERG, 1996b). An ink solvent use weighted VOC emission factor for graphic arts of 0.6637 kg VOC/kg ink has been derived.

	Ink solvent use (%) Ink	Component emission factor (kg VOC/kg ink)					
Printing process		Fountain solution	Cleaning solution	Grand Total			
Rotogravure	22.00	0.70	-	0.03	0.73		
Flexography	16.00	0.60	-	0.04	0.64		
Heatset	8.75	0.32	0.90	0.03	1.25		
Nonheatset Web	8.75	0.02	0.53	0.03	0.58		
Nonheatset Sheet	8.75	0.02	1.25	1.10	2.37		
Newspaper	8.75	0.02	0.07	0.07	0.16		
Letterpress	8.00	0.24	-	-	0.24		
Screen	9.50	-	-	-	-		
Planographic	9.50	-	-	-	-		
Grand Total ²⁷	100.00	0.3025	0.2406	0.1206	0.6637		

Table 3-73: Graphics arts component VOC emission factors

Table 3-74 presents population (ABS, 2009), ink consumption (IBISWorld, 2008) and estimated VOC emissions in Australia by State. Ink consumption by State is assumed to be proportional to population, while VOC emissions by State have been estimated using an emission factor of 0.6637 kg VOC/kg ink (ERG, 1996b).

 $^{^{27}}$ { Σ (Ink solvent use_i x Component emission factor_j)/100}. where: i = printing process (either "rotogravure", "flexography", "heatset", "nonheatset web", "nonheatset sheet", "newspaper", "letterpress", "screen" and "planographic") and j = emission source (either "ink", "fountain solution" and "cleaning solution").

	2008 statistics					
Area	Population	Proportion (%)	Ink consumption (tonne/year)	VOC emission (kg/year)		
New South Wales	7,041,393	32.53	11,712	7,773,125		
Victoria	5,364,796	24.79	8,923	5,922,298		
Queensland	4,349,529	20.10	7,234	4,801,526		
South Australia	1,612,002	7.45	2,681	1,779,519		
Western Australia	2,204,040	10.18	3,666	2,433,081		
Tasmania	500,278	2.31	832	552,266		
Northern Territory	221,682	1.02	369	244,719		
Australian Capital Territory	347,843	1.61	579	383,990		
Australia	21,643,987	100.00	36,000	23,893,200		

Table 3-74: Graphic arts VOC emissions in Australia by State

Table 3-75 presents graphic arts VOC emissions by activity in NSW and the GMR. The estimated commercial business (DECC, 2007a) and EPA-licensed premises (DECCW, 2009) VOC emissions have been subtracted from total (IBISWorld, 2008; ERG, 1996b; and ABS, 2009) VOC emissions in order to estimate unaccounted VOC emissions by commercial businesses in NSW. The unaccounted commercial business VOC emission factor of 0.6576 kg VOC/capita/year has been estimated from unaccounted commercial business VOC emissions in NSW (i.e. 4,630,323 kg/year) divided by the NSW population (i.e. 7,041,393). The unaccounted commercial business VOC emissions in the GMR (i.e. 3,475,054 kg/year) have been estimated by multiplying the unaccounted commercial business VOC emission factor of 0.6576 kg VOC/capita/year by the GMR population (i.e. 5,284,560) (TDC, 2009).

Table 3-75: Graphic arts VOC emissions in NSW and the GMR

Activity	2008 statistics		
i kuvky	VOC in NSW (kg/year)	VOC in the GMR (kg/year)	
EPA-licensed premises	1,827,598	1,827,598	
Commercial businesses	1,315,203	1,315,203	
Unaccounted commercial businesses	4,630,323	3,475,054	
Grand Total	7,773,125	6,617,856	

3.5.4 Emission and Speciation Factors

Table 3-76 summarises the emission and speciation factors used for unaccounted commercial businesses involved in graphic arts.

Emission source	Substance	Emission and speciation factor source
Evaporative emissions from unaccounted commercial businesses involved in graphic arts	Criteria pollutants: VOC	 Ink Manufacturing in Australia (IBISWorld, 2008) Australian Demographic Statistics (ABS, 2009) Graphic Arts (ERG, 1996b) 2008 Survey of EPA-Licensed Premises (DECCW, 2009) 2004 Survey of Commercial Businesses (DECC, 2007a) ORGPROF 517 - California Emission Inventory and
nivolved in graphic and	Speciated VOC	Reporting System (CEIDARS), Organic Gas Speciation Profiles (CARB, 2005)
	Organic air toxics	- ORGPROF 517 - California Emission Inventory and Reporting System (CEIDARS), Organic Gas Speciation Profiles (CARB, 2005)

Table 3-76: Graphic arts emission and speciation factors

Table 3-77 presents the VOC emission factor for unaccounted commercial businesses involved in graphic arts. The unaccounted commercial business VOC emissions in the GMR (i.e. 3,475,054 kg/year) have been estimated by multiplying the unaccounted commercial business VOC emission factor of 0.6576 kg VOC/capita/year (DECC, 2007a; DECCW, 2009; IBISWorld, 2008; ERG, 1996b; and ABS, 2009) by the GMR population (i.e. 5,284,560) (TDC, 2009).

Table 3-77: Graphic arts emission factor

Emission source	2008 VOC in	2008 population	VOC emission
	the GMR	in the GMR	factor
	(kg/year)	(capita)	(kg/capita/year)
Evaporative emissions from unaccounted commercial businesses involved in graphic arts	3,475,054	5,284,560	0.6576

3.5.5 Spatial Distribution of Emissions

Table 3-78 summarises the data used for spatially allocating emissions from unaccounted commercial businesses involved in graphic arts.

Table 3-78: Graphic arts spatial data

Emission source	Spatial data	Spatial data source
Evaporative emissions from unaccounted	Gridded 1 km x 1 km	- Forecasts for Population from
commercial businesses involved in graphic arts	population estimates	2006 to 2036 (TDC, 2009)

Emissions from unaccounted commercial businesses involved in graphic arts have been spatially distributed according to the proportion of population within each 1 km by 1 km grid cell (TDC, 2009). The proportion of population by LGA and region is presented in Table 3-79 and shown in Figure 3-32.

		2008 proportion of population (%)				
LGA	Newcastle	Non Urban	Sydney	Wollongong	Grand Total	
Ashfield	-	-	0.91	-	0.91	
Auburn	-	-	1.32	-	1.32	
Bankstown	-	-	3.30	-	3.30	
Bathurst Regional	-	$2.84 imes10^{-3}$	-	-	2.84×10^{-3}	
Baulkham Hills	-	2.44×10^{-3}	3.23	-	3.24	
Blacktown	-	-	5.42	-	5.42	
Blue Mountains	-	0.48	1.00	-	1.48	
Botany Bay	-	-	0.63	-	0.63	
Burwood	-	-	0.57	-	0.57	
Camden	-	-	1.05	-	1.05	
Campbelltown	-	-	2.85	-	2.85	
Canada Bay	-	-	1.12	-	1.12	
Canterbury	-	-	2.62	-	2.62	
Cessnock	$4.36\times10^{\text{-}2}$	0.88	-	-	0.92	
Dungog	-	0.14	-	-	0.14	
Fairfield	-	-	3.58	-	3.58	
Gosford	-	0.89	2.19	-	3.08	
Goulburn Mulwaree	-	$5.98 imes 10^{-3}$	-	-	$5.98\times10^{\text{-}3}$	
Great Lakes	-	7.21×10^{-2}	-	-	7.21 × 10 ⁻²	
Hawkesbury	-	2.30×10^{-2}	1.16	-	1.18	
Holroyd	-	-	1.80	-	1.80	
Hornsby	-	3.61×10^{-3}	3.04	-	3.04	
Hunters Hill	-	-	0.18	-	0.18	
Hurstville	-	-	1.55	-	1.55	
Kiama	-	0.28	-	-	0.28	
Kogarah	-	-	1.09	-	1.09	
Ku-ring-gai	-	-	2.03	-	2.03	
Lake Macquarie	1.96	1.74	-	-	3.70	
Lane Cove	-	-	0.54	-	0.54	
Leichhardt	-	-	0.75	-	0.75	
Lithgow	-	0.36	-	-	0.36	
Liverpool	-	-	3.38	-	3.38	
Maitland	0.10	1.16	-	-	1.26	
Manly	-	-	0.64	-	0.64	
Marrickville	-	-	1.65	-	1.65	
Mid-western Regional	-	$5.42 imes 10^{-2}$	-	-	$5.42 imes 10^{-2}$	
Mosman	-	-	0.59	-	0.59	
Muswellbrook	-	0.27	-	-	0.27	
N/A	2.48×10^{-2}	5.23×10^{-2}	0.35	6.03×10^{-2}	0.49	
Newcastle	2.86	-	-	-	2.86	
North Sydney	-	-	1.02	-	1.02	
Oberon	-	3.10×10^{-2}	-	-	3.10×10^{-2}	
Parramatta	-	-	2.89	-	2.89	
Penrith	-	-	3.36	-	3.36	
Pittwater	-	-	1.03	-	1.03	

Table 3-79: Graphic arts spatial distribution of population by LGA and region

Air Emissions Inventory for the Greater Metropolitan Region of New South Wales 3. Data Sources and Results

LGA	2008 proportion of population (%)					
LOA	Newcastle	Non Urban	Sydney	Wollongong	Grand Total	
Port Stephens	6.56 × 10 ⁻²	1.05	-	-	1.12	
Randwick	-	-	2.48	-	2.48	
Rockdale	-	-	1.70	-	1.70	
Ryde	-	-	1.99	-	1.99	
Shellharbour	-	0.94	-	0.29	1.23	
Shoalhaven	-	$1.45 imes 10^{-3}$	-	-	1.45×10^{-3}	
Singleton	-	0.41	-	-	0.41	
Strathfield	-	-	0.73	-	0.73	
Sutherland	-	-	4.03	-	4.03	
Sydney	-	-	3.17	-	3.17	
Unincorporated	-	-	0.81	-	0.81	
Upper Hunter	-	4.22×10^{-3}	-	-	4.22×10^{-3}	
Upper Lachlan	-	$5.94 imes 10^{-3}$	-	-	5.94×10^{-3}	
Warringah	-	-	2.67	-	2.67	
Waverley	-	-	1.08	-	1.08	
Willoughby	-	-	1.32	-	1.32	
Wingecarribee	-	0.85	$5.04 imes 10^{-3}$	$1.49 imes 10^{-3}$	0.86	
Wollondilly	-	1.23×10^{-2}	0.80	$4.13\times10^{\text{-}4}$	0.81	
Wollongong	-	-	0.30	3.36	3.66	
Woollahra	-	-	0.85	-	0.85	
Wyong	-	2.75	-	-	2.75	
Grand Total	5.05	12.48	78.76	3.72	100.00	

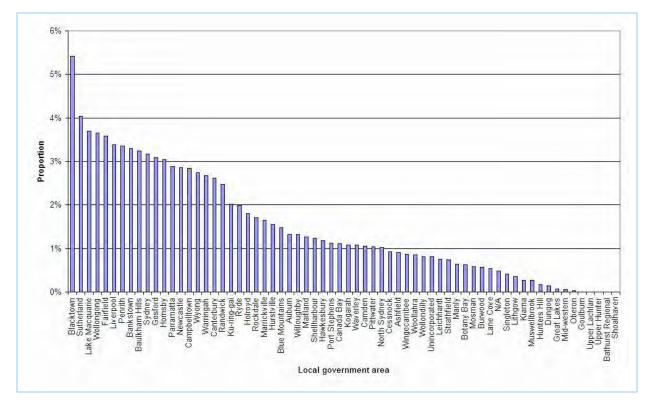


Figure 3-32: Graphic arts spatial distribution of population by LGA

Figure 3-33 shows the spatial distribution of emissions from unaccounted commercial businesses involved in graphic arts.

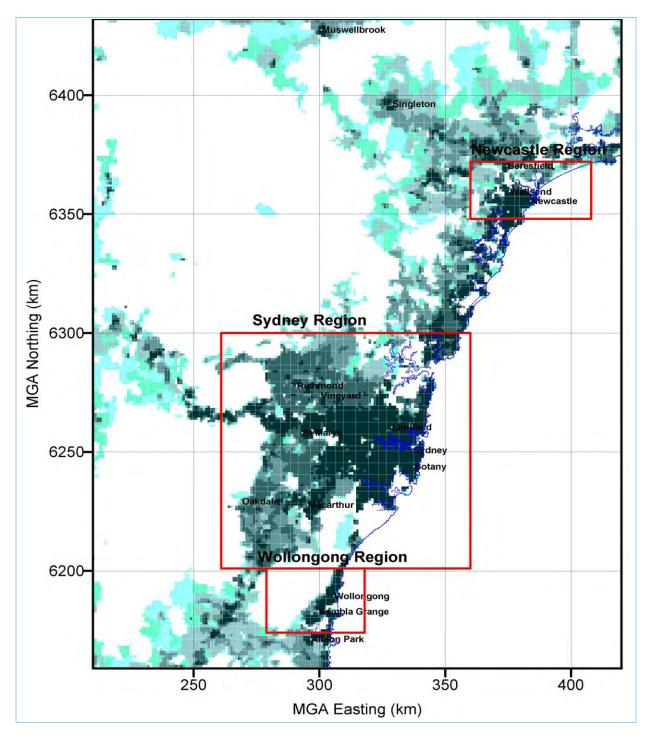
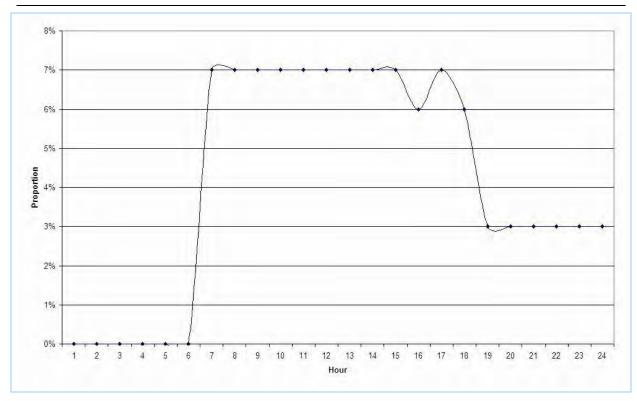


Figure 3-33: Graphic arts spatial distribution of emissions

3.5.6 Temporal Variation of Emissions

Table 3-80 summarises the data used to estimate the temporal variation in emissions from unaccounted commercial businesses involved in graphic arts.

Emission source	Temporal data	Temporal data source
	Monthly: Source type specific temporal allocation factors	 Graphic Arts /All Processes /Total: All Solvent Types Monthly profile number 508 - CAIR Platform Temporal Allocation (USEPA, 2005)
Evaporative emissions from unaccounted commercial businesses involved in graphic	Daily: Source type specific temporal allocation factors	 Graphic Arts /All Processes /Total: All Solvent Types Weekly profile number 107 - CAIR Platform Temporal Allocation (USEPA, 2005)
arts	Hourly: Source type specific temporal allocation factors	 Graphic Arts /All Processes /Total: All Solvent Types Weekday diurnal profile number 109 and Weekend diurnal profile number 109 - CAIR Platform Temporal Allocation (USEPA, 2005)

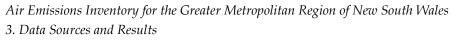

Table 3-80: Graphic arts temporal data

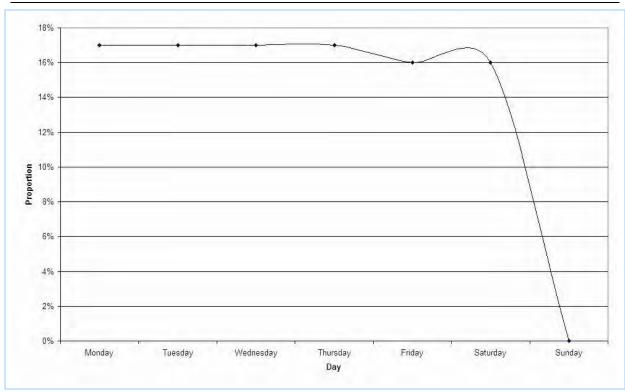
The hourly, daily and monthly temporal variation in emissions from unaccounted commercial businesses involved in graphic arts have been estimated from generic temporal profiles (USEPA, 2005).

Hourly temporal variation profiles are presented in Table 3-81 and shown in Figure 3-34.

	1	J 1	1
Hour	Week day and weekend proportion (%)	Hour	Week day and weekend proportion (%)
1	-	13	7.00
2	-	14	7.00
3	-	15	7.00
4	-	16	6.00
5	-	17	7.00
6	-	18	6.00
7	7.00	19	3.00
8	7.00	20	3.00
9	7.00	21	3.00
10	7.00	22	3.00
11	7.00	23	3.00
12	7.00	24	3.00

Table 3-81: Graphic arts hourly temporal profile

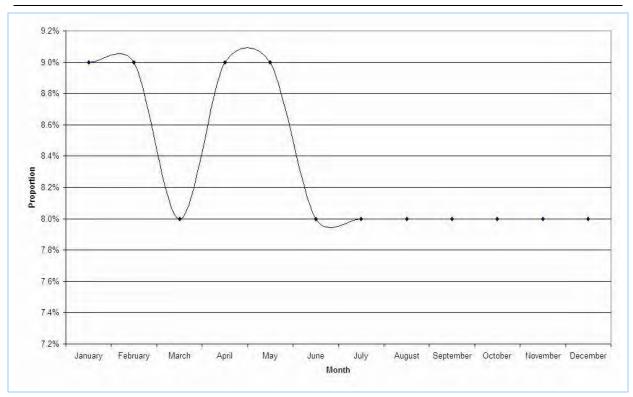



Figure 3-34: Graphic arts hourly temporal profile

Daily temporal variation profiles are presented in Table 3-82 and shown in Figure 3-35.

Day	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday	Sunday
Proportion (%)	17.00	17.00	17.00	17.00	16.00	16.00	0.00

Table 3-82: Graphic arts daily temporal profile


Figure 3-35: Graphic arts daily temporal profile

Monthly temporal variation profiles are presented in Table 3-83 and shown in Figure 3-36.

Month	Proportion (%)	Month	Proportion (%)
January	9.00	July	8.00
February	9.00	August	8.00
March	8.00	September	8.00
April	9.00	October	8.00
May	9.00	November	8.00
June	8.00	December	8.00

Table 3-83: Graphic arts monthly temporal profile

2008 Calendar Year Domestic-Commercial Emissions: Results 3. Data Sources and Results

Figure 3-36: Graphic arts monthly temporal profile

3.5.7 *Emission Estimates*

Table 3-84 presents annual emissions of selected substances from unaccounted commercial businesses involved in graphic arts by activity.

Activity	Substance	Emissions (kg/year)					
Activity		Newcastle	Non Urban	Sydney	Wollongong	GMR	
	ISOMERS OF XYLENE	4,038	9,982	63,002	2,974	79,996	
Graphic	POLYCYCLIC AROMATIC HYDROCARBONS	368	911	5,747	271	7,298	
Arts	TOLUENE	526	1,301	8,210	388	10,425	
	TOTAL VOLATILE ORGANIC COMPOUNDS	175,421	433,622	2,736,820	129,191	3,475,054	

Table 3-84: Graphic arts emissions by activity

3.5.8 Emission Projection Methodology

Table 3-85 summarises the data used to estimate the emission projection factors for unaccounted commercial businesses involved in graphic arts, while Figure 3-37 shows the emission projection factors for calendar years 2009 to 2036.

Emission source	Projection factor surrogate	Projection factor source
Evaporative emissions from unaccounted commercial businesses involved in graphic arts	Population growth	- Forecasts for Population from 2006 to 2036 (TDC, 2009)

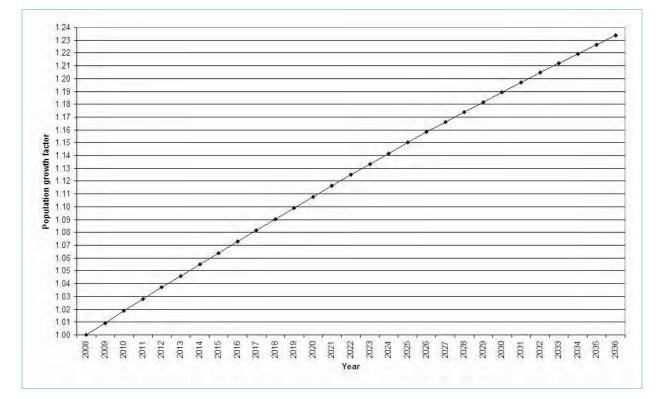


Figure 3-37: Graphic arts emission projection factors

3.6 Lawn Mowing and Garden Equipment (domestic)

3.6.1 *Emission Source Description*

The domestic-commercial air emissions inventory includes emissions of:

- > Combustion products (i.e. exhaust) from lawn mowing and garden equipment engines; and
- > Evaporative VOC:
 - Through the crankcase (i.e. combustion products and unburnt fuel);
 - From refuelling (i.e. vapour displacement and spillage);
 - Due to temperature changes (i.e. diurnal, hot soak and running loss); and
 - Via permeation (i.e. plastic fuel tanks and rubber hoses).

To estimate emissions from these sources, the following have been considered:

> Domestic survey

A domestic survey of lawn mowing and garden equipment ownership and usage has been conducted, which includes each of the 64 local government areas (LGA)²⁸ located in the GMR. The survey results include data about: equipment type, number and age; engine type and fuel used; frequency and duration of equipment use by hour, day and season; lawn area; and proportion of private and commercial usage (TR, 2009).

Figure 3-38 shows how the domestic survey results have been combined with emission factor and load factor data from the technical literature (USEPA, 2009) to develop an inventory of lawn mowing and garden equipment emissions.

²⁸ The GMR includes 64 local government areas (LGA), plus two areas designated N/A and unincorporated. N/A areas are those located near the coastline and the majority area within the 1 km by 1 km grid cell lies over water. Unincorporated areas are those areas which are not under the responsibility of an incorporated local government. Emissions have been estimated for 64 LGA plus the two areas designated N/A and unincorporated.

Air Emissions Inventory for the Greater Metropolitan Region of New South Wales 3. Data Sources and Results

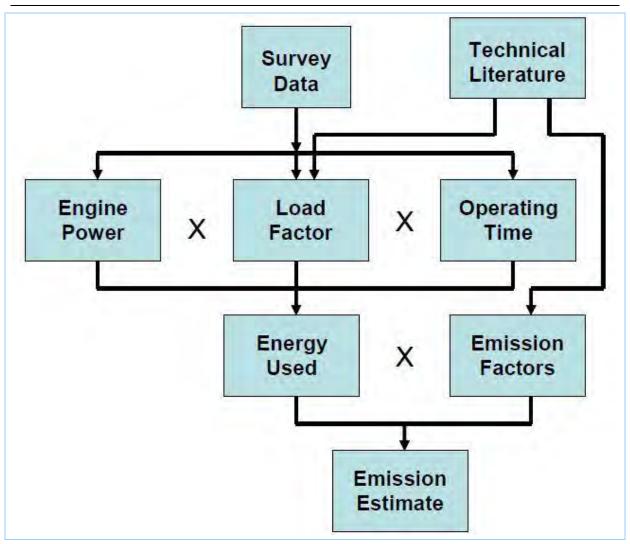


Figure 3-38: Lawn mowing and garden equipment (domestic) - use of survey data

> Lawn mowing and garden equipment type

The inventory includes small private-operated and commercial-operated lawn mowing and garden equipment for domestic use as follows:

- Chainsaw;
- *Chipper/Mulcher/Shredder;*
- *Leafblower/Vacuum;*
- *Pressure washer;*
- Push lawnmower;
- o Ride-on lawnmower; and
- Trimmer/Edger/Brush cutter.

> Engine type

The inventory includes lawn mowing and garden equipment powered by 2-stroke and 4-stroke spark ignition (SI) petrol engines, which are either handheld (e.g. chainsaw) or non-handheld (e.g. push lawnmower). Handheld equipment range from 1 to 6 horsepower (hp)²⁹, while non-handheld equipment range from 1 to 25 hp (AIA, 2005).

Since there are no NSW or Australian emission standards, the inventory considers all lawn mowing and garden equipment have emissions control technology consistent with USEPA Tier 0 (USEPA, 2009).

➤ Fuel type

The inventory includes lawn mowing and garden equipment that use automotive gasoline (petrol).

Table 3-86 presents the lawn mowing and garden equipment fuel type and properties used in the inventory (ABARE, 2009b; and USEPA, 2009). The sulfur and oxygen contents are requirements of the *Fuel Standard (Petrol) Determination 2001* (Attorney-General's Department, 2008), which are relevant for the 2008 calendar year. Weighted average sulfur and oxygen contents have been calculated from *Australian Petroleum Statistics 2008* (DRET, 2009) and the requirements of the *Fuel Standard (Petrol) Determination 2001* (Attorney-General's Department, 2008).

Fuel type	Sulfur content (ppm)	Oxygen content (%)	Density (kg/L)	Effective heating value (MJ/L)	Carbon content (%)
	150 - All	2.7 - All grades (no			
	grades ³⁰	ethanol)			
Automotive	50 - PULP	3.9 - All grades	0.740	34.2	87
gasoline (petrol)	50 – I ULI	(with ethanol)	0.740	34.2	07
	142 - Weighted	2.84 - Weighted			
	average ³¹	average ³²			

Table 3-86: Lawn mowing and garden equipment (domestic) fuel type and properties

Electric lawn mowing and garden equipment have not been included, since emissions from electricity generation have been separately estimated as part of the industrial air emissions inventory.

> Source type

The inventory includes emissions of combustion products and evaporation from lawn mowing and garden equipment engines.

²⁹ 1 horsepower (hp) is equivalent to 0.7457 kilowatts (kW) (USEPA, 1995a).

³⁰ Includes lead replacement petrol (LRP), unleaded petrol (ULP) and premium unleaded petrol (PULP).

³¹ 5,509,243 kL (All grades) and 500,756 kL (PULP) (DRET, 2009).

³² 5,332,615 kl (no ethanol) and 677,384 kL (with ethanol) (DRET, 2009).

Exhaust emissions are generated in the engine's combustion chamber and exit through the exhaust. Exhaust emissions mainly include CO, NO_x, PM_{2.5}, PM₁₀, TSP, SO₂ and VOC (total and speciated).

Evaporation occurs in a number of ways, including:

- *Crankcase emissions* originate from the combustion chamber then move past the piston rings and into the crankcase of 4-stroke petrol engines. Since gases flow freely from the crankcase to the combustion chamber in 2-stroke petrol engines, they are not an issue. They mainly include exhaust emissions plus some unburnt fuel;
- *Refuelling emissions* are the vapours displaced from the fuel tank when it is filled plus any spillage that may occur;
- Diurnal emissions arise with temperature changes that occur throughout the day. As the air temperature increases, the fuel temperature in the tank increases and begins to evaporate;
- *Hot soak emissions* are similar to diurnal emissions, except heating of the fuel is provided by the residual heat of the equipment, just after the engine is shut off;
- *Running loss emissions* are similar to diurnal emissions, except heating of the fuel is caused by engine operation; and
- *Permeation emissions* occur when fuel moves through the material used in the fuel system. Since the outer surfaces of the fuel system are exposed to air, petrol molecules permeate through them and are directly emitted. Permeation is most common through plastic fuel tanks and rubber hoses.

Evaporative emissions mainly include VOC (total and speciated).

3.6.2 Emission Estimation Methodology

Table 3-87 summarises the emission estimation methodology used for lawn mowing and garden equipment.

Table 3-87. Lawn mowin	a and aarder	equinment	(domestic)	omission	estimation methodology
Table 5-07. Lawit mowin	g and garden	equipment	(uomestic)	emission	estimation methodology

Emission source	Emission estimation methodology source
Exhaust and evaporative emissions from lawn mowing	- Guidance for Estimating Lawn and Garden
and garden equipment (domestic)	Equipment Activity Levels (Environ, 1997)

Exhaust and evaporative emissions from lawn mowing and garden equipment have been estimated using equipment population and activity data in combination with emission, load, transient adjustment and deterioration factors within the *NONROAD2008a Model* (USEPA, 2009).

Exhaust emission factors have been adjusted according to fuel sulfur and oxygen content for 2-stroke and 4-stroke petrol engines, while ambient temperature correction factors have been applied to 4-stroke petrol engine exhaust emission factors (USEPA, 2009).

An engine's rated power is the maximum power it is designed to produce at the rated speed. Since engines normally operate at a variety of speeds and loads, operation at rated power for extended periods is rare. To take into account the effect of operation over a wide range of conditions (e.g. idle, partial load and transient operation), a load factor (LF) has been used to determine the average proportion of rated power used (USEPA, 2009).

Transient adjustment factors (TAF) have been applied to 2-stroke and 4-stroke petrol engine emission factors to account for in-use (i.e. transient) operation and better represent the operational behaviour of the equipment (USEPA, 2009).

Deterioration factors (DF) have been applied to 2-stroke and 4-stroke petrol engine emission factors to account for deterioration of emission performance over time. Deterioration refers to the degradation of an engine's exhaust emissions performance over its lifetime due to either normal use and/or misuse (i.e. tampering or neglect). Engine deterioration increases exhaust emissions, which usually leads to a loss of combustion efficiency and can in some cases increase evaporative emissions. The amount of deterioration depends on an engine's design, production quality and technology type (i.e. 2-stroke and 4-stroke petrol spark ignition). Other factors may also affect deterioration, such as the equipment application, usage patterns and how it is stored and maintained (USEPA, 2009).

Evaporative emission factors for 2-stroke and 4-stroke petrol engines have been adjusted according to ambient temperature, Reid vapour pressure (RVP) and ethanol content of petrol (USEPA, 2009).

Equipment population is defined by fuel type, application and power, while activity rates include frequency and duration of use on an hourly, daily and seasonal basis. Equipment population and activity rates have been derived from a domestic survey (TR, 2009) and sales data (AIA, 2005). Emissions have been determined using Equation 9 within the *NONROAD2008a Model* (USEPA, 2009):

where:			
E _{i,j,k,l,m}	=	Emissions of substance i from lawn mowing and garden equipment type	(kg/year)
		j, engine type k, engine power range l and source type m	
$P_{j,k,l}$	=	Population of lawn mowing and garden equipment type j, engine type k	(number)
		and engine power range l	
A _{j,k,1}	=	Activity of lawn mowing and garden equipment type j, engine type k and	(h/year)
		engine power range l	
$HP_{j,k,l}$	=	Maximum rated power of lawn mowing and garden equipment type j,	(hp)
		engine type k and engine power range l	· · ·
LF _{j,k,1}	=	Fractional load factor for lawn mowing and garden equipment type j,	(hp/hp)
		engine type k and engine power range l	
TAF _{j,k,1}	=	Fractional transient adjustment factor for lawn mowing and garden	(g.(hp.h)-1/
		equipment type j, engine type k and engine power range l	g.(hp.h)-1)
DF _{j,k,l}	=	Fractional deterioration factor for lawn mowing and garden equipment	(g.(hp.h)-1/
,		type j, engine type k and engine power range l	g.(hp.h) ⁻¹)
EF _{i,j,k,l,m}	=	Emission factor for substance i from lawn mowing and garden	(g/hp.h)
		equipment type j, engine type k, engine power range l and source type m	

$E_{i,j,k,l,m} = P_{j,k,l} \times A_{j,k,l} \times HP_{j,k,l} \times LF_{j,k,l} \times TAF_{j,k,l} \times DF_{j,k,l} \times EF_{i,j,k,l,m} / 1000$ Equation 9

where:			
i	=	Substance (either "criteria pollutants", "speciated NO _x ", "speciated	(-)
		VOC", "organic air toxics", "metal air toxics", "PAH", "PCDD and	
		PCDF", "ammonia" or "greenhouse gases")	
j	=	Lawn mowing and garden equipment type (either "Chainsaw",	(-)
		"Chipper/Mulcher/Shredder", "Leafblower/Vacuum", "Pressure	
		washer", "Push lawnmower", "Ride-on lawnmower" or	
		"Trimmer/Edger/Brush cutter")	
k	=	Engine type (either "2-stroke petrol" or "4-stroke-petrol")	(-)
1	=	Engine power range	(hp)
m	=	Source type (either "exhaust", "crankcase", "refuelling", "diurnal", "hot	(-)
		soak", "running loss" or "permeation")	
1000	=	Conversion factor	(g/kg)

3.6.3 Activity Data

Table 3-88 summarises the activity data used for lawn mowing and garden equipment.

Table 3-88: Lawn mowing and garden equipment (domestic) activity data

Activity data	Activity data source
Lawn mower and garden equipment type/number and monthly mowing frequency/duration	- Domestic Lawn Mowing Pollution Survey (TR, 2009)
Gridded 1 km x 1 km dwelling estimates required to scale-up domestic survey	 Forecasts for Total Dwelling from 2006 to 2036 (TDC, 2009)
Lawn mower and garden equipment fleet composition	 NSW Lawn Mowing and Garden Equipment Sales, Unit Cost and Operating Life Data for 2000 to 2004 (AIA, 2005)

A domestic survey of lawn mowing and garden equipment ownership and usage has been conducted, which includes each of the 64 local government areas (LGA) located in the GMR. The survey results include data about: equipment type, number and age; engine type and fuel used; frequency and duration of equipment use by hour, day and season; lawn area; and proportion of private and commercial usage (TR, 2009).

The key considerations in designing and conducting a domestic survey include:

Survey method - The domestic survey has been conducted using the computer assisted telephone interview (CATI) method for recruiting households to complete either an on-line or mail-out questionnaire.

Sample size - To provide a reasonable level of precision for estimating lawn mowing and garden equipment activity rates across all households in the GMR, the survey sample was sized accordingly. While a total of 832 households were recruited, 31 households were outside the GMR so they were excluded from the survey. Activity rates for lawn mowing and garden equipment have been based on survey responses from 801 households in the GMR.

Confidence interval and confidence level - The confidence interval quantifies the uncertainty or range in possible values. For example, for a confidence interval of 3.5% and where 47% percent of the sample picks a particular answer one can be "sure" that if the question has been asked of the entire relevant population, between 43.5% (47-3.5) and 50.5% (47+3.5) would have picked that answer.

The confidence level quantifies the level of certainty to which an estimate can be trusted. It is expressed as a percentage and represents how often the true percentage of the population who would pick an answer lies within the confidence interval. The 95% confidence level means one can be 95% certain. Most researchers use the 95% confidence level.

When combining the confidence level and confidence interval together, one can be 95% sure that the true answer for the entire relevant population is between 43.5% and 50.5% for the example described above.

Table 3-89 presents the theoretical confidence intervals for samples of varied sizes for characteristics with a population incidence of 50% or 50%, 75% or 25% and 90% or 10%.

	Confidence interval at 95% confidence level					
Sample size	Endorsement rate of 50%/50%	Endorsement rate of 75%/25%	Endorsement rate of 90%/10%			
100	9.8	8.5	5.9			
150	8.0	6.9	4.8			
200	6.9	6.0	4.2			
300	5.7	4.9	3.4			
400	4.9	4.2	2.9			
500	4.4	3.8	2.6			
600	4.0	3.5	2.4			
800	3.5	3.0	2.1			
1,000	3.1	2.7	1.9			

Table 3-89: Confidence intervals at 95% confidence level by sample size for lawn mowing andgarden equipment (domestic) survey

The domestic survey of lawn mowing and garden equipment randomly sampled 801 households from a population of 5,284,560 in 1,901,680 households, so survey items with a true population incidence of 50% will produce estimates within $\pm 3.5\%$ of the true population value in 95% of the samples.

Random sampling and stratification - Households were selected at random across the GMR to limit bias. In practice, actual samples are not truly random since respondents always have the right to decline an interview and others cannot be reached for a variety of reasons. To reduce the standard error of estimated population values, samples were stratified on a geographic basis into the following subpopulations by location:

Sydney region, sub-grouped into

- North East
- o North West

- South East
- South West
- Newcastle region
- Wollongong region

Development of survey questionnaires – Three survey questionnaires were developed including: initial recruitment using the computer assisted telephone interview (CATI) method to capture household details using pre-coded questions within OzQuest on-line software; self complete main survey using pre-coded questions within OzQuest on-line software; and self complete main survey using a traditional hard copy mail-out with a reply paid envelope. The questionnaires request information about: equipment type, number and age; engine type and fuel used; frequency and duration of equipment use by hour, day and season; lawn area; and proportion of private and commercial usage. The domestic survey questionnaire form is included at Appendix B: Domestic Survey Form (TR, 2009).

Recruitment and data collection - A random sample of phone numbers was selected from the 64 local government areas (LGA) located in the GMR, stratified into Sydney, Newcastle and Wollongong regions.

As part of the computer assisted telephone interview (CATI), households were phoned up to five times to make contact and the interviewer asked to speak to an "adult household member who is familiar with any devices the household uses that might burn solid fuel (like wood or coal heaters), liquid fuel (like kerosene heaters or petrol lawn mowers) or gas fuel (like natural gas cooktops or heaters)". If required, arrangements were made to call back at a more convenient time when an appropriate adult household member would be available.

When an adult household member was available for interview, respondents were asked what LGA they lived in. If not in the GMR they were thanked and the interview was terminated. If in the GMR, they were then asked about the number of residents in the household, the dwelling type and which of the fuel burning devices were used by the household. All were then asked for their postcode and age group. Respondents in households that had none of the fuel burning devices were thanked and the interview terminated. All other respondents were then asked if they would be willing to complete a further questionnaire either on-line or by mail. If willing, contact details were recorded, and the interview concluded. Those who initially declined were read material emphasizing the importance of obtaining data from all households, whether they make little use of fuel burning devices or not and asked again if they would be willing to take part.

Consenting respondents were then either e-mailed a link to a self complete on-line main survey or mailed a self complete hard copy main survey. The mailed questionnaires included an identifying serial number on the front page with a letter from DECCW encouraging completion of the survey.

Main survey completions on-line and mail-out were closely monitored and households were phoned on two occasions in order to remind them to complete. Some respondents indicated they preferred to go through the questions on the phone. Data for these were entered into the on-line version of the questionnaire. *Data capture* – Data from the three survey questionnaires (i.e. CATI, on-line main survey and hard copy main survey) have all been entered into a database which captures pre-coded questions using OzQuest on-line software. All data was then checked, cleaned and saved in a Microsoft® Excel[™] 2003 workbook.

Survey timeframe - The survey took approximately 15 weeks to complete, from the time that questionnaire development commenced to the date data analysis and report were completed. The key tasks and milestones for the domestic survey are presented in Table 3-90.

Task	Milestones
Questionnaire development commenced	11 August 2009
CATI recruitment commenced	18 September 2009
CATI recruitment completed	21 October 2009
Main survey completed	12 November 2009
Data analysis and report completed	26 November 2009

Table 3-90: Lawn mowing and garden equipment (domestic) survey milestones

Gridded 1 km by 1 km dwelling estimates (TDC, 2009) have been used to scale-up the lawn mowing and garden equipment survey results (TR, 2009). Table 3-91 presents a summary of the population and dwelling by LGA data used to scale-up the domestic survey results to the GMR.

Table 3-91: Population and dwelling by LGA used to scale-up lawn mowing and garden equipment(domestic) survey

			n and dwelling	d dwelling			
LGA	Population	Flat, unit or apartment	Semi- detached, row, terrace or town house	Separate house	Other dwelling ³³	Total dwelling	
Ashfield	47,887	7,660	2,728	7,882	142	18,412	
Auburn	69,555	7,358	2,326	11,421	284	21,390	
Bankstown	174,326	7,781	8,028	41,407	287	57,503	
Bathurst Regional	157	-	-	41	1	41	
Baulkham Hills	170,925	2,345	5,004	46,441	137	53,928	
Blacktown	286,162	3,915	9,712	77,217	700	91,544	
Blue Mountains	78,427	777	1,030	27,952	63	29,822	
Botany Bay	33,316	4,244	1,974	5,777	100	12,095	
Burwood	30,277	3,332	1,108	5,770	65	10,275	
Camden	55,287	258	499	16,910	161	17,828	

³³ Caravan, cabin, houseboat, improvised home, tent, sleepers out, house or flat attached to a shop or office (TDC, 2009).

	2008 population and dwelling								
LGA	Population	Flat, unit or apartment	Semi- detached, row, terrace or town house	Separate house	Other dwelling ³³	Total dwelling			
Campbelltown	150,373	1,333	8,057	39,856	97	49,343			
Canada Bay	58,880	6,445	2,342	13,157	137	22,080			
Canterbury	138,343	16,795	4,851	25,673	328	47,647			
Cessnock	48,845	562	339	16,615	150	17,667			
Dungog	7,659	23	60	2,581	38	2,702			
Fairfield	189,024	7,302	6,172	43,571	198	57,243			
Gosford	162,826	5,481	8,288	49,407	676	63,852			
Goulburn Mulwaree	341	-	1	79	-	80			
Great Lakes	4,062	10	29	1,301	44	1,383			
Hawkesbury	62,416	899	1,674	18,441	241	21,254			
Holroyd	95,192	6,969	3,562	22,399	144	33,074			
Hornsby	160,612	9,018	4,454	40,736	265	54,472			
Hunters Hill	9,295	898	318	1,892	3	3,111			
Hurstville	81,935	7,352	3,548	18,534	111	29,545			
Kiama	14,586	580	338	4,433	75	5,426			
Kogarah	57,349	6,558	1,565	11,945	81	20,148			
Ku-ring-gai	106,943	3,805	1,253	30,103	73	35,235			
Lake Macquarie	195,295	3,160	4,849	63,598	926	72,532			
Lane Cove	28,511	4,473	652	5,687	92	10,904			
Leichhardt	39,692	4,537	6,175	5,998	278	16,988			
Lithgow	19,595	227	341	6,350	59	6,977			
Liverpool	178,554	6,938	5,352	42,517	317	55,125			
Maitland	66,554	1,330	1,049	21,169	117	23,666			
Manly	33,804	5,898	1,520	5,676	97	13,192			
Marrickville	86,873	13,062	10,292	11,838	553	35,744			
Mid-western Regional	3,412	25	14	1,149	17	1,205			
Mosman	30,915	6,692	1,506	4,604	104	12,905			
Muswellbrook	15,221	364	121	4,582	62	5,128			
N/A	25,875	4,778	1,262	4,329	119	10,488			
Newcastle	150,930	8,242	6,306	44,792	500	59,840			
North Sydney	53,850	17,299	4,228	3,854	252	25,633			
Oberon	1,803	4	5	438	5	452			
Parramatta	152,570	16,729	6,975	29,743	348	53,796			
Penrith	177,459	3,483	4,905	51,040	349	59,776			
Pittwater	54,586	2,542	1,577	15,389	183	19,690			
Port Stephens	59,017	756	1,587	18,809	482	21,634			
Randwick	130,955	25,728	8,002	16,752	370	50,853			
Rockdale	89,735	12,199	4,159	16,242	256	32,856			
Ryde	105,073	11,196	5,519	22,448	111	39,275			
Shellharbour	65,104	1,282	2,369	18,768	328	22,747			
Shoalhaven	81	-	-	30	-	30			

		2008 population and dwelling								
LGA	Population	Flat, unit or apartment	Semi- detached, row, terrace or town house	Separate house	Other dwelling ³³	Total dwelling				
Singleton	22,222	405	275	6,357	132	7,169				
Strathfield	38,732	5,612	806	6,543	45	13,006				
Sutherland	212,924	16,252	8,522	52,450	274	77,498				
Sydney	167,382	52,686	17,811	4,651	1,028	76,176				
Unincorporated	42,682	9,672	2,028	5,866	146	17,713				
Upper Hunter	350	-	-	66	-	66				
Upper Lachlan	502	-	-	92	-	92				
Warringah	141,123	16,643	3,029	32,008	175	51,854				
Waverley	57,147	14,769	4,430	5,038	245	24,481				
Willoughby	69,528	11,760	2,038	12,473	82	26,353				
Wingecarribee	45,480	537	1,113	15,131	144	16,924				
Wollondilly	42,871	168	292	13,634	133	14,227				
Wollongong	193,292	11,210	7,296	52,219	992	71,717				
Woollahra	44,773	12,138	3,128	4,232	71	19,569				
Wyong	145,088	2,801	4,575	47,918	1,006	56,300				
Grand Total	5,284,560	417,295	213,366	1,256,021	14,998	1,901,680				

Lawn mowing and garden equipment sales data for the 2003 and 2004 calendar years (AIA, 2005) have been used to estimate the proportion of 2-stroke/4-stroke petrol and non-handheld/handheld equipment with a given maximum power rating, while the lawn mowing and garden equipment survey results (TR, 2009) have been used to estimate the total number of in-service equipment. Table 3-92 presents a summary of lawn mowing and garden equipment sales data for NSW.

Maximum	2003 calendar year non-handheld		2004 calendar year non-handheld		2003 and 2004 calendar year 1		lendar year non	-handheld
rated power (hp)	2-stroke sales	4-stroke sales	2-stroke sales	4-stroke sales	2-stroke sales	4-stroke sales	2-stroke proportion (%)	4-stroke proportion (%)
1 to 3	18,960	10,790	43,070	12,380	62,030	23,170	46.02	7.81
3 to 6	31,550	75,140	41,220	111,530	72,770	186,670	53.98	62.91
6 to 16	-	36,630	-	35,750	-	72,380	-	24.39
16 to 25	-	6,860	-	7,650	-	14,510	-	4.89
Grand Total	50,510	129,420	84,290	167,310	134,800	296,730	100.00	100.00

Table 3-92: Lawn mowing and garden equipment sales data for NSW

Air Emissions Inventory for the Greater Metropolitan Region of New South Wales
3. Data Sources and Results

Maximum		ndar year lheld	2004 calendar year handheld		2003 and 2004 calendar year handheld			andheld
rated power (hp)	2-stroke sales	4-stroke sales	2-stroke sales	4-stroke sales	2-stroke sales	4-stroke sales	2-stroke proportion (%)	4-stroke proportion (%)
1 to 3	126,730	7,150	208,430	10,130	335,160	17,280	95.48	100.00
3 to 6	10,410	-	5,450	-	15,860	-	4.52	-
Grand Total	137,140	7,150	213,880	10,130	351,020	17,280	100.00	100.00

The total population of in-service lawn mowing and garden equipment has been estimated by combining the domestic survey results (TR, 2009), gridded 1 km by 1 km dwelling estimates (TDC, 2009) and lawn mowing and garden equipment sales data (AIA, 2005). In-service lawn mowing and garden equipment population by equipment description and maximum rated power range data for the GMR is presented in Table 3-93 and shown in Figure 3-39.

	2008 equipment population					
Equipment description	1 to 3 hp	3 to 6 hp	6 to 11 hp	11 to 16 hp	16 to 25 hp	Grand Total
2-Str Chain Saws < 6 HP (res)	230,138	10,890	-	-	-	241,028
2-Str Lawn mowers (com)	55,549	65,167	-	-	-	120,715
2-Str Lawn mowers (res)	151,801	178,084	-	-	-	329,885
2-Str Leafblowers/Vacuums (com)	46,534	2,202	-	-	-	48,736
2-Str Leafblowers/Vacuums (res)	144,139	6,821	-	-	-	150,960
2-Str Other Lawn & Garden Eqp. (com)	2,936	139	-	-	-	3,075
2-Str Other Lawn & Garden Eqp. (res)	47,778	2,261	-	-	-	50,039
2-Str Rear Engine Riding Mowers (com)	-	10,003	-	-	-	10,003
2-Str Rear Engine Riding Mowers (res)	-	19,353	-	-	-	19,353
2-Str Shredders < 6 HP (res)	1,669	1,958	-	-	-	3,628
2-Str Trimmers/Edgers/Brush Cutter (com)	263,894	12,488	-	-	-	276,382
2-Str Trimmers/Edgers/Brush Cutter (res)	535,541	25,342	-	-	-	560,883
4-Str Chain Saws < 6 HP (res)	47,260	-	-	-	-	47,260
4-Str Lawn mowers (com)	22,902	184,507	71,541	-	-	278,950
4-Str Lawn mowers (res)	64,262	517,725	200,744	-	-	782,731
4-Str Leafblowers/Vacuums (com)	28,569	-	-	-	-	28,569
4-Str Leafblowers/Vacuums (res)	76,645	-	-	-	-	76,645
4-Str Other Lawn & Garden Eqp. (com)	1,230	-	-	-	-	1,230
4-Str Other Lawn & Garden Eqp. (res)	20,016	-	-	-	-	20,016
4-Str Pressure Washers	2,189	17,636	-	-	-	19,825
4-Str Rear Engine Riding Mowers (com)	-	34,128	13,233	1,326	1,326	50,014
4-Str Rear Engine Riding Mowers (res)	-	66,030	25,603	2,566	2,566	96,766
4-Str Shredders < 6 HP (res)	2,003	16,135	-	-	-	18,138
4-Str Trimmers/Edgers/Brush Cutter (com)	80,240	-	-	-	-	80,240
4-Str Trimmers/Edgers/Brush Cutter (res)	250,716	-	-	-	-	250,716

Table 3-93: Lawn mowing and garden equipment (domestic) population in the GMR

2008 Calendar Year Domestic-Commercial Emissions: Results 3. Data Sources and Results

	2008 equipment population						
Equipment description	1 to 3 hp	3 to 6 hp	6 to 11 hp	11 to 16 hp	16 to 25 hp	Grand Total	
Grand Total	2,076,009	1,170,870	311,122	3,893	3,893	3,565,786	

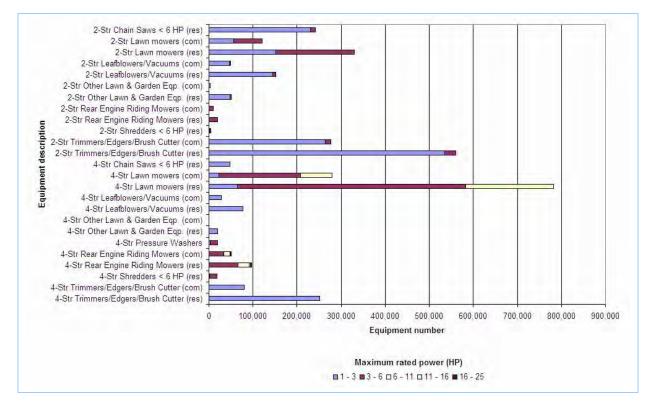
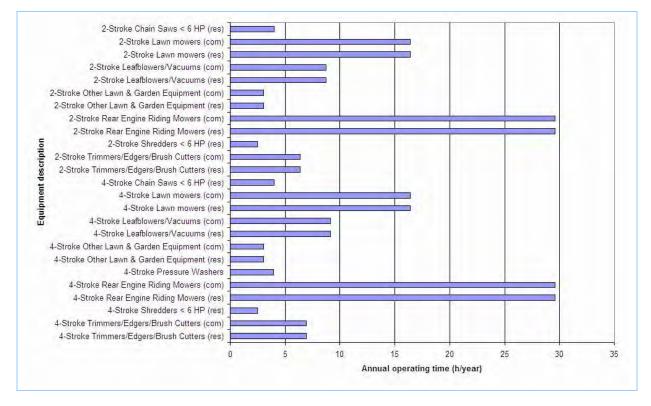


Figure 3-39: Lawn mowing and garden equipment (domestic) population in the GMR


The annual operating time of in-service lawn mowing and garden equipment has been estimated from the domestic survey results (TR, 2009). In-service lawn mowing and garden equipment annual operating time by equipment description for the GMR is presented in Table 3-94 and shown in Figure 3-40.

Equipment description	Annual operating time (h/year)
2-Stroke Chain Saws < 6 HP (res)	4.0
2-Stroke Lawn mowers (com)	16.4
2-Stroke Lawn mowers (res)	16.4
2-Stroke Leafblowers/Vacuums (com)	8.7
2-Stroke Leafblowers/Vacuums (res)	8.7
2-Stroke Other Lawn & Garden Equipment (com)	3.0
2-Stroke Other Lawn & Garden Equipment (res)	3.0
2-Stroke Rear Engine Riding Mowers (com)	29.6
2-Stroke Rear Engine Riding Mowers (res)	29.6
2-Stroke Shredders < 6 HP (res)	2.5

Table 3-94: Lawn mowing and garden equipment (domestic) annual operating time in the GMR

Air Emissions Inventory for the Greater Metropolitan Region of New South Wales 3. *Data Sources and Results*

Equipment description	Annual operating time (h/year)
2-Stroke Trimmers/Edgers/Brush Cutters (com)	6.4
2-Stroke Trimmers/Edgers/Brush Cutters (res)	6.4
4-Stroke Chain Saws < 6 HP (res)	4.0
4-Stroke Lawn mowers (com)	16.4
4-Stroke Lawn mowers (res)	16.4
4-Stroke Leafblowers/Vacuums (com)	9.1
4-Stroke Leafblowers/Vacuums (res)	9.1
4-Stroke Other Lawn & Garden Equipment (com)	3.0
4-Stroke Other Lawn & Garden Equipment (res)	3.0
4-Stroke Pressure Washers	3.9
4-Stroke Rear Engine Riding Mowers (com)	29.6
4-Stroke Rear Engine Riding Mowers (res)	29.6
4-Stroke Shredders < 6 HP (res)	2.5
4-Stroke Trimmers/Edgers/Brush Cutters (com)	6.9
4-Stroke Trimmers/Edgers/Brush Cutters (res)	6.9

Figure 3-40: Lawn mowing and garden equipment (domestic) annual operating time in the GMR

Exhaust and evaporative emissions from lawn mowing and garden equipment have been estimated using equipment population (TR, 2009), annual operating time (TR, 2009), fuel properties (Attorney-General's Department, 2008; and DRET, 2009), ambient temperature (Hurley, 2005) and daily and monthly temporal variation (TR, 2009) data within the *NONROAD2008a Model* (USEPA, 2009).

Figure 3-41 shows the NonRoad Model splash screen for the lawn mowing and garden equipment (domestic) emission estimation simulation.

2008 Calendar Year Domestic-Commercial Emissions: Results 3. Data Sources and Results

Lie	<u>Scenario</u> <u>Model</u> <u>A</u> dvanced options <u>Batch</u> <u>Help</u>
ſ	U.S. Environmental Protection Agency
	Nonroad Emissions Model
Cu	<u>View Message File</u> nulation Run Title : Lawn mowing and garden equipment (domestic) rrent Message File : Imge2008.msg 5787 bytes 9/04/2010 5:05:57 PM rrent Output Data File : Imge2008.out 16365 bytes 9/04/2010 5:05:57 PM

Figure 3-41: Lawn mowing and garden equipment (domestic) NonRoad Model splash screen

Figure 3-42 shows the NonRoad Model options screen for the lawn mowing and garden equipment (domestic) emission estimation simulation.

Options			
	Title 1 Lawn mowing and garden equipment (domestic)		
Title 2			
GMR Air Emissions Inventory 2008 Calendar Year			
Fuel RVP for gas 10.2	Minimum temp (F) 39		
Oxygen weight % 2.84	Maximum temp (F) 102		
Gas Sulfur % 0.0142	, , , , , , , , , , , , , , , , , , , ,		
Diesel Sulfur % 0.005	Stage II Control % 0.0		
Marine Diesel Sulfur % 0.005	EtOH blend mkt % 11.3		
CNG/LPG Sulfur % 0.01	EtOH volume % 10		
OK Cancel	Altitude High C Low ©		

Figure 3-42: Lawn mowing and garden equipment (domestic) NonRoad Model options

In 2008, 677,384 kL and 6,009,999 kL of ethanol blended and total automotive gasoline, respectively was sold in NSW, so ethanol blended automotive gasoline has 11.3% share of the NSW market for all 136

automotive gasoline (DRET, 2009) and contains 10% ethanol by volume (Attorney-General's Department, 2008).

The NonRoad Model has been run with the optional daily minimum, maximum and average ambient temperature and petrol RVP variation file. Table 3-95 presents the daily minimum, maximum and average ambient temperature (Hurley, 2005) and petrol RVP by month (PCO, 2011) data used within the *NONROAD2008a Model* (USEPA, 2009).

Month	RVP (psi)	T _{min} (°F)	T _{max} (°F)	T _{avg} (°F)				
January	9.0	57.1	101.7	76.7				
February	9.0	59.9	94.8	74.7				
March	9.9	54.0	87.8	67.6				
April	10.9	51.1	74.0	59.9				
May	10.9	47.9	67.0	54.5				
June	10.9	43.0	64.3	50.5				
July	10.9	39.9	62.1	48.0				
August	10.9	39.4	65.0	49.3				
September	10.9	41.7	71.9	54.4				
October	10.9	45.3	80.3	60.2				
November	9.9	48.5	92.2	68.3				
December	9.0	54.7	101.6	76.4				

Table 3-95: Lawn mowing and garden equipment (domestic) NonRoad Model ambient temperature and petrol RVP by month

Table 3-96 presents the lawn mowing and garden equipment power rating (AIA, 2005), useful life (USEPA, 2009) and population (TR, 2009) data used within the *NONROAD2008a Model* (USEPA, 2009).

SCC	Equipment description		hp _{max}	hp avg	Life (h)	Equipment population
2260004010	2-Str Lawn mowers (res)	1	3	2.55	47.9	151800.8
2260004010	2-Str Lawn mowers (res)	3	6	4.1	47.9	178083.9
2260004011	2-Str Lawn mowers (com)	1	3	2.55	268	55548.7
2260004011	2-Str Lawn mowers (com)	3	6	4.1	268	65166.6
2260004040	2-Str Rear Engine Riding Mowers (res)	3	6	5.105	79.3	19353.2
2260004041	2-Str Rear Engine Riding Mowers (com)	3	6	5.105	200	10002.9
2260004025	2-Str Trimmers/Edgers/Brush Cutter (res)	1	3	1.4	35.3	535540.8
2260004025	2-Str Trimmers/Edgers/Brush Cutter (res)	3	6	3.3	35.3	25342.2
2260004026	2-Str Trimmers/Edgers/Brush Cutter (com)	1	3	1.4	286.8	263894.0
2260004026	2-Str Trimmers/Edgers/Brush Cutter (com)	3	6	3.3	286.8	12487.6
2260004075	2-Str Other Lawn & Garden Eqp. (res)	1	3	2.34	200	47778.0
2260004075	2-Str Other Lawn & Garden Eqp. (res)	3	6	4.867	200	2260.9
2260004076	2-Str Other Lawn & Garden Eqp. (com)	1	3	2.34	200	2935.7
2260004076	2-Str Other Lawn & Garden Eqp. (com)	3	6	4.867	200	138.9
2260004050	2-Str Shredders < 6 HP (res)	1	3	2.986	200	1669.3

Table 3-96: Lawn mowing and garden equipment (domestic) NonRoad Model population

2008 Calendar Year Domestic-Commercial Emissions: Results 3. Data Sources and Results

SCC	Equipment description	hp _{min}	hp _{max}	hp _{avg}	Life (h)	Equipment population
2260004050	2-Str Shredders < 6 HP (res)	3	6	4.835	200	1958.3
2260004030	2-Str Leafblowers/Vacuums (res)	1	3	1.41	40.4	144139.0
2260004030	2-Str Leafblowers/Vacuums (res)	3	6	3.42	40.4	6820.8
2260004031	2-Str Leafblowers/Vacuums (com)	1	3	1.41	609.7	46533.9
2260004031	2-Str Leafblowers/Vacuums (com)	3	6	3.42	609.7	2202.0
2260004020	2-Str Chain Saws < 6 HP (res)	1	3	2.11	39.2	230138.2
2260004020	2-Str Chain Saws < 6 HP (res)	3	6	3.916	39.2	10890.3
2265004010	4-Str Lawn mowers (res)	1	3	2.55	47.9	64261.5
2265004010	4-Str Lawn mowers (res)	3	6	4.1	47.9	517725.4
2265004010	4-Str Lawn mowers (res)	6	11	6.24	400	200744.4
2265004011	4-Str Lawn mowers (com)	1	3	2.55	268	22901.6
2265004011	4-Str Lawn mowers (com)	3	6	4.1	268	184507.3
2265004011	4-Str Lawn mowers (com)	6	11	6.24	400	71541.4
2265004040	4-Str Rear Engine Riding Mowers (res)	3	6	5.105	79.3	66030.4
2265004040	4-Str Rear Engine Riding Mowers (res)	6	11	9.153	79.3	25602.8
2265004040	4-Str Rear Engine Riding Mowers (res)	11	16	12.61	79.3	2566.3
2265004040	4-Str Rear Engine Riding Mowers (res)	16	25	18.26	750	2566.3
2265004041	4-Str Rear Engine Riding Mowers (com)	3	6	5.105	200	34128.4
2265004041	4-Str Rear Engine Riding Mowers (com)	6	11	9.153	627	13233.1
2265004041	4-Str Rear Engine Riding Mowers (com)	11	16	12.61	627	1326.4
2265004041	4-Str Rear Engine Riding Mowers (com)	16	25	18.26	750	1326.4
2265004025	4-Str Trimmers/Edgers/Brush Cutter (res)	1	3	1.4	35.3	250716.1
2265004026	4-Str Trimmers/Edgers/Brush Cutter (com)	1	3	1.4	286.8	80239.8
2265004075	4-Str Other Lawn & Garden Eqp. (res)	1	3	2.34	200	20015.6
2265004076	4-Str Other Lawn & Garden Eqp. (com)	1	3	2.34	200	1229.8
2265004050	4-Str Shredders < 6 HP (res)	1	3	2.986	200	2002.7
2265004050	4-Str Shredders < 6 HP (res)	3	6	4.835	200	16135.1
2265006030	4-Str Pressure Washers	1	3	3	150	2189.0
2265006030	4-Str Pressure Washers	3	6	4.827	200	17635.7
2265004030	4-Str Leafblowers/Vacuums (res)	1	3	1.41	40.4	76645.0
2265004031	4-Str Leafblowers/Vacuums (com)	1	3	1.41	609.7	28569.3
2265004020	4-Str Chain Saws < 6 HP (res)	1	3	2.11	39.2	47260.5

Table 3-97 presents the lawn mowing and garden equipment load factor (USEPA, 2009) and annual operating time (TR, 2009) data used within the *NONROAD2008a Model* (USEPA, 2009).

Table 3-97: Lawn mowing and garden equipment (domestic) NonRoad Model load factor and
annual operating time

SCC			hp _{max}	LF	Annual operating time (h/year)
2260004010	2-Stroke Lawn mowers (res)	0	9999	0.33	16.4
2260004011	2-Stroke Lawn mowers (com)	0	9999	0.33	16.4
2260004040	2-Stroke Rear Engine Riding Mowers (res)		9999	0.38	29.6
2260004041	2-Stroke Rear Engine Riding Mowers (com)	0	9999	0.38	29.6

SCC	Equipment description		hp _{max}	LF	Annual operating time (h/year)
2260004025	2-Stroke Trimmers/Edgers/Brush Cutters (res)	0	9999	0.91	6.4
2260004026	2-Stroke Trimmers/Edgers/Brush Cutters (com)	0	9999	0.91	6.4
2260004075	2-Stroke Other Lawn & Garden Equipment (res)	0	9999	0.58	3.0
2260004076	2-Stroke Other Lawn & Garden Equipment (com)	0	9999	0.58	3.0
2260004050	2-Stroke Shredders < 6 HP (res)	0	9999	0.80	2.5
2260004030	2-Stroke Leafblowers/Vacuums (res)	0	9999	0.94	8.7
2260004031	2-Stroke Leafblowers/Vacuums (com)	0	9999	0.94	8.7
2260004020	2-Stroke Chain Saws < 6 HP (res)	0	9999	0.70	4.0
2265004010	4-Stroke Lawn mowers (res)	0	9999	0.33	16.4
2265004011	4-Stroke Lawn mowers (com)	0	9999	0.33	16.4
2265004040	4-Stroke Rear Engine Riding Mowers (res)	0	9999	0.38	29.6
2265004041	4-Stroke Rear Engine Riding Mowers (com)	0	9999	0.38	29.6
2265004025	4-Stroke Trimmers/Edgers/Brush Cutters (res)	0	9999	0.91	6.9
2265004026	4-Stroke Trimmers/Edgers/Brush Cutters (com)	0	9999	0.91	6.9
2265004075	4-Stroke Other Lawn & Garden Equipment (res)	0	9999	0.58	3.0
2265004076	4-Stroke Other Lawn & Garden Equipment (com)	0	9999	0.58	3.0
2265004050	4-Stroke Shredders < 6 HP (res)	0	9999	0.80	2.5
2265006030	4-Stroke Pressure Washers	0	9999	0.85	3.9
2265004030	4-Stroke Leafblowers/Vacuums (res)	0	9999	0.94	9.1
2265004031	4-Stroke Leafblowers/Vacuums (com)		9999	0.94	9.1
2265004020	4-Stroke Chain Saws < 6 HP (res)	0	9999	0.70	4.0

The NonRoad Model has been run with the optional weekday/weekend and monthly temporal variation file. Section 3.6.6 provides further details about the temporal variation in exhaust and evaporative emissions from lawn mowing and garden equipment.

Table 3-98 presents the lawn mowing and garden equipment fuel consumption estimates from the *NONROAD2008a Model* (USEPA, 2009).

		2008 fuel consumption (kL/year)				
Classification	Equipment description	2-stroke petrol	4-stroke petrol	Grand Total		
Commercial Equipment	t Pressure Washers		233	233		
Commercial Equipment Total	-	233	233			
	Lawn mowers	1,459	4,821	6,280		
	Leafblowers/Vacuums	484	288	772		
Lawn and Garden Equipment (com)	Other Lawn & Garden Eqp.	11	4	15		
	Rear Engine Riding Mowers	325	2,690	3,014		
	Trimmers/Edgers/Brush Cutter	1,938	541	2,479		
Lawn and Garden Equipment (com)	4,217	8,344	12,560			
Lawn and Garden Equipment (res)	Chain Saws < 6 HP	1,206	214	1,421		

Table 3-98: Lawn mowing and garden equipment (domestic) NonRoad Model fuel consumption in
the GMR

		2008 fuel consumption (kL/year)					
Classification	Equipment description	2-stroke petrol	4-stroke petrol	Grand Total			
	Lawn mowers	3,988	13,875	17,864			
	Leafblowers/Vacuums	1,500	772	2,272			
	Other Lawn & Garden Eqp.	174	63	236			
	Rear Engine Riding Mowers	628	5,204	5,832			
	Shredders < 6 HP	19	129	148			
	Trimmers/Edgers/Brush Cutter	3,933	1,691	5,624			
Lawn and Garden Equipment (res) To	11,448	21,948	33,396				
Grand Total	15,665	30,525	46,190				

3.6.4 Emission and Speciation Factors

Table 3-99 summarises the emission and speciation factors used for lawn mowing and garden equipment.

Substance	Emission source	Emission and speciation factor source
Criteria pollutants: CO, NO _x , PM _{2.5} , PM ₁₀ and SO ₂	2-stroke and 4- stroke exhaust	- NONROAD2008a Model (USEPA, 2009)
Criteria pollutants: VOC	2-stroke and 4- stroke exhaust and evaporative	- NONROAD2008a Model (USEPA, 2009)
Criteria pollutants: TSP	2-stroke and 4- stroke exhaust	 PMPROF 400 - California Emission Inventory and Reporting System (CEIDARS), Particulate Matter (PM) Speciation Profiles (CARB, 2008b)
Speciated NO _x	2-stroke and 4- stroke exhaust	- Technology Transfer Network - Clearinghouse for Inventories & Emissions Factors (USEPA, 2003)
	2-stroke exhaust	 Table D-1 (Default 2-stroke Exhaust Baseline) - Documentation for Aircraft, Commercial Marine Vessel, Locomotive, and other NonRoad Components of the National Emissions Inventory, Volume I - Methodology (Pechan, 2005) ORGPROF 815 - California Emission Inventory and Reporting System (CEIDARS), Organic Gas Speciation Profiles (CARB, 2005)
Speciated VOC	4-stroke exhaust	 Table D-1 (Default 4-stroke Exhaust Baseline) - Documentation for Aircraft, Commercial Marine Vessel, Locomotive, and other NonRoad Components of the National Emissions Inventory, Volume I - Methodology (Pechan, 2005) ORGPROF 816 - California Emission Inventory and Reporting System (CEIDARS), Organic Gas Speciation Profiles (CARB, 2005)
	evaporative	 Petrol Vapour Speciation Profile - Air Emissions Inventory for the Greater Metropolitan Region in NSW, Commercial Emissions Module: Results (DECC, 2007a)
Organic air toxics	2-stroke exhaust	- Table D-1 (Default 2-stroke Exhaust Baseline) - Documentation for Aircraft, Commercial Marine Vessel, Locomotive, and other NonRoad Components of the National Emissions Inventory, Volume

Table 3-99: Lawn mowing and garden equipment (domestic) emission and speciation factors

Air Emissions Inventory for the Greater Metropolitan Region of New South Wales 3. *Data Sources and Results*

Substance	Emission source	Emission and speciation factor source
		 I – Methodology (Pechan, 2005) ORGPROF 815 - California Emission Inventory and Reporting System (CEIDARS), Organic Gas Speciation Profiles (CARB, 2005)
	4-stroke exhaust	 Table D-1 (Default 4-stroke Exhaust Baseline) - Documentation for Aircraft, Commercial Marine Vessel, Locomotive, and other NonRoad Components of the National Emissions Inventory, Volume I – Methodology (Pechan, 2005) ORGPROF 816 - California Emission Inventory and Reporting System (CEIDARS), Organic Gas Speciation Profiles (CARB, 2005)
	evaporative	- Petrol Vapour Speciation Profile - Air Emissions Inventory for the Greater Metropolitan Region in NSW, Commercial Emissions Module: Results (DECC, 2007a)
Motal air tavica	2-stroke exhaust	 Table D-3 (2-Stroke Metal/Fuel Fraction) Documentation for Aircraft, Commercial Marine Vessel, Locomotive, and other NonRoad Components of the National Emissions Inventory, Volume I – Methodology (Pechan, 2005) PMPROF 400 - California Emission Inventory and Reporting System (CEIDARS), Particulate Matter (PM) Speciation Profiles (CARB, 2007)
Metal air toxics	4-stroke exhaust	 Table D-3 (4-Stroke Metal/Fuel Fraction) Documentation for Aircraft, Commercial Marine Vessel, Locomotive, and other NonRoad Components of the National Emissions Inventory, Volume I – Methodology (Pechan, 2005) PMPROF 400 - California Emission Inventory and Reporting System (CEIDARS), Particulate Matter (PM) Speciation Profiles (CARB, 2007)
Polycyclic aromatic	2-stroke exhaust	- Table D-2 (2-Stroke) - Documentation for Aircraft, Commercial Marine Vessel, Locomotive, and other NonRoad Components of the National Emissions Inventory, Volume I – Methodology (Pechan, 2005)
hydrocarbons: PAH	4-stroke exhaust	 Table D-2 (4-Stroke) - Documentation for Aircraft, Commercial Marine Vessel, Locomotive, and other NonRoad Components of the National Emissions Inventory, Volume I – Methodology (Pechan, 2005)
Polychlorinated dibenzo-p-dioxins and	2-stroke exhaust	 Table D-1 (2-Stroke Dioxin/Furan/Fuel Fraction) - Documentation for Aircraft, Commercial Marine Vessel, Locomotive, and other NonRoad Components of the National Emissions Inventory, Volume I – Methodology (Pechan, 2005)
Polychlorinated dibenzofurans: PCDD and PCDF	4-stroke exhaust	 Table D-1 (4-Stroke Dioxin/Furan/Fuel Fraction) - Documentation for Aircraft, Commercial Marine Vessel, Locomotive, and other NonRoad Components of the National Emissions Inventory, Volume I – Methodology (Pechan, 2005)
Ammonia	2-stroke and 4- stroke exhaust	- Table III-6 - Estimating Ammonia Emissions from Anthropogenic Non-Agricultural Sources – Draft Final Report (Pechan, 2004)
Greenhouse gases: CH ₄ and CO ₂	2-stroke and 4- stroke exhaust	- NONROAD2008a Model (USEPA, 2009)
Greenhouse gases: N2O	2-stroke and 4- stroke exhaust	- Table A-6 - Climate Leaders Greenhouse Gas Inventory Protocol Core Module Guidance, Direct Emissions from Mobile Combustion Sources (USEPA, 2008b)

3. Data Sources and Results

Table 3-100 presents average activity weighted 2-stroke and 4-stroke exhaust and evaporative emission factors for lawn mowing and garden equipment.

Emission source		Emission factors (kg/kL)										
	NO _x	N ₂ O	NH ₃	SO_2	PM_{10}	PM _{2.5}	VOC	CH ₄	СО	CO ₂	РАН	PCDF and PCDF
2-stroke petrol exhaust	1.98	0.058	0.029	0.109	11.58	10.65	339.17	2.952	786.97	1,293.48	0.0167	3.29×10^{-12}
4-stroke petrol exhaust	3.92	0.058	0.029	0.182	0.68	0.63	64.50	6.914	742.55	2,111.08	0.0708	3.29×10^{-12}
2-stroke petrol evaporative	-	-	-	-	-	-	71.47	-	-	-	-	-
4-stroke petrol evaporative	-	-	-	-	-	-	57.51	0.445	-	-	-	-

Table 3-100: Lawn mowing and garden equipment (domestic) emission factors

3.6.5 Spatial Distribution of Emissions

Table 3-101 summarises the data used for spatially allocating emissions from lawn mowing and garden equipment.

Emission source	Spatial data	Spatial data source
Exhaust and evaporative emissions from	Gridded 1 km x 1 km free	- Forecasts for Free Standing
lawn mowing and garden equipment	standing dwelling	Dwelling from 2006 to 2036
(domestic)	estimates	(TDC, 2009)

Table 3-101: Lawn mowing and garden equipment (domestic) spatial data

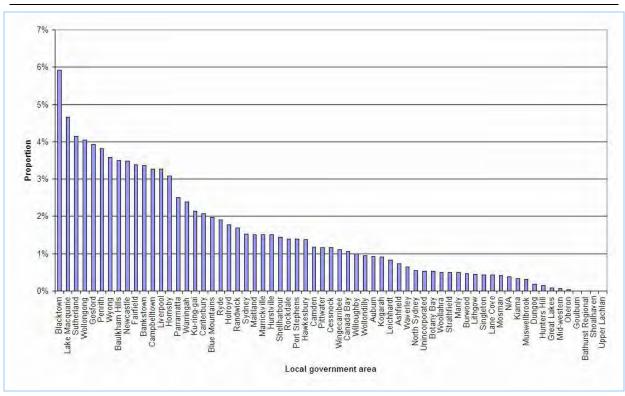

Emissions from lawn mowing and garden equipment have been spatially distributed according to petrol consumption, which is proportional to free standing dwellings in each 1 km by 1 km grid cell (TDC, 2009). The proportion of petrol consumption by LGA and region is presented in Table 3-102 and shown in Figure 3-43.

Table 3-102: Lawn mowing and garden equipment (domestic) spatial distribution of petrol consumption by LGA and region

		2008 proportion of annual petrol consumption (%)							
LGA	Newcastle	Non Urban	Sydney	Wollongong	Grand Total				
Ashfield	-	-	0.72	-	0.72				
Auburn	-	-	0.94	-	0.94				
Bankstown	-	-	3.37	-	3.37				
Bathurst Regional	-	2.78×10^{-3}	-	-	2.78×10^{-3}				
Baulkham Hills	-	2.50×10^{-3}	3.50	-	3.50				
Blacktown	-	-	5.92	-	5.92				
Blue Mountains	-	0.70	1.28	-	1.97				
Botany Bay	-	-	0.53	-	0.53				
Burwood	-	-	0.47	-	0.47				
Camden	-	-	1.19	-	1.19				
Campbelltown	-	-	3.26	-	3.26				
Canada Bay	-	-	1.06	-	1.06				
Canterbury	-	-	2.08	-	2.08				
Cessnock	4.90 × 10-2	1.11	-	-	1.15				
Dungog	-	0.18	-	-	0.18				
Fairfield	-	-	3.39	-	3.39				
Gosford	-	1.06	2.87	-	3.93				
Goulburn Mulwaree	-	5.41 × 10 ⁻³	-	-	5.41 × 10-3				
Great Lakes	-	8.49×10^{-2}	-	-	8.49 × 10 ⁻²				
Hawkesbury	-	2.90×10^{-2}	1.34	-	1.37				
Holroyd	-	-	1.77	-	1.77				
Hornsby	-	4.26×10^{-3}	3.07	-	3.08				
Hunters Hill	-	-	0.15	-	0.15				
Hurstville	-	-	1.50	-	1.50				
Kiama	-	0.32	-	-	0.32				
Kogarah	-	-	0.92	-	0.92				

2008 Calendar Year Domestic-Commercial Emissions: Results 3. Data Sources and Results

LGA		2008 proportion of annual petrol consumption (%)						
LOA	Newcastle	Non Urban	Sydney	Wollongong	Grand Total			
Ku-ring-gai	-	-	2.14	-	2.14			
Lake Macquarie	2.46	2.21	-	-	4.66			
Lane Cove	-	-	0.43	-	0.43			
Leichhardt	-	-	0.83	-	0.83			
Lithgow	-	0.45	-	-	0.45			
Liverpool	-	-	3.26	-	3.26			
Maitland	0.12	1.39	-	-	1.51			
Manly	-	-	0.49	-	0.49			
Marrickville	-	-	1.51	-	1.51			
Mid-western Regional	-	6.41×10^{-2}	-	-	6.41×10^{-2}			
Mosman	-	-	0.42	-	0.42			
Muswellbrook	-	0.31	-	-	0.31			
N/A	1.46×10^{-2}	$6.58 imes 10^{-2}$	0.27	$3.05 imes 10^{-2}$	0.38			
Newcastle	3.48	-	-	-	3.48			
North Sydney	-	-	0.55	-	0.55			
Oberon	-	$2.87 imes 10^{-2}$	-	-	$2.87\times10^{\text{-}2}$			
Parramatta	-	-	2.50	-	2.50			
Penrith	-	-	3.81	-	3.81			
Pittwater	-	-	1.16	-	1.16			
Port Stephens	7.89 × 10-2	1.31	-	-	1.39			
Randwick	-	-	1.69	-	1.69			
Rockdale	-	-	1.39	-	1.39			
Ryde	-	-	1.90	-	1.90			
Shellharbour	-	1.10	-	0.34	1.44			
Shoalhaven	-	2.06×10^{-3}	-	-	2.06×10^{-3}			
Singleton	-	0.44	-	-	0.44			
Strathfield	-	-	0.50	-	0.50			
Sutherland	-	-	4.15	-	4.15			
Sydney	-	-	1.53	-	1.53			
Unincorporated	-	-	0.54	-	0.54			
Upper Lachlan	-	$8.65 imes 10^{-4}$	-	-	$8.65\times10^{\text{-}4}$			
Warringah	-	-	2.39	-	2.39			
Waverley	-	-	0.64	-	0.64			
Willoughby	-	-	0.99	-	0.99			
Wingecarribee	-	1.10	6.02 × 10 ⁻³	1.94×10^{-3}	1.11			
Wollondilly	-	1.49 × 10-2	0.93	$4.83 imes 10^{-4}$	0.95			
Wollongong	-	-	0.33	3.72	4.05			
Woollahra	-	-	0.50	-	0.50			
Wyong	-	3.57	-	-	3.57			
Grand Total	6.20	15.55	74.16	4.09	100.00			

Air Emissions Inventory for the Greater Metropolitan Region of New South Wales 3. *Data Sources and Results*

Figure 3-43: Lawn mowing and garden equipment (domestic) spatial distribution of petrol consumption by LGA

Figure 3-44 shows the spatial distribution of lawn mowing and garden equipment emissions.

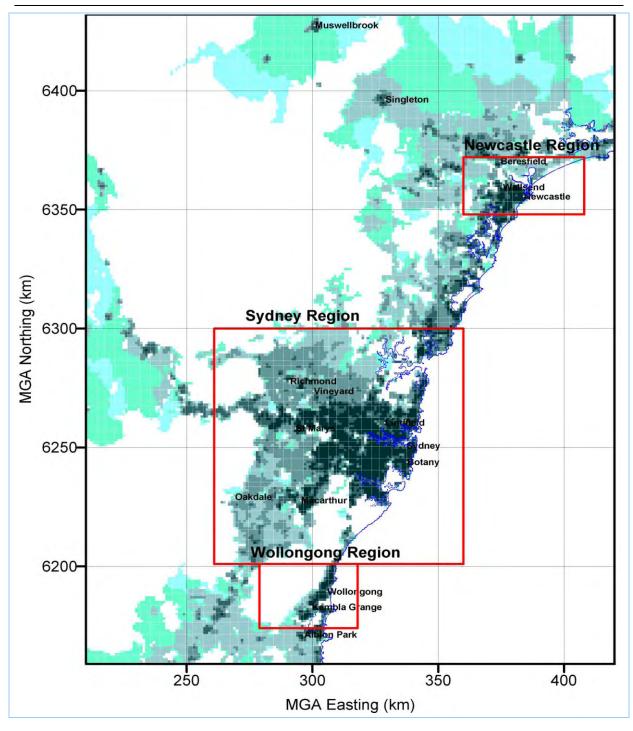


Figure 3-44: Lawn mowing and garden equipment (domestic) spatial distribution of emissions

3.6.6 Temporal Variation of Emissions

Table 3-103 summarises the data used to estimate the temporal variation in emissions from lawn mowing and garden equipment.

Emission source	Temporal data	Temporal data source		
Exhaust and evaporative emissions from lawn mowing and garden equipment (domestic)	Monthly, daily and hourly: Derived from domestic survey	- Domestic Lawn Mowing Pollution Survey (TR, 2009)		

Table 3-103: Lawn mowing and garden equipment (domestic) temporal data

The temporal variation in exhaust and evaporative emissions from lawn mowing and garden equipment have been estimated using equipment population (TR, 2009), annual operating time (TR, 2009), fuel properties (Attorney-General's Department, 2008; and DRET, 2009), ambient temperature (Hurley, 2005) and daily and monthly temporal variation (TR, 2009) data within the *NONROAD2008a Model* (USEPA, 2009). Hourly temporal variation profiles for exhaust emissions are presented in Table 3-104 and shown in Figure 3-45.

Table 3-104: Lawn mowing and garden equipment (domestic) exhaust hourly temporal profile

Hour	Week day and weekend proportion (%)	Hour	Week day and weekend proportion (%)
1	-	13	8.05
2	-	14	7.66
3	-	15	9.20
4	-	16	10.98
5	-	17	11.62
6	-	18	5.87
7	0.26	19	1.40
8	0.77	20	0.26
9	2.94	21	-
10	10.09	22	-
11	18.90	23	-
12	12.01	24	-

Hourly temporal variation profiles for evaporative emissions are presented in Table 3-105 (weighted hourly composite) and shown in Figure 3-46 (weighted hourly composite by source type).

Hour	Week day proportion (%)	Weekend proportion (%)	Hour	Week day proportion (%)	Weekend proportion (%)			
1	2.41	1.56	13	6.61	7.13			
2	2.38	1.53	14	6.46	6.89			
3	2.35	1.52	15	6.58	7.52			
4	2.34	1.51	16	6.65	8.18			
5	2.32	1.50	17	6.34	8.20			
6	2.36	1.52	18	4.58	5.03			
7	2.67	1.81	19	3.22	2.57			
8	3.27	2.38	20	2.73	1.85			
9	4.34	3.84	21	2.56	1.65			
10	6.39	7.70	22	2.51	1.62			

Table 3-105: Lawn mowing and garden equipment (domestic) evaporative hourly temporal profile

2008 Calendar Year Domestic-Commercial Emissions: Results 3. Data Sources and Results

Hour	Week day proportion (%)	Weekend proportion (%)	Hour	Week day proportion (%)	Weekend proportion (%)
11	8.65	12.30	23	2.47	1.59
12	7.39	9.04	24	2.44	1.57

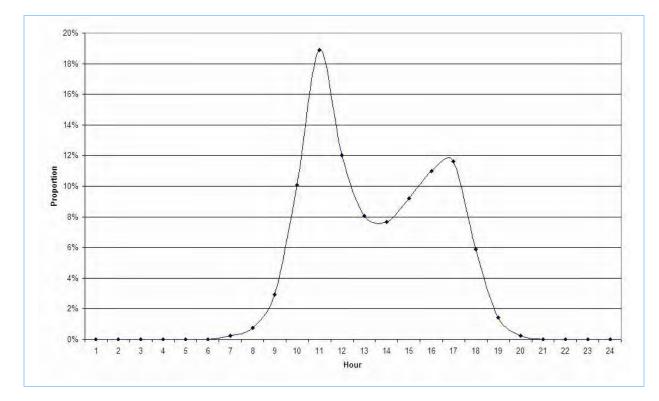
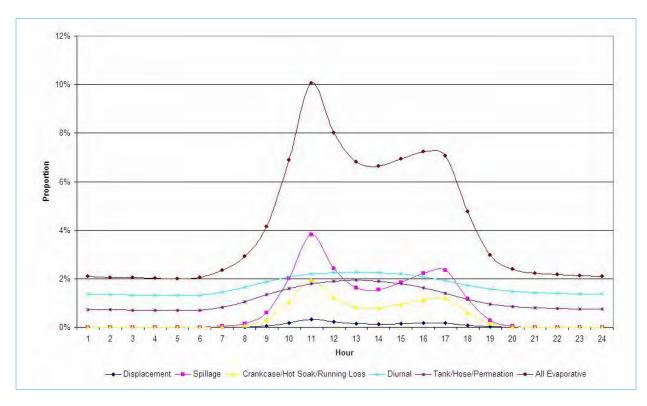



Figure 3-45: Lawn mowing and garden equipment (domestic) exhaust hourly temporal profile

Daily temporal variation profiles for exhaust emissions are presented in Table 3-106 and shown in Figure 3-47.

Day	Monday		Wednesday				_
Proportion (%)	8.24	8.24	8.24	8.24	8.24	29.41	29.41

Table 3-106: Lawn mowing and garden equipment (domestic) exhaust daily temporal profile

Daily temporal variation profiles for evaporative emissions are presented in Table 3-107 (weighted daily composite) and shown in Figure 3-48 (weighted daily composite by source type).

Table 3-107: Lawn mowing and garden equipment (domestic) evaporative daily temporal profile

Day	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday	Sunday
Proportion (%)	12.34	12.34	12.34	12.34	12.34	19.14	19.14

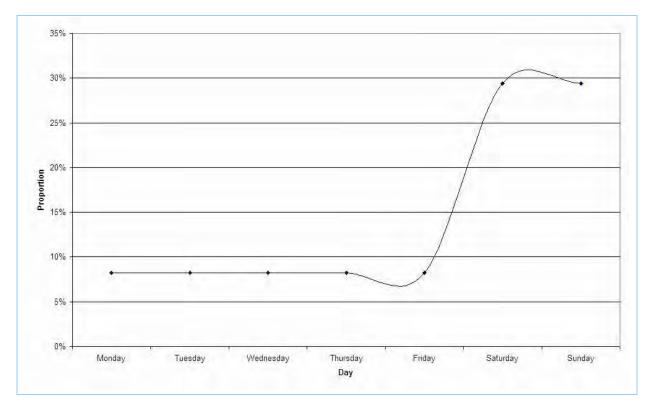
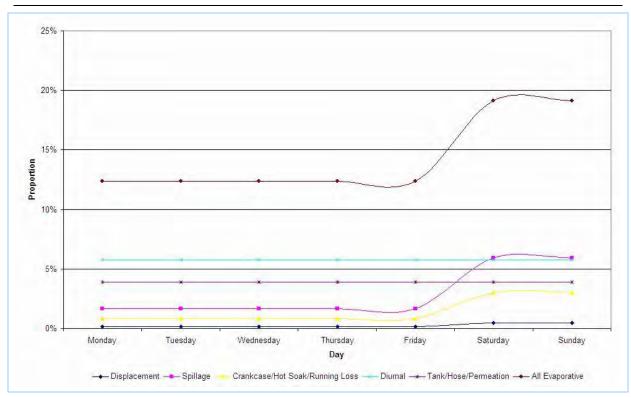



Figure 3-47: Lawn mowing and garden equipment (domestic) exhaust daily temporal profile

Figure 3-48: Lawn mowing and garden equipment (domestic) evaporative daily temporal profile

Monthly temporal variation profiles for exhaust emissions are presented in Table 3-108 and shown in Figure 3-49.

Tuble 5 100. Zumi moning and galacit equipment (aomestic) estados moniniy temporar prome								
Month	Proportion (%)	Month	Proportion (%)					
January	12.86	July	3.64					
February	11.46	August	4.38					
March	8.02	September	8.46					
April	6.70	October	10.13					
May	5.37	November	11.81					
June	2.91	December	14.26					

		-					
Table 3-108: Lawn	mouring and	gandon og	minmont	domostic) avhaust month	TT fammar	almrofila
I able 5-100. Lawit	mowing and	garuen eu	uidilleni	uomestic	i exhaust momm	viembor	al profile

Monthly temporal variation profiles for evaporative emissions are presented in Table 3-109 (weighted monthly composite) and shown in Figure 3-50 (weighted monthly composite by source type).

Promo								
Month	Proportion (%)	Month	Proportion (%)					
January	11.46	July	5.36					
February	10.65	August	5.72					
March	8.80	September	7.57					
April	7.67	October	8.81					
May	6.59	November	10.13					
June	5.37	December	11.87					

 Table 3-109: Lawn mowing and garden equipment (domestic) evaporative monthly temporal

 profile

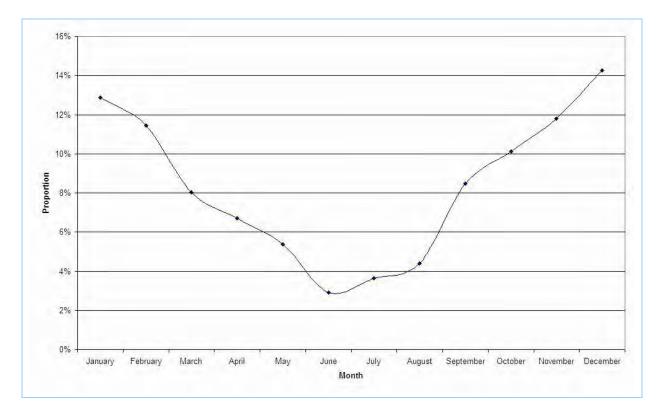
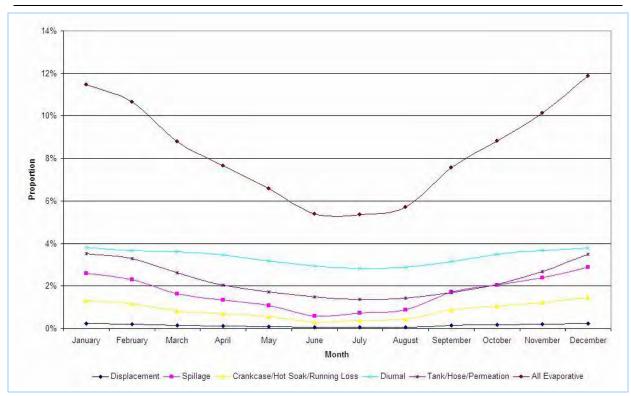



Figure 3-49: Lawn mowing and garden equipment (domestic) exhaust monthly temporal profile

Figure 3-50: Lawn mowing and garden equipment (domestic) evaporative monthly temporal profile

3.6.7 *Emission Estimates*

Table 3-110 presents annual emissions of selected substances from lawn mowing and garden equipment by activity.

Activity	Substance	Emissions (kg/year)						
	Substance	Newcastle	Non Urban	Sydney	Wollongong	GMR		
	1,3-BUTADIENE	1,868	4,689	22,356	1,234	30,146		
	ACETALDEHYDE	1,048	2,631	12,544	692	16,915		
	BENZENE	14,685	36,856	175,731	9,698	236,969		
	CARBON MONOXIDE	2,168,539	5,442,703	25,950,733	1,432,068	34,994,042		
	FORMALDEHYDE	2,928	7,349	35,041	1,934	47,252		
Lawn Mowing	ISOMERS OF XYLENE	43,663	109,588	522,514	28,834	704,600		
and Garden Equipment	LEAD & COMPOUNDS	14	36	171	9.45	231		
Exhaust (Domestic)	OXIDES OF NITROGEN	9,342	23,448	111,800	6,170	150,760		
	PARTICULATE MATTER ≤ 10 μm	12,532	31,454	149,974	8,276	202,237		
	PARTICULATE MATTER ≤ 2.5 μm	11,530	28,938	137,976	7,614	186,058		
	POLYCYCLIC AROMATIC	150	377	1,798	99	2,424		

Table 3-110: Lawn mowing and garden equipment	(domestic) emissions by activity
---	----------------------------------

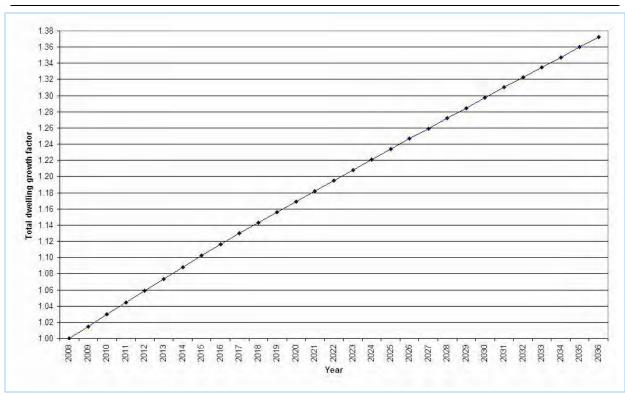
Air Emissions Inventory for the Greater Metropolitan Region of New South Wales 3. *Data Sources and Results*

Activity	Substance	Emissions (kg/year)						
Activity	Substance	Newcastle	Non Urban	Sydney	Wollongong	GMR		
	HYDROCARBONS							
	SULFUR DIOXIDE	449	1,128	5,376	297	7,250		
	TOLUENE	40,965	102,816	490,226	27,053	661,060		
	TOTAL SUSPENDED PARTICULATE	12,920	32,427	154,612	8,532	208,492		
	TOTAL VOLATILE ORGANIC COMPOUNDS	451,260	1,132,595	5,400,196	298,005	7,282,056		
Less Martine	BENZENE	1,390	3,488	16,631	918	22,426		
Lawn Mowing and Garden	ISOMERS OF XYLENE	980	2,459	11,727	647	15,813		
Equipment	TOLUENE	3,385	8,496	40,510	2,236	54,627		
Evaporative (Domestic)	TOTAL VOLATILE ORGANIC COMPOUNDS	178,168	447,175	2,132,125	117,659	2,875,128		

Table 3-111 presents annual emissions of selected substances from lawn mowing and garden equipment by source type.

Source type	Substance			issions (kg/y	'ear)	
Source type	Substance	Newcastle	Non Urban	Sydney	Wollongong	GMR
	1,3-BUTADIENE	706	1,773	8,454	467	11,400
	ACETALDEHYDE	548	1,375	6,557	362	8,842
	BENZENE	8,283	20,790	99,125	5,470	133,668
	CARBON MONOXIDE	763,956	1,917,414	9,142,204	504,504	12,328,079
	FORMALDEHYDE	836	2,097	10,000	552	13,485
	ISOMERS OF XYLENE	35,391	88,826	423,520	23,372	571,108
	LEAD & COMPOUNDS	4.85	12	58	3.21	78
	OXIDES OF NITROGEN	1,925	4,833	23,042	1,272	31,072
	PARTICULATE MATTER	11,238	28,206	134,487	7,422	181,352
Exhaust -	≤ 10 µm	11,200	20,200	104,407	7,422	101,002
Petrol 2 Stroke	PARTICULATE MATTER	10,339	25,950	123.728	6,828	166,844
	≤ 2.5 µm	10,000	_0,,00	120)/ 20	0,0_0	100,011
	POLYCYCLIC					
	AROMATIC	16	41	194	11	262
	HYDROCARBONS	10(2/5	1.0/5	70	1 505
	SULFUR DIOXIDE	106	265	1,265	70	1,705
	TOLUENE	32,199	80,816	385,329	21,264	519,608
	TOTAL SUSPENDED	11,586	29,079	138,646	7,651	186,961
	PARTICULATE	11,000	29,019	138,040	7,001	100,901
	TOTAL VOLATILE ORGANIC COMPOUNDS	329,248	826,363	3,940,089	217,430	5,313,130
Exhaust -	1,3-BUTADIENE	1,162	2,916	13,902	767	18,747

Table 3-111: Lawn mowing and garden equipment (domestic) emissions by source type


Source type	Substance	Emissions (kg/year)						
ource type		Newcastle	Non Urban	Sydney	Wollongong	GMR		
Petrol 4 Stroke	ACETALDEHYDE	500	1,256	5,987	330	8,074		
	BENZENE	6,401	16,067	76,606	4,227	103,302		
	CARBON MONOXIDE	1,404,582	3,525,289	16,808,529	927,564	22,665,964		
	FORMALDEHYDE	2,093	5,252	25,041	1,382	33,767		
	ISOMERS OF XYLENE	8,272	20,762	98,994	5,463	133,491		
	LEAD & COMPOUNDS	9.46	24	113	6.25	153		
	OXIDES OF NITROGEN	7,417	18,615	88,758	4,898	119,688		
	PARTICULATE MATTER ≤ 10 µm	1,294	3,248	15,487	855	20,884		
	PARTICULATE MATTER ≤ 2.5 μm	1,191	2,988	14,248	786	19,214		
	POLYCYCLIC AROMATIC HYDROCARBONS	134	336	1,603	88	2,162		
	SULFUR DIOXIDE	344	862	4,112	227	5,545		
	TOLUENE	8,766	22,000	104,897	5,789	141,452		
	TOTAL SUSPENDED PARTICULATE	1,334	3,349	15,966	881	21,530		
	TOTAL VOLATILE ORGANIC COMPOUNDS	122,012	306,232	1,460,108	80,575	1,968,926		
	BENZENE	1,390	3,488	16,631	918	22,426		
	ISOMERS OF XYLENE	980	2,459	11,727	647	15,813		
Evaporative	TOLUENE	3,385	8,496	40,510	2,236	54,627		
	TOTAL VOLATILE ORGANIC COMPOUNDS	178,168	447,175	2,132,125	117,659	2,875,128		

3.6.8 Emission Projection Methodology

Table 3-112 summarises the data used to estimate the emission projection factors for lawn mowing and garden equipment, while Figure 3-51 shows the emission projection factors for calendar years 2009 to 2036.

TT 11 0 440 T			•	/ * · • · ·		• • • • •
Table 3-112: Lawn 1	nowing and	garden	equipment	(domestic)	emission	projection factors

Emission source	Projection factor surrogate	Projection factor source
Exhaust and evaporative emissions from lawn	Total dwelling	- Forecasts for Total Dwelling from
mowing and garden equipment (domestic)	growth	2006 to 2036 (TDC, 2009)

Air Emissions Inventory for the Greater Metropolitan Region of New South Wales 3. Data Sources and Results

Figure 3-51: Lawn mowing and garden equipment (domestic) emission projection factors

3.7 Lawn Mowing and Garden Equipment (public open space)

3.7.1 Emission Source Description

The domestic-commercial air emissions inventory includes emissions of:

- > Combustion products (i.e. exhaust) from lawn mowing and garden equipment engines; and
- > Evaporative VOC:
 - Through the crankcase (i.e. combustion products and unburnt fuel);
 - From refuelling (i.e. vapour displacement and spillage);
 - Due to temperature changes (i.e. diurnal, hot soak and running loss); and
 - Via permeation (i.e. plastic fuel tanks and rubber hoses).

To estimate emissions from these sources, the following have been considered:

> Commercial survey

While commercial lawn mowing and garden equipment are typically used at airports, cemeteries, educational institutions (i.e. colleges, schools and universities), golf courses, hospitals, parks and sporting ovals etc., the inventory includes golf courses and local government areas (LGA) (e.g. parks and sporting ovals etc.). A commercial survey of lawn mowing and garden equipment ownership and usage has been conducted, which includes 5 golf courses and 9 LGA³⁴ located in the GMR. The survey results include data about: equipment type, number and age; engine type and fuel used; and frequency and duration of equipment use by hour, day and season (DECC, 2007b).

Figure 3-52 shows how the commercial survey results have been combined with emission factor and load factor data from the technical literature (USEPA, 2009) to develop an inventory of lawn mowing and garden equipment emissions.

³⁴ The GMR includes 64 local government areas (LGA), plus two areas designated N/A and unincorporated. N/A areas are those located near the coastline and the majority area within the 1 km by 1 km grid cell lies over water. Unincorporated areas are those areas which are not under the responsibility of an incorporated local government. Emissions have been estimated for 59 LGA plus the two areas designated N/A and unincorporated.

Air Emissions Inventory for the Greater Metropolitan Region of New South Wales 3. Data Sources and Results

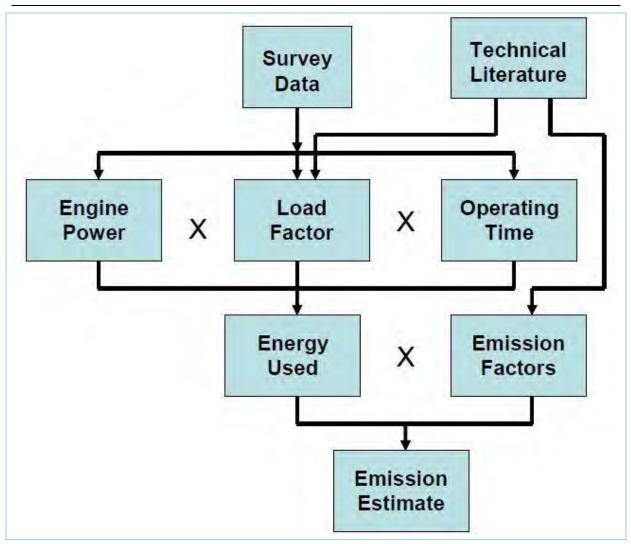


Figure 3-52: Lawn mowing and garden equipment (public open space) - use of survey data

> Lawn mowing and garden equipment type

The inventory includes commercial-operated lawn mowing and garden equipment for commercial use as follows:

- Chainsaw;
- *Chipper/Stump grinder;*
- Commercial mower;
- Commercial turf equipment;
- Front mower;
- *Golf cart;*
- *Lawn and garden tractor;*
- *Leafblower/Vacuum;*

- Other lawn and garden equipment;
- Push lawnmower;
- Rear engine ride-on lawnmower;
- *Rotary tiller;*
- Shredder;
- Speciality vehicle cart; and
- Trimmer/Edger/Brush cutter.
- > Engine type

The inventory includes lawn mowing and garden equipment powered by 2-stroke and 4-stroke spark ignition (SI) petrol engines, which are either handheld (e.g. chainsaw) or non-handheld (e.g. push lawnmower) and diesel compression ignition (CI) engines, which are all non-handheld. Handheld petrol powered equipment range from 1 to 6 horsepower (hp)³⁵, while non-handheld equipment range from 1 to 25 hp (AIA, 2005). Diesel powered equipment all range from 3 to 25 hp (DECC, 2007b).

Since there are no NSW or Australian emission standards, the inventory considers all lawn mowing and garden equipment have emissions control technology consistent with USEPA Tier 0 (USEPA, 2009).

▶ Fuel type

The inventory includes lawn mowing and garden equipment that use automotive gasoline (petrol) and automotive diesel oil (ADO).

Table 3-113 presents the lawn mowing and garden equipment fuel type and properties used in the inventory (ABARE, 2009b; and USEPA, 2009). The sulfur and oxygen contents in petrol are requirements of the *Fuel Standard (Petrol) Determination 2001* (Attorney-General's Department, 2008), which are relevant for the 2008 calendar year. Weighted average sulfur and oxygen contents have been calculated from *Australian Petroleum Statistics 2008* (DRET, 2009) and the requirements of the *Fuel Standard (Petrol) Determination 2001* (Attorney-General's Department, 2008). The sulfur content in ADO is a requirement of the *Fuel Standard (Automotive Diesel) Determination 2001* (Attorney-General's Department, 2009), which is relevant for the 2008 calendar year.

³⁵ 1 horsepower (hp) is equivalent to 0.7457 kilowatts (kW) (USEPA, 1995a).

Fuel type	Sulfur content (ppm)	Oxygen content (%)	Density (kg/L)	Effective heating value (MJ/L)	Carbon content (%)
	150 - All grades ³⁶	2.7 - All grades (no ethanol)			
Automotive gasoline (petrol)	50 - PULP	3.9 - All grades (with ethanol)	0.740	34.2	87
	142 - Weighted average ³⁷	2.84 - Weighted average ³⁸			
Automotive diesel oil (ADO)	50	-	0.845	38.6	87

Table 3-113: Lawn mowing and garden equipment (public open space) fuel type and properties

Electric lawn mowing and garden equipment have not been included, since emissions from electricity generation have been separately estimated as part of the industrial air emissions inventory.

> Source type

The inventory includes emissions of combustion products and evaporation from lawn mowing and garden equipment engines.

Exhaust emissions are generated in the engine's combustion chamber and exit through the exhaust. Exhaust emissions mainly include CO, NO_x, PM_{2.5}, PM₁₀, TSP, SO₂ and VOC (total and speciated).

Evaporation occurs in a number of ways, including:

- *Crankcase emissions* originate from the combustion chamber then move past the piston rings and into the crankcase of 4-stroke petrol and diesel engines. Since gases flow freely from the crankcase to the combustion chamber in 2-stroke petrol engines, they are not an issue. They mainly include exhaust emissions plus some unburnt fuel;
- *Refuelling emissions* are the vapours displaced from the fuel tank when it is filled plus any spillage that may occur. These occur from 2-stroke and 4-stroke petrol engines;
- *Diurnal emissions* arise with temperature changes that occur throughout the day. As the air temperature increases, the fuel temperature in the tank increases and begins to evaporate. These occur from 2-stroke and 4-stroke petrol engines;
- *Hot soak emissions* are similar to diurnal emissions, except heating of the fuel is provided by the residual heat of the equipment, just after the engine is shut off. These occur from 2-stroke and 4-stroke petrol engines;
- *Running loss emissions* are similar to diurnal emissions, except heating of the fuel is caused by engine operation. These occur from 2-stroke and 4-stroke petrol engines; and

³⁶ Includes lead replacement petrol (LRP), unleaded petrol (ULP) and premium unleaded petrol (PULP).

³⁷ 5,509,243 kL (All grades) and 500,756 kL (PULP) (DRET, 2009).

³⁸ 5,332,615 kl (no ethanol) and 677,384 kL (with ethanol) (DRET, 2009).

• *Permeation emissions* occur when fuel moves through the material used in the fuel system. Since the outer surfaces of the fuel system are exposed to air, petrol molecules permeate through them and are directly emitted. Permeation is most common through plastic fuel tanks and rubber hoses. These occur from 2-stroke and 4-stroke petrol engines

Evaporative emissions mainly include VOC (total and speciated).

3.7.2 Emission Estimation Methodology

Table 3-114 summarises the emission estimation methodology used for lawn mowing and garden equipment.

Table 3-114: Lawn mowing and garden equipment (public open space) emission estimation methodology

Emission source	Emission estimation methodology source
Exhaust and evaporative emissions from lawn mowing	- Guidance for Estimating Lawn and Garden
and garden equipment (public open space)	Equipment Activity Levels (Environ, 1997)

Exhaust and evaporative emissions from lawn mowing and garden equipment have been estimated using equipment population and activity data in combination with emission, load, transient adjustment and deterioration factors within the *NONROAD2008a Model* (USEPA, 2009).

Exhaust emission factors have been adjusted according to fuel sulfur content for 2-stroke/4-stroke petrol and diesel engines and oxygen content for 2-stroke/4-stroke petrol engines, while ambient temperature correction factors have been applied to 4-stroke petrol engine exhaust emission factors (USEPA, 2009).

An engine's rated power is the maximum power it is designed to produce at the rated speed. Since engines normally operate at a variety of speeds and loads, operation at rated power for extended periods is rare. To take into account the effect of operation over a wide range of conditions (e.g. idle, partial load and transient operation), a load factor (LF) has been used to determine the average proportion of rated power used (USEPA, 2009).

Transient adjustment factors (TAF) have been applied to 2-stroke/4-stroke petrol and diesel engine emission factors to account for in-use (i.e. transient) operation and better represent the operational behaviour of the equipment (USEPA, 2009).

Deterioration factors (DF) have been applied to 2-stroke/4-stroke petrol and diesel engine emission factors to account for deterioration of emission performance over time. Deterioration refers to the degradation of an engine's exhaust emissions performance over its lifetime due to either normal use and/or misuse (i.e. tampering or neglect). Engine deterioration increases exhaust emissions, which usually leads to a loss of combustion efficiency and can in some cases increase evaporative emissions. The amount of deterioration depends on an engine's design, production quality and technology type (i.e. 2-stroke and 4-stroke petrol spark ignition or diesel compression ignition). Other factors may also affect deterioration, such as the equipment application, usage patterns and how it is stored and maintained (USEPA, 2009).

Evaporative emission factors for 2-stroke and 4-stroke petrol engines have been adjusted according to ambient temperature, Reid vapour pressure (RVP) and ethanol content of petrol (USEPA, 2009).

Equipment population is defined by fuel type, application and power, while activity rates include frequency and duration of use on an hourly, daily and seasonal basis. Equipment population and activity rates have been derived from a commercial survey (DECC, 2007b) and sales data (AIA, 2005). Emissions have been determined using Equation 10 within the *NONROAD2008a Model* (USEPA, 2009):

$\mathbf{E}_{\mathbf{i},\mathbf{j},\mathbf{k},\mathbf{l},\mathbf{n}}$	$= P_{j,k,l} \times A$	$\mathbf{H}_{\mathbf{i},\mathbf{k},\mathbf{l}} \times \mathbf{HP}_{\mathbf{i},\mathbf{k},\mathbf{l}}$	$\times LF_{i,k,1} \times T$	$AF_{i,k,l} \times DF_{i}$	$_{j,k,l} \times EF_{i,j,k,l,m}$	/1000	Equation 10
---	------------------------	---	------------------------------	----------------------------	----------------------------------	-------	-------------

where:			
E _{i,j,k,l,m}	=	Emissions of substance i from lawn mowing and garden equipment type j, engine type k, engine power range l and source type m	(kg/year)
P _{j,k,l}	=	Population of lawn mowing and garden equipment type j, engine type k and engine power range l	(number)
A _{j,k,l}	=	Activity of lawn mowing and garden equipment type <i>j</i> , engine type k and engine power range l	(h/year)
HP _{j,k,l}	=	Maximum rated power of lawn mowing and garden equipment type j, engine type k and engine power range l	(hp)
LF _{j,k,l}	=	Fractional load factor for lawn mowing and garden equipment type j, engine type k and engine power range l	(hp/hp)
TAF _{j,k,1}	=	Fractional transient adjustment factor for lawn mowing and garden	(g.(hp.h)-1/
		equipment type j, engine type k and engine power range l	g.(hp.h)-1)
DF _{j,k,1}	=	Fractional deterioration factor for lawn mowing and garden equipment	(g.(hp.h)-1/
		type j, engine type k and engine power range l	g.(hp.h)-1
EF _{i,j,k,1,m}	=	Emission factor for substance i from lawn mowing and garden	(g/hp.h)
		equipment type j, engine type k, engine power range l and source type m	
i	=	Substance (either "criteria pollutants", "speciated NO_x ", "speciated	(-
		VOC", "organic air toxics", "metal air toxics", "PAH", "PCDD and	
		PCDF", "ammonia" or "greenhouse gases")	
İ	=	Lawn mowing and garden equipment type (either "Chainsaw",	(-
		"Chipper/Stump grinder", "Commercial mower", "Commercial turf	
		equipment", "Front mower", "Golf cart", "Lawn and garden tractor",	
		"Leafblower/Vacuum", "Other lawn and garden equipment", "Push	
		lawnmower", "Rear engine ride-on lawnmower", "Rotary tiller",	
		"Shredder", "Speciality vehicle cart" or "Trimmer/Edger/Brush cutter")	
< C	=	Engine type (either "2-stroke petrol", "4-stroke-petrol" or "diesel")	(-
l	=	Engine power range	(hp
m	=	Source type (either "exhaust", "crankcase", "refuelling", "diurnal", "hot	(-
		soak", "running loss" or "permeation")	
1000	=	Conversion factor	(g/kg

3.7.3 Activity Data

Table 3-115 summarises the activity data used for lawn mowing and garden equipment.

Activity data	Activity data source
Lawn mower and garden equipment type/number	- Public Open Space Lawn Mowing Pollution Survey
and monthly mowing frequency/duration	(DECC, 2007b)
Golf course locations required to scale-up golf	- Australian Course Directory (Iseekgolf.com, 2011)
course survey	- Mustidian Course Directory (Iseekgon.com, 2011)
Gridded 1 km x 1 km population estimates required	- Forecasts for Population from 2006 to 2036 (TDC, 2009)
to scale-up LGA survey	- Torecusis jor Topulation from 2000 to 2000 (TDC, 2007)
Lawn mower and garden equipment fleet	- NSW Lawn Mowing and Garden Equipment Sales, Unit
composition	Cost and Operating Life Data for 2000 to 2004 (AIA,
composition	2005)

Table 3-115: Lawn mowing and garden equipment (public open space) activity data

A commercial survey of lawn mowing and garden equipment ownership and usage has been conducted, which includes 5 golf courses and 9 LGA located in the GMR. The survey results include data about: equipment type, number and age; engine type and fuel used; and frequency and duration of equipment use by hour, day and season (DECC, 2007b).

The 5 golf courses surveyed include Castle Hill Country Club, Killara Golf Club, Manly Golf Club, Pennant Hills Golf Course and St Michaels Golf Club (DECC, 2007b). The golf course survey results (DECC, 2007b) have been used to scale-up activity data to the 162 golf courses in the GMR (Iseekgolf.com, 2011) using the average activity levels for each golf course. Table 3-116 presents the number of golf courses and equipment population by NSW region in the GMR.

NSW region	Number of golf courses	2008 equipment population
Blue Mountains	11	568
Central Coast	12	619
Hunter Valley	19	980
Illawarra	11	568
Southern Highlands	7	361
Sydney	102	5,263
Grand Total	162	8,359

Table 3-116: Golf course equipment population by NSW region in the GMR

The 9 LGA surveyed include Auburn, Bankstown, Canada Bay, Great Lakes, Kiama, Ku-ring-gai, Newcastle, Port Stephens and Strathfield (DECC, 2007b). While the GMR includes 64 local government areas (LGA), plus two areas designated N/A and unincorporated, the LGA survey results (DECC, 2007b) have been used to scale-up activity data to 59 LGA, plus the two areas designated N/A and unincorporated, using a linear regression of activity levels for each LGA. To scale-up LGA survey results, a number of linear regression models have been examined for each LGA, including:

- Equipment number versus population (TDC, 2009)³⁹;
- Equipment number versus area (TDC, 2009)⁴⁰; and
- Equipment number versus area times population⁴¹.

The Australian Classification of Local Governments (ACLG) provides a useful way of categorising LGA across Australia using population, population density and proportion of the population that is classified as urban or rural for the LGA. The ACLG defines a population density of more than 30 persons per km² as urban (DTRS, 2003) and this definition has been used as the basis of testing which linear regression models exhibit the best correlation.

Table 3-119 presents the coefficients of determination (R^2) for the three linear regression models evaluated.

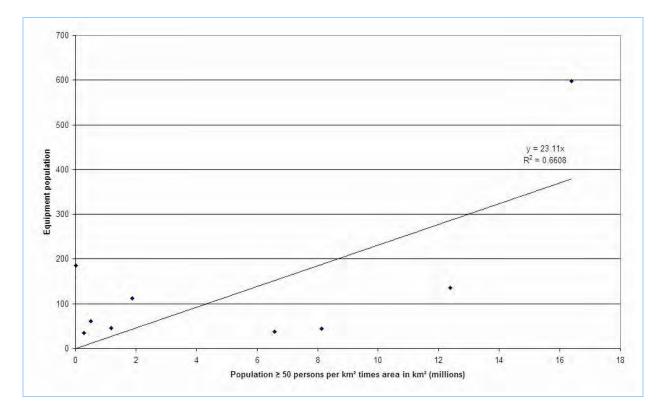
	Coefficient of determination (R ²)								
Linear regression model	≥ 0 persons per km ²	≥ 30 persons per km ²	≥ 50 persons per km ²	≥ 70 persons per km ²	≥ 90 persons per km²				
Equipment number versus population	0.54	0.54	0.54	0.54	0.54				
Equipment number versus area	0.16	0.38	0.47	0.50	0.52				
Equipment number versus area times population	0.33	0.63	0.66	0.65	0.66				

Table 3-117: Evaluation of LGA lawn mowing and garden equipment linear regression models

In summary, the three linear regression models exhibit the following:

- The equipment number versus population model yields consistent R² values of 0.54 for all population densities;
- The equipment number versus area model yields increasing R^2 values for all population densities, with a maximum R^2 value of 0.52 for a population density ≥ 90 persons per km²; and
- The equipment number versus area times population model yields the highest R^2 value of 0.66 for a population density \geq 50 persons per km², so this has been used to scale-up the LGA survey results.

³⁹ The sum of population for 1 km by 1 km grid cells with persons per km² \ge 0, 30, 50, 70 and 90.


⁴⁰ The sum of area for 1 km by 1 km grid cells with persons per km² \ge 0, 30, 50, 70 and 90.

⁴¹ The product of sum of population and sum of area for 1 km by 1 km grid cells with persons per km² \ge 0, 30, 50, 70 and 90.

For the equipment number versus area times population model, the F-statistic, p-value and t-statistic values have been calculated at the 95% confidence level. The F-statistic value is 15.59, while the F-critical value is 5.32. This implies the regression and correlation are indeed true and not the consequence of chance. The p-value is 0.42%, while the p-critical value is 5%. This implies the probability of the relationship being produced by random chance is 0.42% and it is significant, since the p-value is less than 5%. The t-statistic value is 3.95, while the t-critical value is 2.31. This implies the regression has established a significant relationship.

Figure 3-53 shows the preferred linear regression model used the scale-up LGA survey results to 59 LGA, plus the two areas designated N/A and unincorporated.

Table 3-118 presents the linear regression variables, including population more than 50 persons per km², area more than 50 persons per km², population times area and equipment population by LGA in the GMR.

	1		, ,	
LGA	Population ≥ 50 persons/km² (persons)	Population times area		2008 equipment population
Ashfield	47,887	10	0.5	11
Auburn	69,526	27	1.9	43
Bankstown	174,266	71	12.4	286
Baulkham Hills	167,629	176	29.5	682
Blacktown	285,424	173	49.4	1,141
Blue Mountains	76,763	174	13.4	309

Table 3-118: LGA equipment population	by LGA in the GMR
---------------------------------------	-------------------

Air Emissions Inventory for the Greater Metropolitan Region of New South Wales 3. *Data Sources and Results*

	Population ≥ 50	Area ≥ 50		
LGA	persons/km ²	persons/km ²	Population times area	2008 equipment
	(persons)	(km²)	(persons.km²) x million	population
Botany Bay	33,282	15	0.5	12
Burwood	30,277	7	0.2	5
Camden	54,008	93	5.0	116
Campbelltown	149,140	119	17.7	410
Canada Bay	58,880	20	1.2	27
Canterbury	138,343	34	4.7	109
Cessnock	42,796	94	4.0	93
Dungog	3,435	19	0.1	2
Fairfield	188,885	85	16.1	371
Gosford	158,858	214	34.0	786
Great Lakes	1,631	15	2.45×10^{-02}	1
Hawkesbury	53,982	235	12.7	293
Holroyd	95,192	37	3.5	81
Hornsby	158,865	156	24.8	573
Hunters Hill	9,295	4	3.72×10^{-02}	1
Hurstville	81,935	27	2.2	51
Kiama	13,416	22	0.3	7
Kogarah	57,349	19	1.1	25
Ku-ring-gai	106,943	76	8.1	188
Lake Macquarie	191,673	268	51.4	1,187
Lane Cove	28,511	11	0.3	7
Leichhardt	39,692	8	0.3	7
Lithgow	15,287	48	0.7	17
Liverpool	176,096	162	28.5	659
Maitland	62,895	102	6.4	148
Manly	33,804	12	0.4	9
Marrickville	86,873	18	1.6	36
Mid-western Regional	1,900	7	1.33×10^{-02}	0
Mosman	30,867	9	0.3	6
Muswellbrook	11,868	24	0.3	7
N/A	25,522	46	1.2	27
Newcastle	150,409	109	16.4	379
North Sydney	53,850	11	0.6	14
Oberon	852	4	3.41×10^{-03}	0
Parramatta	152,556	56	8.5	197
Penrith	174,190	211	36.8	849
Pittwater	54,354	52	2.8	65
Port Stephens	52,626	125	6.6	152
Randwick	130,952	31	4.1	94
Rockdale	89,713	25	2.2	52
Ryde	105,073	43	4.5	104
Shellharbour	64,307	52	3.3	77
Singleton	15,505	37	0.6	13
Strathfield	38,732	13	0.5	12

2008 Calendar Year Domestic-Commercial Emissions: Results
3. Data Sources and Results

LGA	LGA Population ≥ 50 persons/km ² p (persons)		Population times area (persons.km²) x million	2008 equipment population	
Sutherland	212,595	132	28.1	649	
Sydney	167,382	28	4.7	108	
Unincorporated	42,638	44	1.9	43	
Warringah	140,805	87	12.3	283	
Waverley	57,147	8	0.5	11	
Willoughby	69,528	22	1.5	35	
Wingecarribee	37,718	110	4.1	96	
Wollondilly	31,472	119	3.7	87	
Wollongong	191,956	166	31.9	736	
Woollahra	44,773	10	0.4	10	
Wyong	141,212	196	27.7	640	
Grand Total	5,183,337	4,328	538.3	12,441	

Lawn mowing and garden equipment sales data for the 2003 and 2004 calendar years (AIA, 2005) have been used to estimate the proportion of 2-stroke/4-stroke petrol and non-handheld/handheld equipment with a given maximum power rating, while the lawn mowing and garden equipment survey results (DECC, 2007b) have been used to estimate the total number of in-service equipment. Since sales data for diesel equipment is not available, the proportion of 4-stroke petrol non-handheld equipment with a given maximum power rating has been assumed for diesel non-handheld equipment. Table 3-119 presents a summary of lawn mowing and garden equipment sales data for NSW.

Maximum		ndar year ndheld		ndar year ndheld	2003 a	and 2004 ca	lendar year non	-handheld		
rated power (hp)	2-stroke sales	4-stroke sales	2-stroke sales	4-stroke sales	2-stroke sales	4-stroke sales	2-stroke proportion (%)	4-stroke proportion (%)		
1 to 3	18,960	10,790	43,070	12,380	62,030	23,170	46.02	7.81		
3 to 6	31,550	75,140	41,220	111,530	72,770	186,670	53.98	62.91		
6 to 16	-	36,630	-	35,750	-	72,380	-	24.39		
16 to 25	-	6,860	-	7,650	-	14,510	-	4.89		
Grand Total	50,510	129,420	84,290	167,310	134,800	296,730	100.00	100.00		
Maximum		ndar year lheld	2004 caler hand		200	3 and 2004	2004 calendar year handheld			
rated power (hp)	2-stroke sales	4-stroke sales	2-stroke sales	4-stroke sales	2-stroke sales	4-stroke sales	2-stroke proportion (%)	4-stroke proportion (%)		
1 to 3	126,730	7,150	208,430	10,130	335,160	17,280	95.48	100.00		
3 to 6	10,410	-	5,450	-	15,860	-	4.52	-		
Grand Total	137,140	7,150	213,880	10,130	351,020	17,280	100.00	100.00		

Table 3-119: Lawn mowing and garden equipment sales data for NSW

The total population of in-service lawn mowing and garden equipment have been estimated by combining the commercial survey results (DECC, 2007b), the number of golf courses (Iseekgolf.com, 2011), the LGA population linear regression model and lawn mowing and garden equipment sales data (AIA, 2005).

In-service golf course equipment population by equipment description and maximum rated power range data for the GMR is presented in Table 3-120.

	2008 equipment population						
Equipment description	1 to 3 hp	3 to 6 hp	6 to 11 hp	11 to 16 hp	16 to 25 hp	Grand Total	
2-Str Chain Saws < 6 HP (com)	495	23	-	-	-	518	
2-Str Commercial Turf Equipment (com)	130	-	-	-	-	130	
2-Str Lawn mowers (com)	253	297	-	-	-	551	
2-Str Leafblowers/Vacuums (com)	480	23	-	-	-	502	
2-Str Trimmers/Edgers/Brush Cutter (com)	681	32	-	-	-	713	
4-Str Commercial Turf Equipment (com)	-	663	257	26	26	972	
4-Str Front Mowers (com)	-	-	270	27	27	324	
4-Str Golf Carts	-	-	778	-	-	778	
4-Str Lawn mowers (com)	72	579	224	-	-	875	
4-Str Leafblowers/Vacuums (com)	-	113	-	-	-	113	
4-Str Other Lawn & Garden Eqp. (com)	20	163	63	6	6	259	
4-Str Rear Engine Riding Mowers (com)	-	44	17	2	2	65	
Dsl - Chippers/Stump Grinders (com)	-	-	-		97	97	
Dsl - Commercial Mowers (com)	-	752	291	29	29	1,102	
Dsl - Front Mowers (com)	-	111	43	4	4	162	
Dsl - Lawn & Garden Tractors (com)	-	-	756	76	76	907	
Dsl - Other Lawn & Garden Eqp. (com)	-	-	-	81	81	162	
Dsl - Specialty Vehicle Carts	-	-	-	65	65	130	
Grand Total	2,130	2,800	2,699	316	413	8,359	

Table 3-120: Golf course equipment population in the GMR

The annual operating time of in-service golf course equipment have been estimated from the golf course survey results (DECC, 2007b). In-service golf course equipment annual operating time by equipment description for the GMR is presented in Table 3-121.

Table 3-121: Golf course equipment annual o	perating time in the GMR

Equipment description	Annual operating time (h/year)
2-Stroke Chain Saws < 6 HP	93.4
2-Stroke Commercial Turf Equipment	286.0
2-Stroke Lawn mowers	425.2
2-Stroke Leafblowers/Vacuums	597.2
2-Stroke Trimmers/Edgers/Brush Cutter	622.8
4-Stroke Commercial Turf Equipment	222.7

2008 Calendar Year Domestic-Commercial Emissions: Results 3. Data Sources and Results

Equipment description	Annual operating time (h/year)
4-Stroke Front Mowers	928.2
4-Stroke Golf Carts	1,135.3
4-Stroke Lawn mowers	505.0
4-Stroke Leafblowers/Vacuums	612.9
4-Stroke Other Lawn & Garden Equipment	2,879.5
4-Stroke Rear Engine Riding Mowers	861.3
Diesel Chippers/Stump Grinders	205.8
Diesel Commercial Mowers	840.4
Diesel Front Mowers	738.4
Diesel Lawn & Garden Tractors	360.8
Diesel Other Lawn & Garden Equipment	1,976.0
Diesel Specialty Vehicle Carts	1,007.5

In-service LGA equipment population by equipment description and maximum rated power range data for the GMR is presented in Table 3-122.

	2008 equipment population						
Equipment description	1 to 3 hp	3 to 6 hp	6 to 11 hp	11 to 16 hp	16 to 25 hp	Grand Total	
2-Str Chain Saws < 6 HP (com)	1,544	73	-	-	-	1,617	
2-Str Lawn mowers (com)	590	693	-	-	-	1,283	
2-Str Leafblowers/Vacuums (com)	1,847	87	-	-	-	1,935	
2-Str Other Lawn & Garden Eqp. (com)	64	75	-	-	-	139	
2-Str Trimmers/Edgers/Brush Cutter (com)	3,183	151	-	-	-	3,333	
4-Str Chippers/Stump Grinders (com)	-	54	21	2	2	79	
4-Str Commercial Turf Equipment (com)	-	54	21	2	2	79	
4-Str Front Mowers (com)	-	-	99	10	10	119	
4-Str Lawn & Garden Tractors (com)	-	257	100	10	10	377	
4-Str Lawn mowers (com)	139	1,120	434	-	-	1,693	
4-Str Other Lawn & Garden Eqp. (com)	10	81	31	3	3	129	
4-Str Rotary Tillers < 6 HP (com)	-	129	-	-	-	129	
4-Str Shredders < 6 HP (com)	2	18	-	-	-	20	
Dsl - Chippers/Stump Grinders (com)	-	-	-	-	40	40	
Dsl - Commercial Turf Equipment (com)	-	-	165	17	17	198	
Dsl - Front Mowers (com)	-	332	129	13	13	486	
Dsl - Lawn & Garden Tractors (com)	-	-	314	31	31	377	
Dsl - Other Lawn & Garden Eqp. (com)	-	-		15	15	30	
Dsl - Rear Engine Riding Mowers (com)	-	250	97	10	10	367	
Dsl - Rotary Tillers < 6 HP (com)	-	10	-	-	-	10	
Grand Total	7,379	3,384	1,412	113	153	12,441	

Table 3-122: LGA equipment population in the GMR

The annual operating time of in-service LGA equipment have been estimated from the LGA survey results (DECC, 2007b). In-service LGA equipment annual operating time by equipment description for the GMR is presented in Table 3-123.

Equipment description	Annual operating time (h/year)
2-Stroke Chain Saws < 6 HP	792.0
2-Stroke Lawn mowers	1,101.1
2-Stroke Leafblowers/Vacuums	976.5
2-Stroke Other Lawn & Garden Equipment	1,597.1
2-Stroke Trimmers/Edgers/Brush Cutter	1,037.1
4-Stroke Chippers/Stump Grinders	851.5
4-Stroke Commercial Turf Equipment	383.5
4-Stroke Front Mowers	1,820.0
4-Stroke Lawn & Garden Tractors	114.3
4-Stroke Lawn mowers	669.4
4-Stroke Other Lawn & Garden Equipment	1,750.0
4-Stroke Rotary Tillers	296.0
4-Stroke Shredders < 6 HP	104.0
Diesel Chippers/Stump Grinders	1,482.0
Diesel Commercial Turf Equipment	949.0
Diesel Front Mowers	1,638.1
Diesel Lawn & Garden Tractors	1,337.5
Diesel Other Lawn & Garden Equipment	1,906.7
Diesel Rear Engine Riding Mowers	904.4
Diesel Rotary Tillers	1,820.0

Table 3-123: LGA equipment annual operating time in the GMR

In-service lawn mowing and garden equipment (i.e. golf course plus LGA) population by equipment description and maximum rated power range data for the GMR is presented in Table 3-124 and shown in Figure 3-54.

Table 3-124: Lawn mowing and garden equ	ipment (public open space) population in the GMR

	2008 equipment population					
Equipment description	1 to 3 hp	3 to 6 hp	6 to 11 hp	11 to 16 hp	16 to 25 hp	Grand Total
2-Str Chain Saws < 6 HP (com)	2,039	96	-	-	-	2,135
2-Str Commercial Turf Equipment (com)	130	-	-	-	-	130
2-Str Lawn mowers (com)	844	990	-	-	-	1,834
2-Str Leafblowers/Vacuums (com)	2,327	110	-	-	-	2,437
2-Str Other Lawn & Garden Eqp. (com)	64	75	-	-	-	139
2-Str Trimmers/Edgers/Brush Cutter (com)	3,863	183	-	-	-	4,046
4-Str Chippers/Stump Grinders (com)	-	54	21	2	2	79
4-Str Commercial Turf Equipment (com)	-	717	278	28	28	1,051
4-Str Front Mowers (com)	-	-	369	37	37	443

2008 Calendar Year Domestic-Commercial Emissions: Results 3. Data Sources and Results

Equipment description	2008 equipment population					
	1 to 3 hp	3 to 6 hp	6 to 11 hp	11 to 16 hp	16 to 25 hp	Grand Total
4-Str Golf Carts	-	-	778	-	-	778
4-Str Lawn & Garden Tractors (com)	-	257	100	10	10	377
4-Str Lawn mowers (com)	211	1,698	659	-	-	2,568
4-Str Leafblowers/Vacuums (com)	-	113	-	-	-	113
4-Str Other Lawn & Garden Eqp. (com)	30	244	95	9	9	388
4-Str Rear Engine Riding Mowers (com)	-	44	17	2	2	65
4-Str Rotary Tillers < 6 HP (com)	-	129	-	-	-	129
4-Str Shredders < 6 HP (com)	2	18	-	-	-	20
Dsl - Chippers/Stump Grinders (com)	-	-	-	-	137	137
Dsl - Commercial Mowers (com)	-	752	291	29	29	1,102
Dsl - Commercial Turf Equipment (com)	-	-	165	17	17	198
Dsl - Front Mowers (com)	-	442	171	17	17	648
Dsl - Lawn & Garden Tractors (com)	-	-	1,070	107	107	1,284
Dsl - Other Lawn & Garden Eqp. (com)	-	-	-	96	96	192
Dsl - Rear Engine Riding Mowers (com)	-	250	97	10	10	367
Dsl - Rotary Tillers < 6 HP (com)	-	10	-	-	-	10
Dsl - Specialty Vehicle Carts	-	-	-	65	65	130
Grand Total	9,510	6,184	4,111	429	566	20,800

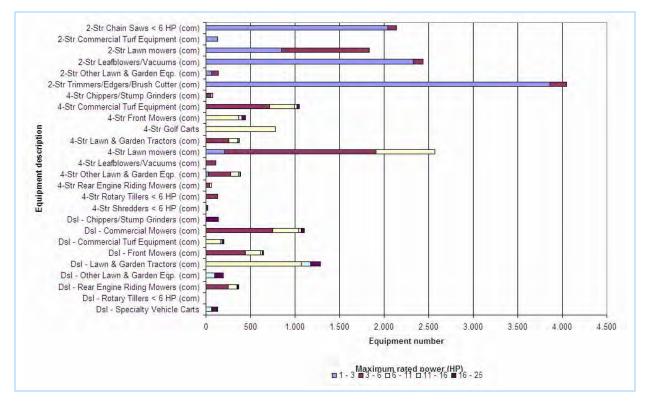


Figure 3-54: Lawn mowing and garden equipment (public open space) population in the GMR

The annual operating time of in-service lawn mowing and garden equipment (i.e. golf course plus LGA) have been estimated from the commercial survey results (DECC, 2007b). In-service lawn

mowing equipment annual operating time by equipment description for the GMR is presented in Table 3-125 and shown in Figure 3-55.

Table 3-125: Lawn mowing and garden equipment (public open space) annual operating time in the GMR

Equipment description	Annual operating time (h/year)
2-Stroke Chain Saws < 6 HP (com)	622.5
2-Stroke Commercial Turf Equipment (com)	286.0
2-Stroke Lawn mowers (com)	898.1
2-Stroke Leafblowers/Vacuums (com)	898.3
2-Stroke Other Lawn & Garden Equipment (com)	1,597.1
2-Stroke Trimmers/Edgers/Brush Cutters (com)	964.1
4-Stroke Chippers/Stump Grinders (com)	851.5
4-Stroke Commercial Turf Equipment (com)	234.9
4-Stroke Front Mowers (com)	1,167.8
4-Stroke Golf Carts	1,135.3
4-Stroke Lawn & Garden Tractors (com)	114.3
4-Stroke Lawn mowers (com)	613.4
4-Stroke Leafblowers/Vacuums (com)	612.9
4-Stroke Other Lawn & Garden Equipment (com)	2,504.2
4-Stroke Rear Engine Riding Mowers (com)	861.3
4-Stroke Rotary Tillers < 6 HP (com)	296.0
4-Stroke Shredders < 6 HP (com)	104.0
Diesel Chippers/Stump Grinders (com)	575.8
Diesel Commercial Turf Equipment (com)	949.0
Diesel Front Mowers (com)	1,413.2
Diesel Lawn & Garden Tractors (com)	647.5
Diesel Lawn mowers (com)	840.4
Diesel Other Lawn & Garden Equipment (com)	1,965.2
Diesel Rear Engine Riding Mowers (com)	904.4
Diesel Rotary Tillers < 6 HP (com)	1,820.0
Diesel Specialty Vehicle Carts	1,007.5

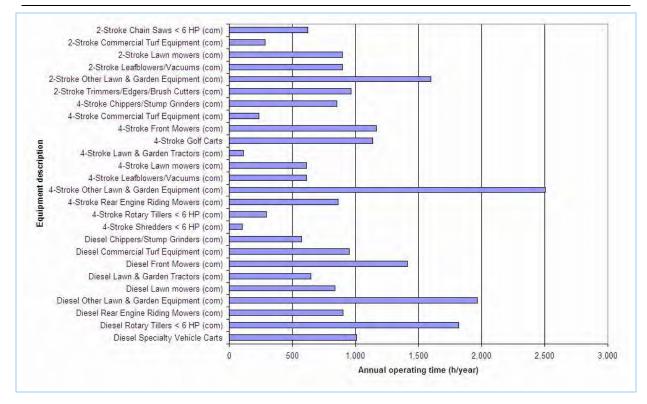


Figure 3-55: Lawn mowing and garden equipment (public open space) annual operating time in the GMR

Exhaust and evaporative emissions from lawn mowing and garden equipment have been estimated using equipment population (DECC, 2007b), annual operating time (DECC, 2007b), fuel properties (Attorney-General's Department, 2008; Attorney-General's Department, 2009; and DRET, 2009), ambient temperature (Hurley, 2005) and daily and monthly temporal variation (DECC, 2007b; and TR, 2009) data within the *NONROAD2008a Model* (USEPA, 2009).

Figure 3-56 shows the NonRoad Model splash screen for the lawn mowing and garden equipment (public open space) emission estimation simulation.

Air Emissions Inventory for the Greater Metropolitan Region of New South Wales 3. Data Sources and Results

	JS EPA NONROAD MODEL (pos2008.opt)
Г	
	U.S. Environmental Protection Agency
	Nonroad Emissions Model
	View Message File
	nulation Run Title : Lawn mowing and garden equipment (public open s
	rrent Message File : pos2008.msg 5779 bytes 9/04/2010 5:07:27 PM rrent Output Data File : pos2008.out 23064 bytes 9/04/2010 5:07:27 PM
- Cu	

Figure 3-56: Lawn mowing and garden equipment (public open space) NonRoad Model splash screen

(public open space) en	hission estimation simulation.		
	Options		
	Title		
	Title		
	GMR Air Emissions Invento	ory 2008 Calendar Year	
	Fuel RVP for gas 10.2	Minimum temp (F) 39	
	Oxygen weight % 2.84	Maximum temp (F) 102	
	Gas Sulfur % 0.0142	Average temp (F) 62	
	Diesel Sulfur % 0.005	Stage II Control % 0.0	
	Marine Diesel Sulfur % 0.005	EtOH blend mkt % 11.3	
	CNG/LPG Sulfur % 0.01	EtOH volume % 10	
	OK Cancel	Altitude High C Low ©	

Figure 3-57 shows the NonRoad Model options screen for the lawn mowing and garden equipment (public open space) emission estimation simulation.

Figure 3-57: Lawn mowing and garden equipment (public open space) NonRoad Model options

In 2008, 677,384 kL and 6,009,999 kL of ethanol blended and total automotive gasoline, respectively was sold in NSW, so ethanol blended automotive gasoline has 11.3% share of the NSW market for all automotive gasoline (DRET, 2009) and contains 10% ethanol by volume (Attorney-General's Department, 2008).

The NonRoad Model has been run with the optional daily minimum, maximum and average ambient temperature and petrol RVP variation file. Table 3-126 presents the daily minimum, maximum and average ambient temperature (Hurley, 2005) and petrol RVP by month (PCO, 2011) data used within the *NONROAD2008a Model* (USEPA, 2009).

Month	RVP (psi)	T _{min} (°F)	T _{max} (°F)	T _{avg} (°F)
January	9.0	57.1	101.7	76.7
February	9.0	59.9	94.8	74.7
March	9.9	54.0	87.8	67.6
April	10.9	51.1	74.0	59.9
May	10.9	47.9	67.0	54.5
June	10.9	43.0	64.3	50.5
July	10.9	39.9	62.1	48.0
August	10.9	39.4	65.0	49.3
September	10.9	41.7	71.9	54.4
October	10.9	45.3	80.3	60.2
November	9.9	48.5	92.2	68.3
December	9.0	54.7	101.6	76.4

Table 3-126: Lawn mowing and garden equipment (public open space) NonRoad Model ambient temperature and petrol RVP by month

Table 3-127 presents the lawn mowing and garden equipment power rating (AIA, 2005), useful life (USEPA, 2009) and population (DECC, 2007b) data used within the *NONROAD2008a Model* (USEPA, 2009).

SCC	Equipment description	hp _{min}	hp _{max}	hp _{avg}	Life (h)	Equipment population
2260004011	2-Str Lawn mowers (com)	1	3	2.55	268	843.9
2260004011	2-Str Lawn mowers (com)	3	6	4.1	268	990.0
2260004021	2-Str Chain Saws < 6 HP (com)	1	3	2.11	191	2039.0
2260004021	2-Str Chain Saws < 6 HP (com)	3	6	3.916	191	96.5
2260004026	2-Str Trimmers/Edgers/Brush Cutter (com)	1	3	1.4	286.8	3863.3
2260004026	2-Str Trimmers/Edgers/Brush Cutter (com)	3	6	3.3	286.8	182.8
2260004031	2-Str Leafblowers/Vacuums (com)	1	3	1.41	609.7	2326.6
2260004031	2-Str Leafblowers/Vacuums (com)	3	6	3.42	609.7	110.1
2260004071	2-Str Commercial Turf Equipment (com)	1	3	3	988.9	129.6
2260004076	2-Str Other Lawn & Garden Eqp. (com)	1	3	2.34	200	63.9

Table 3-127: Lawn mowing and garden equipment (public open space) NonRoad Model population

2260004076 2-Str Other Lawn & Garden Eqp. (com) 3 6 4.867 200 75.0 2265001050 4-Str Golf Carts 11 9.15 400 777.6 6 210.8 2265004011 4-Str Lawn mowers (com) 1 3 2.55 268 3 2265004011 4-Str Lawn mowers (com) 6 4.1 268 1698.5 2265004011 11 6.24 400 658.6 4-Str Lawn mowers (com) 6 2265004016 4-Str Rotary Tillers < 6 HP (com) 3 4.712 830.7 129.0 6 3 2265004031 6 3.4 609.7 113.4 4-Str Leafblowers/Vacuums (com) 3 2265004041 4-Str Rear Engine Riding Mowers (com) 6 5.105 200 44.2 2265004041 11 9.153 627 17.1 4-Str Rear Engine Riding Mowers (com) 6 2265004041 4-Str Rear Engine Riding Mowers (com) 11 16 12.61 627 1.7 25 18.26 1.7 2265004041 4-Str Rear Engine Riding Mowers (com) 16 750 2265004046 4-Str Front Mowers (com) 6 11 8 400 369.1 2265004046 4-Str Front Mowers (com) 11 16 13.47 400 37.0 2265004046 4-Str Front Mowers (com) 16 25 17 750 37.0 2265004051 4-Str Shredders < 6 HP (com) 1 3 2.986 200 2.2 4-Str Shredders < 6 HP (com) 3 4.835 17.7 2265004051 6 200 2265004056 3 5.002 200 257.2 4-Str Lawn & Garden Tractors (com) 6 2265004056 4-Str Lawn & Garden Tractors (com) 6 11 9.735 920 99.7 920 2265004056 11 16 13.61 10.0 4-Str Lawn & Garden Tractors (com) 25 2265004056 4-Str Lawn & Garden Tractors (com) 16 18.41920 10.0 2265004066 4-Str Chippers/Stump Grinders (com) 3 6 3.5 200 54.2 9.791 2265004066 4-Str Chippers/Stump Grinders (com) 6 11 400 21.0 4-Str Chippers/Stump Grinders (com) 11 15.32 2.1 2265004066 16 400 2265004066 4-Str Chippers/Stump Grinders (com) 16 25 20.05 750 2.1 2265004071 4-Str Commercial Turf Equipment (com) 3 6 5.217 988.9 717.4 278.2 2265004071 4-Str Commercial Turf Equipment (com) 6 11 8.771 988.9 2265004071 13.99 27.9 4-Str Commercial Turf Equipment (com) 11 16 988.9 19.33 2265004071 25 988.9 27.9 4-Str Commercial Turf Equipment (com) 16 2265004076 3 30.3 4-Str Other Lawn & Garden Eqp. (com) 1 2.34 200 2265004076 3 4-Str Other Lawn & Garden Eqp. (com) 6 4.867 200 244.2 2265004076 8.208 400 94.7 4-Str Other Lawn & Garden Eqp. (com) 6 11 9.5 2265004076 15.54 400 4-Str Other Lawn & Garden Eqp. (com) 11 16 2265004076 16 25 20.04 750 9.5 4-Str Other Lawn & Garden Eqp. (com) 2270001060 Dsl - Specialty Vehicle Carts 11 16 15 2500 64.8 2270001060 16 25 21.27 2500 64.8 Dsl - Specialty Vehicle Carts 2270004011 3 6 5 2500 751.7 Dsl - Commercial Mowers (com) 2270004011 11 7.35 2500 291.5 Dsl - Commercial Mowers (com) 6 2270004011 Dsl - Commercial Mowers (com) 11 16 14.12 2500 29.2 2270004011 25 20.87 2500 29.2 Dsl - Commercial Mowers (com) 16 3 4.712 9.9 2270004016 Dsl - Rotary Tillers < 6 HP (com) 6 830.7 2270004041 Dsl - Rear Engine Riding Mowers (com) 3 6 5 2500 250.5 7.35 2270004041 97.1 Dsl - Rear Engine Riding Mowers (com) 6 11 2500 2270004041 16 14.12 9.7 Dsl - Rear Engine Riding Mowers (com) 11 2500 2270004041 Dsl - Rear Engine Riding Mowers (com) 16 25 20.87 2500 9.7 2270004046 Dsl - Front Mowers (com) 3 6 5 2500 442.3

Air Emissions Inventory for the Greater Metropolitan Region of New South Wales 3. *Data Sources and Results*

2008 Calendar Year Domestic-Commercial Emissions: Results 3. Data Sources and Results

SCC	Equipment description		hp _{max}	hp _{avg}	Life (h)	Equipment population
2270004046	Dsl - Front Mowers (com)	6	11	7.35	2500	171.5
2270004046	Dsl - Front Mowers (com)	11	16	14.12	2500	17.2
2270004046	Dsl - Front Mowers (com)	16	25	20.87	2500	17.2
2270004056	Dsl - Lawn & Garden Tractors (com)	6	11	10.5	2500	1069.7
2270004056	Dsl - Lawn & Garden Tractors (com)	11	16	14.62	2500	107.2
2270004056	Dsl - Lawn & Garden Tractors (com)	16	25	20.03	2500	107.2
2270004066	Dsl - Chippers/Stump Grinders (com)	16	25	25	2500	136.9
2270004071	Dsl - Commercial Turf Equipment (com)	6	11	7.75	2500	165.3
2270004071	Dsl - Commercial Turf Equipment (com)	11	16	13.56	2500	16.6
2270004071	Dsl - Commercial Turf Equipment (com)	16	25	21.15	2500	16.6
2270004076	Dsl - Other Lawn & Garden Eqp. (com)	11	16	15	2500	95.9
2270004076	Dsl - Other Lawn & Garden Eqp. (com)	16	25	22.9	2500	95.9

Table 3-128 presents the lawn mowing and garden equipment load factor (USEPA, 2009) and annual operating time (DECC, 2007b) data used within the *NONROAD2008a Model* (USEPA, 2009).

SCC	Activity	hp _{min}	hp _{max}	LF	Annual operating time (h/year)
2260004011	2-Stroke Lawn mowers (com)	0	9999	0.33	898.1
2260004021	2-Stroke Chain Saws < 6 HP (com)	0	9999	0.70	622.5
2260004026	2-Stroke Trimmers/Edgers/Brush Cutters (com)	0	9999	0.91	964.1
2260004031	2-Stroke Leafblowers/Vacuums (com)	0	9999	0.94	898.3
2260004071	2-Stroke Commercial Turf Equipment (com)	0	9999	0.60	286.0
2260004076	2-Stroke Other Lawn & Garden Equipment (com)		9999	0.58	1597.1
2265001050	4-Stroke Golf Carts	0	9999	0.46	1135.3
2265004011	4-Stroke Lawn mowers (com)	0	9999	0.33	613.4
2265004016	4-Stroke Rotary Tillers < 6 HP (com)	0	9999	0.40	296.0
2265004031	4-Stroke Leafblowers/Vacuums (com)	0	9999	0.94	612.9
2265004041	4-Stroke Rear Engine Riding Mowers (com)	0	9999	0.38	861.3
2265004046	4-Stroke Front Mowers (com)	0	9999	0.65	1167.8
2265004051	4-Stroke Shredders < 6 HP (com)	0	9999	0.80	104.0
2265004056	4-Stroke Lawn & Garden Tractors (com)	0	9999	0.44	114.3
2265004066	4-Stroke Chippers/Stump Grinders (com)	0	9999	0.78	851.5
2265004071	4-Stroke Commercial Turf Equipment (com)	0	9999	0.60	234.9
2265004076	4-Stroke Other Lawn & Garden Equipment (com)		9999	0.58	2504.2
2270001060	Diesel Specialty Vehicle Carts	0	9999	0.21	1007.5
2270004011	Diesel Lawn mowers (com)	0	9999	0.43	840.4
2270004016	Diesel Rotary Tillers < 6 HP (com)	0	9999	0.43	1820.0
2270004041	Diesel Rear Engine Riding Mowers (com)	0	9999	0.43	904.4

Table 3-128: Lawn mowing and garden equipment (public open space) NonRoad Model load factor and annual operating time

Air Emissions Inventory for the Greater Metropolitan Region of New South Wales 3. *Data Sources and Results*

SCC	Activity	hp _{min}	hp _{max}	LF	Annual operating time (h/year)
2270004046	Diesel Front Mowers (com)	0	9999	0.43	1413.2
2270004056	Diesel Lawn & Garden Tractors (com)	0	9999	0.43	647.5
2270004066	Diesel Chippers/Stump Grinders (com)	0	9999	0.43	575.8
2270004071	Diesel Commercial Turf Equipment (com)	0	9999	0.43	949.0
2270004076	Diesel Other Lawn & Garden Equipment (com)	0	9999	0.43	1965.2

The NonRoad Model has been run with the optional weekday/weekend and monthly temporal variation file. Section 3.7.6 provides further details about the temporal variation in exhaust and evaporative emissions from lawn mowing and garden equipment.

Table 3-129 presents the lawn mowing and garden equipment fuel consumption estimates from the *NONROAD2008a Model* (USEPA, 2009).

Table 3-129: Lawn mowing and garden equipment (public open space) NonRoad Model fuel consumption in the GMR

		2008 fuel consumption (kL/year)						
Classification	Equipment description	2-stroke petrol	4-stroke petrol	Diesel	Grand Total			
	Chain Saws < 6 HP	1,663	-	-	1,663			
	Chippers/Stump Grinders	-	204	184	388			
	Commercial Turf Equipment	56	659	165	880			
	Front Mowers	-	1,780	539	2,319			
	Lawn & Garden Tractors	-	91	905	997			
Lawn and Garden	Lawn mowers	1,214	1,660	544	3,418			
Equipment (com)	Leafblowers/Vacuums	2,500	186	-	2,686			
Equipment (com)	Other Lawn & Garden Eqp.	307	2,334	668	3,310			
	Rear Engine Riding Mowers	-	101	195	296			
	Rotary Tillers < 6 HP	-	55	8	63			
	Shredders < 6 HP	-	6	-	6			
	Trimmers/Edgers/Brush Cutter	4,274	-	-	4,274			
Lawn and Garden Equipment	c (com) Total	10,014	7,076	3,209	20,299			
Recreational Equipment	Golf Carts	-	2,136	-	2,136			
Recreational Equipment	Speciality Vehicle Carts	-	-	128	128			
Recreational Equipment Total	-	2,136	128	2,263				
Grand Total		10,014	9,212	3,336	22,562			

3.7.4 *Emission and Speciation Factors*

Table 3-130 summarises the emission and speciation factors used for lawn mowing and garden equipment.

Table 3-130: Lawn mowing and garden equipment (public open space) emission and speciationfactors

factors									
Substance	Emission source	Emission and speciation factor source							
Criteria pollutants: CO, NO _x , PM _{2.5} , PM ₁₀ and SO ₂	2-stroke /4-stroke petrol and diesel exhaust	- NONROAD2008a Model (USEPA, 2009)							
Criteria pollutants: VOC	2-stroke /4-stroke petrol and diesel exhaust and evaporative	- NONROAD2008a Model (USEPA, 2009)							
Criteria pollutants:	2-stroke and 4-stroke petrol exhaust	- PMPROF 400 - California Emission Inventory and Reporting System (CEIDARS), Particulate Matter (PM) Speciation Profiles (CARB, 2008b)							
TSP	diesel exhaust	 PMPROF 116 - California Emission Inventory and Reporting System (CEIDARS), Particulate Matter (PM) Speciation Profiles (CARB, 2008b) 							
Speciated NO _x	2-stroke /4-stroke petrol and diesel exhaust	- Technology Transfer Network - Clearinghouse for Inventories & Emissions Factors (USEPA, 2003)							
	2-stroke petrol exhaust	 Table D-1 (Default 2-stroke Exhaust Baseline) - Documentation for Aircraft, Commercial Marine Vessel, Locomotive, and other NonRoad Components of the National Emissions Inventory, Volume I - Methodology (Pechan, 2005) ORGPROF 815 - California Emission Inventory and Reporting System (CEIDARS), Organic Gas Speciation Profiles (CARB, 2005) 							
Speciated VOC	4-stroke petrol exhaust	 Table D-1 (Default 4-stroke Exhaust Baseline) - Documentation for Aircraft, Commercial Marine Vessel, Locomotive, and other NonRoad Components of the National Emissions Inventory, Volume I - Methodology (Pechan, 2005) ORGPROF 816 - California Emission Inventory and Reporting System (CEIDARS), Organic Gas Speciation Profiles (CARB, 2005) 							
	diesel exhaust	 Table D-1 (Diesel) - Documentation for Aircraft, Commercial Marine Vessel, Locomotive, and other NonRoad Components of the National Emissions Inventory, Volume I – Methodology (Pechan, 2005) ORGPROF 818 - California Emission Inventory and Reporting System (CEIDARS), Organic Gas Speciation Profiles (CARB, 2005) 							
	evaporative	- Petrol Vapour Speciation Profile - Air Emissions Inventory for the Greater Metropolitan Region in NSW, Commercial Emissions Module: Results (DECC, 2007a)							
Organic air toxics	2-stroke petrol exhaust	 Table D-1 (Default 2-stroke Exhaust Baseline) - Documentation for Aircraft, Commercial Marine Vessel, Locomotive, and other NonRoad Components of the National Emissions Inventory, Volume I - Methodology (Pechan, 2005) ORGPROF 815 - California Emission Inventory and Reporting System (CEIDARS), Organic Gas Speciation Profiles (CARB, 2005) 							
	4-stroke petrol	- Table D-1 (Default 4-stroke Exhaust Baseline) - Documentation							

Air Emissions Inventory for the Greater Metropolitan Region of New South Wales 3. *Data Sources and Results*

Substance	Emission source	Emission and speciation factor source
	exhaust	 for Aircraft, Commercial Marine Vessel, Locomotive, and other NonRoad Components of the National Emissions Inventory, Volume I – Methodology (Pechan, 2005) ORGPROF 816 - California Emission Inventory and Reporting System (CEIDARS), Organic Gas Speciation Profiles (CARB, 2005)
	diesel exhaust	 Table D-1 (Diesel) - Documentation for Aircraft, Commercial Marine Vessel, Locomotive, and other NonRoad Components of the National Emissions Inventory, Volume I – Methodology (Pechan, 2005) ORGPROF 818 - California Emission Inventory and Reporting System (CEIDARS), Organic Gas Speciation Profiles (CARB, 2005)
	evaporative	- Petrol Vapour Speciation Profile - Air Emissions Inventory for the Greater Metropolitan Region in NSW, Commercial Emissions Module: Results (DECC, 2007a)
	2-stroke petrol exhaust	 Table D-3 (2-Stroke Metal/Fuel Fraction) Documentation for Aircraft, Commercial Marine Vessel, Locomotive, and other NonRoad Components of the National Emissions Inventory, Volume I – Methodology (Pechan, 2005) PMPROF 400 - California Emission Inventory and Reporting System (CEIDARS), Particulate Matter (PM) Speciation Profiles (CARB, 2007)
Metal air toxics	4-stroke petrol exhaust	 Table D-3 (4-Stroke Metal/Fuel Fraction) Documentation for Aircraft, Commercial Marine Vessel, Locomotive, and other NonRoad Components of the National Emissions Inventory, Volume I – Methodology (Pechan, 2005) PMPROF 400 - California Emission Inventory and Reporting System (CEIDARS), Particulate Matter (PM) Speciation Profiles (CARB, 2007)
	diesel exhaust	 Table D-3 (Diesel Metal/Activity Fraction) Documentation for Aircraft, Commercial Marine Vessel, Locomotive, and other NonRoad Components of the National Emissions Inventory, Volume I – Methodology (Pechan, 2005) PMPROF 425 - California Emission Inventory and Reporting System (CEIDARS), Particulate Matter (PM) Speciation Profiles (CARB, 2007)
	2-stroke petrol exhaust	- Table D-2 (2-Stroke) - Documentation for Aircraft, Commercial Marine Vessel, Locomotive, and other NonRoad Components of the National Emissions Inventory, Volume I – Methodology (Pechan, 2005)
Polycyclic aromatic hydrocarbons: PAH	4-stroke petrol exhaust	- Table D-2 (4-Stroke) - Documentation for Aircraft, Commercial Marine Vessel, Locomotive, and other NonRoad Components of the National Emissions Inventory, Volume I – Methodology (Pechan, 2005)
	diesel exhaust	- Table D-2 (Diesel) - Documentation for Aircraft, Commercial Marine Vessel, Locomotive, and other NonRoad Components of the National Emissions Inventory, Volume I – Methodology (Pechan, 2005)
Polychlorinated dibenzo-p-dioxins	2-stroke petrol exhaust	- Table D-1 (2-Stroke Dioxin/Furan/Fuel Fraction) - Documentation for Aircraft, Commercial Marine Vessel,

2008 Calendar Year Domestic-Commercial Emissions: Results 3. Data Sources and Results

Substance	Emission source	Emission and speciation factor source
and		Locomotive, and other NonRoad Components of the National
Polychlorinated		Emissions Inventory, Volume I – Methodology (Pechan, 2005)
dibenzofurans:		- Table D-1 (4-Stroke Dioxin/Furan/Fuel Fraction) -
PCDD and PCDF	4-stroke petrol	Documentation for Aircraft, Commercial Marine Vessel,
	exhaust	Locomotive, and other NonRoad Components of the National
		Emissions Inventory, Volume I – Methodology (Pechan, 2005)
	diesel exhaust	 Table D-1 (Diesel Dioxin/Furan/Fuel Fraction) - Documentation for Aircraft, Commercial Marine Vessel, Locomotive, and other NonRoad Components of the National Emissions Inventory, Volume I – Methodology (Pechan, 2005)
Ammonia	2-stroke /4-stroke petrol and diesel exhaust	- Table III-6 - Estimating Ammonia Emissions from Anthropogenic Non-Agricultural Sources – Draft Final Report (Pechan, 2004)
Greenhouse gases: CH4 and CO2	2-stroke /4-stroke petrol and diesel exhaust	- NONROAD2008a Model (USEPA, 2009)
Greenhouse gases: N ₂ O	2-stroke /4-stroke petrol and diesel exhaust	- Table A-6 - Climate Leaders Greenhouse Gas Inventory Protocol Core Module Guidance, Direct Emissions from Mobile Combustion Sources (USEPA, 2008b)

3. Data Sources and Results

Table 3-131 presents average activity weighted 2-stroke/4-stroke petrol and diesel exhaust and evaporative emission factors for lawn mowing and garden equipment.

Emission source		Emission factors (kg/kL)										
	NO _x	N ₂ O	NH ₃	SO_2	PM ₁₀	PM _{2.5}	VOC	CH_4	СО	CO ₂	РАН	PCDF and PCDF
2-stroke petrol exhaust	1.85	0.058	0.029	0.099	11.79	10.85	374.76	3.262	847.95	1,181.76	0.0171	3.29 × 10 ⁻¹²
4-stroke petrol exhaust	4.53	0.058	0.029	0.181	0.96	0.89	65.78	7.050	1,132.04	2,106.19	0.0999	3.29 × 10 ⁻¹²
Diesel exhaust	43.51	0.069	0.022	0.082	5.37	5.21	8.21	0.125	26.73	2,688.54	0.0056	4.57×10^{-9}
2-stroke petrol evaporative	-	-	-	-	-	-	23.91	-	-	-	-	-
4-stroke petrol evaporative	-	-	-	-	-	-	14.38	0.65	-	-	-	-
Diesel evaporative	-	-	-	-	-	-	0.16	2.49×10^{-3}	-	-	-	-

Table 3-131: Lawn mowing and garden equipment (public open space) emission factors

3.7.5 Spatial Distribution of Emissions

Table 3-132 summarises the data used for spatially allocating emissions from lawn mowing and garden equipment.

Emission source	Spatial data	Spatial data source
Exhaust and evaporative emissions from	Gridded 1 km x 1 km population	- Forecasts for Population
lawn mowing and garden equipment (public	estimates (≥ 50 persons per grid	from 2006 to 2036 (TDC,
open space)	cell)	2009)

Table 3-132: Lawn mowing and garden equipment (pub	olic open space) spatial data
--	-------------------------------

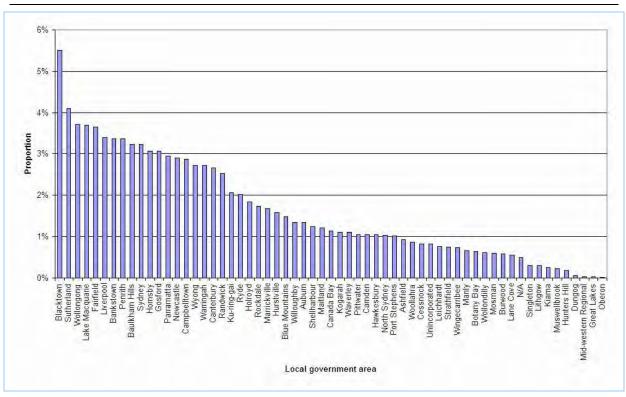
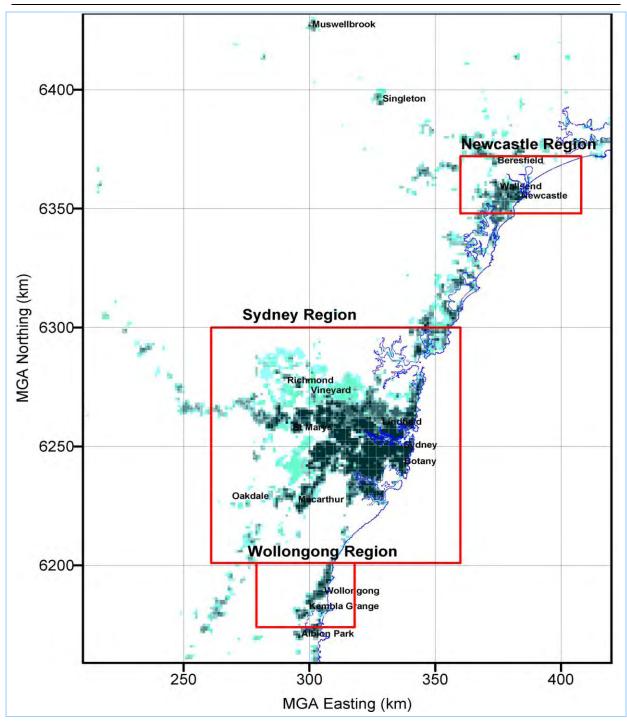

Emissions from lawn mowing and garden equipment have been spatially distributed according to petrol and diesel consumption, which is proportional to population \geq 50 persons in each 1 km by 1 km grid cell (TDC, 2009). The proportion of petrol and diesel consumption by LGA and region is presented in Table 3-133 and shown in Figure 3-58.

Table 3-133: Lawn mowing and garden equipment (public open space) spatial distribution of petroland diesel consumption by LGA and region

LGA	2008	2008 proportion of annual petrol and diesel consumption (%)				
	Newcastle	Non Urban	Sydney	Wollongong	Grand Total	
Ashfield	-	-	0.92	-	0.92	
Auburn	-	-	1.34	-	1.34	
Bankstown	-	-	3.36	-	3.36	
Baulkham Hills	-	-	3.23	-	3.23	
Blacktown	-	-	5.51	-	5.51	
Blue Mountains	-	0.48	1.00	-	1.48	
Botany Bay	-	-	0.64	-	0.64	
Burwood	-	-	0.58	-	0.58	
Camden	-	-	1.04	-	1.04	
Campbelltown	-	-	2.88	-	2.88	
Canada Bay	-	-	1.14	-	1.14	
Canterbury	-	-	2.67	-	2.67	
Cessnock	3.36 × 10-2	0.79	-	-	0.83	
Dungog	-	$6.63 imes 10^{-2}$	-	-	6.63 × 10 ⁻²	
Fairfield	-	-	3.64	-	3.64	
Gosford	-	0.85	2.22	-	3.06	
Great Lakes	-	$3.15 imes 10^{-2}$	-	-	$3.15\times10^{\text{-2}}$	
Hawkesbury	-	$5.14 imes 10^{-3}$	1.04	-	1.04	
Holroyd	-	-	1.84	-	1.84	
Hornsby	-	-	3.06	-	3.06	
Hunters Hill	-	-	0.18	-	0.18	
Hurstville	-	-	1.58	-	1.58	
Kiama	-	0.26	-	-	0.26	
Kogarah	-	-	1.11	-	1.11	
Ku-ring-gai	-	-	2.06	-	2.06	
Lake Macquarie	1.98	1.72	-	-	3.70	

Air Emissions Inventory for the Greater Metropolitan Region of New South Wales 3. *Data Sources and Results*

LGA	2008	proportion of an	nual petrol and	l diesel consumptio	on (%)
LGA	Newcastle	Non Urban	Sydney	Wollongong	Grand Total
Lane Cove	-	-	0.55	-	0.55
Leichhardt	-	-	0.77	-	0.77
Lithgow	-	0.29	-	-	0.29
Liverpool	-	-	3.40	-	3.40
Maitland	0.10	1.11	-	-	1.21
Manly	-	-	0.65	-	0.65
Marrickville	-	-	1.68	-	1.68
Mid-western Regional	-	3.67×10^{-2}	-	-	$3.67 imes 10^{-2}$
Mosman	-	-	0.60	-	0.60
Muswellbrook	-	0.23	-	-	0.23
N/A	2.48 × 10-2	5.06×10^{-2}	0.36	6.08×10^{-2}	0.49
Newcastle	2.90	-	-	-	2.90
North Sydney	-	-	1.04	-	1.04
Oberon	-	1.64×10^{-2}	-	-	1.64×10^{-2}
Parramatta	-	-	2.94	-	2.94
Penrith	-	-	3.36	-	3.36
Pittwater	-	-	1.05	-	1.05
Port Stephens	3.70 × 10-2	0.98	-	-	1.02
Randwick	-	-	2.53	-	2.53
Rockdale	-	-	1.73	-	1.73
Ryde	-	-	2.03	-	2.03
Shellharbour	-	0.94	-	0.30	1.24
Singleton	-	0.30	-	-	0.30
Strathfield	-	-	0.75	-	0.75
Sutherland	-	-	4.10	-	4.10
Sydney	-	-	3.23	-	3.23
Unincorporated	-	-	0.82	-	0.82
Warringah	-	-	2.72	-	2.72
Waverley	-	-	1.10	-	1.10
Willoughby	-	-	1.34	-	1.34
Wingecarribee	-	0.73	$1.48 imes 10^{-3}$	-	0.73
Wollondilly	-	1.10×10^{-2}	0.60	-	0.61
Wollongong	-	-	0.29	3.41	3.70
Woollahra	-	-	0.86	-	0.86
Wyong	-	2.72	-	-	2.72
Grand Total	5.08	11.62	79.53	3.77	100.00



2008 Calendar Year Domestic-Commercial Emissions: Results 3. Data Sources and Results

Figure 3-58: Lawn mowing and garden equipment (public open space) spatial distribution of petrol and diesel consumption by LGA

Figure 3-59 shows the spatial distribution of lawn mowing and garden equipment emissions.

Air Emissions Inventory for the Greater Metropolitan Region of New South Wales 3. *Data Sources and Results*

3.7.6 Temporal Variation of Emissions

Table 3-134 summarises the data used to estimate the temporal variation in emissions from lawn mowing and garden equipment.

Emission source	Temporal data	Temporal data source
Exhaust and evaporative emissions from lawn	Monthly: Derived from domestic survey	- Domestic Lawn Mowing Pollution Survey (TR, 2009)
mowing and garden equipment (public open space)	Daily and hourly: Derived from commercial survey	 Public Open Space Lawn Mowing Pollution Survey (DECC, 2007b)

Table 3-134: Lawn mowing and garden equipment (public open space) temporal data

The temporal variation in exhaust and evaporative emissions from lawn mowing and garden equipment have been estimated using equipment population (DECC, 2007b), annual operating time (DECC, 2007b), fuel properties (Attorney-General's Department, 2008; Attorney-General's Department, 2009; and DRET, 2009), ambient temperature (Hurley, 2005) and daily and monthly temporal variation (DECC, 2007b; and TR, 2009) data within the *NONROAD2008a Model* (USEPA, 2009). Hourly temporal variation profiles for exhaust emissions are presented in Table 3-135 and shown in Figure 3-60.

Table 3-135: Lawn mowing and garden equipment (public open space) exhaust hourly temporalprofile

Hour	Week day and weekend proportion (%)	Hour	Week day and weekend proportion (%)
1	-	13	10.71
2	-	14	10.71
3	-	15	10.71
4	-	16	7.84
5	0.15	17	1.22
6	0.57	18	-
7	4.61	19	-
8	10.67	20	-
9	10.71	21	-
10	10.71	22	-
11	10.71	23	-
12	10.71	24	-

Hourly temporal variation profiles for evaporative emissions are presented in Table 3-136 (weighted hourly composite) and shown in Figure 3-61 (weighted hourly composite by source type).

Table 3-136: Lawn mowing and garden equipment (public open space) evaporative hourly temporalprofile

Hour	Week day proportion (%)	Weekend proportion (%)	Hour	Week day proportion (%)	Weekend proportion (%)
1	0.11	0.79	13	10.60	9.59
2	0.11	0.78	14	10.59	9.56
3	0.11	0.77	15	10.57	9.49
4	0.10	0.76	16	7.76	7.23
5	0.25	0.87	17	1.35	2.13

Air Emissions Inventory for the Greater Metropolitan Region of New South Wales
3. Data Sources and Results

Hour	Week day proportion (%)	Weekend proportion (%)	Hour	Week day proportion (%)	Weekend proportion (%)
6	0.64	1.19	18	0.15	1.06
7	4.51	4.26	19	0.13	0.94
8	10.34	8.91	20	0.12	0.87
9	10.46	9.17	21	0.11	0.83
10	10.52	9.36	22	0.11	0.81
11	10.57	9.49	23	0.11	0.80
12	10.59	9.56	24	0.11	0.79

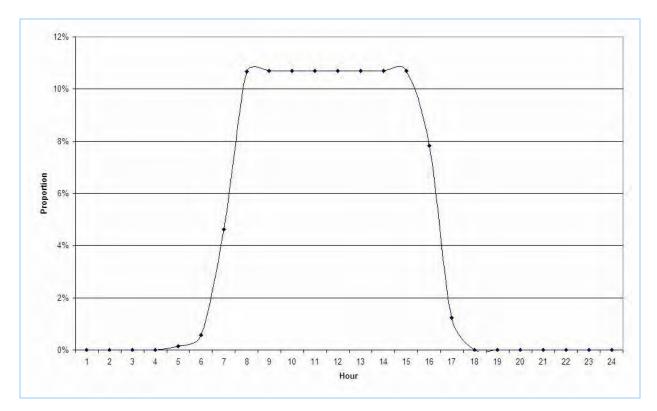


Figure 3-60: Lawn mowing and garden equipment (public open space) exhaust hourly temporal profile

2008 Calendar Year Domestic-Commercial Emissions: Results 3. Data Sources and Results

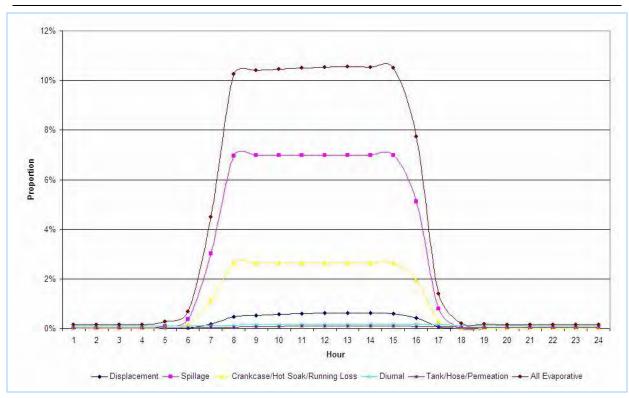
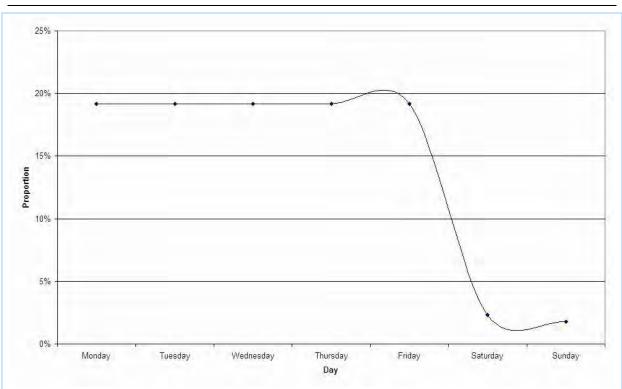


Figure 3-61: Lawn mowing and garden equipment (public open space) evaporative hourly temporal profile

Daily temporal variation profiles for exhaust emissions are presented in Table 3-137 and shown in Figure 3-62.


Table 3-137: Lawn mowing and garden equipment (public open space) exhaust daily temporal profile

Day	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday	Sunday
Proportion (%)	19.18	19.18	19.18	19.18	19.18	2.32	1.76

Daily temporal variation profiles for evaporative emissions are presented in Table 3-138 (weighted daily composite) and shown in Figure 3-63 (weighted daily composite by source type).

Table 3-138: Lawn mowing and garden equipment (public open space) evaporative daily temporal profile

Day	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday	Sunday
Proportion (%)	18.96	18.96	18.96	18.96	18.96	2.96	2.25

Air Emissions Inventory for the Greater Metropolitan Region of New South Wales 3. Data Sources and Results

Figure 3-62: Lawn mowing and garden equipment (public open space) exhaust daily temporal profile

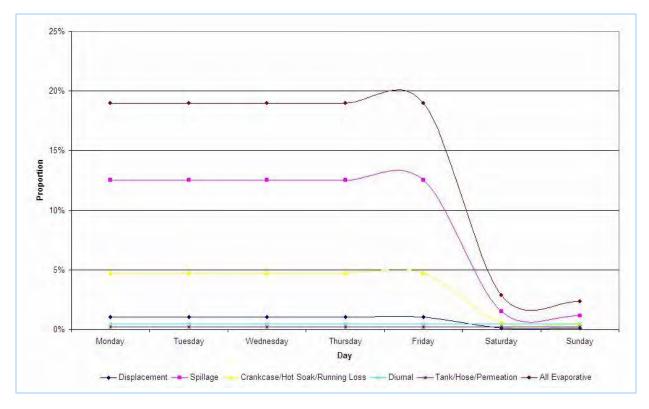
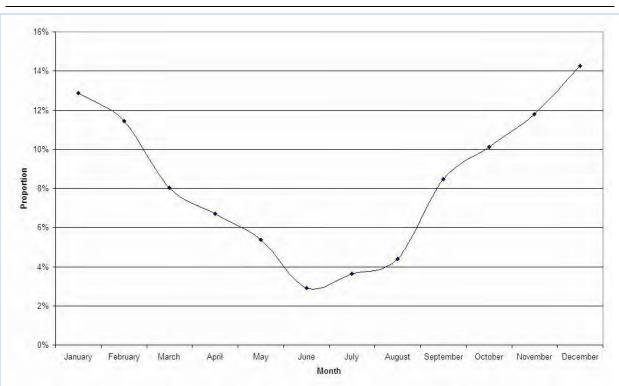


Figure 3-63: Lawn mowing and garden equipment (public open space) evaporative daily temporal profile

Monthly temporal variation profiles for exhaust emissions are presented in Table 3-139 and shown in Figure 3-64.


Table 3-139: Lawn mowing and garden equipment (public open space) exhaust monthly temporal profile

Month	Proportion (%)	Month	Proportion (%)
January	12.86	July	3.64
February	11.46	August	4.38
March	8.02	September	8.46
April	6.70	October	10.13
May	5.37	November	11.81
June	2.91	December	14.26

Monthly temporal variation profiles for evaporative emissions are presented in Table 3-140 (weighted monthly composite) and shown in Figure 3-65 (weighted monthly composite by source type).

Table 3-140: Lawn mowing and garden equipment (public open space) evaporative monthly temporal profile

Month	Proportion (%)	Month	Proportion (%)
January	12.76	July	3.74
February	11.39	August	4.46
March	8.08	September	8.39
April	6.78	October	10.07
May	5.45	November	11.71
June	3.06	December	14.10

Air Emissions Inventory for the Greater Metropolitan Region of New South Wales 3. Data Sources and Results

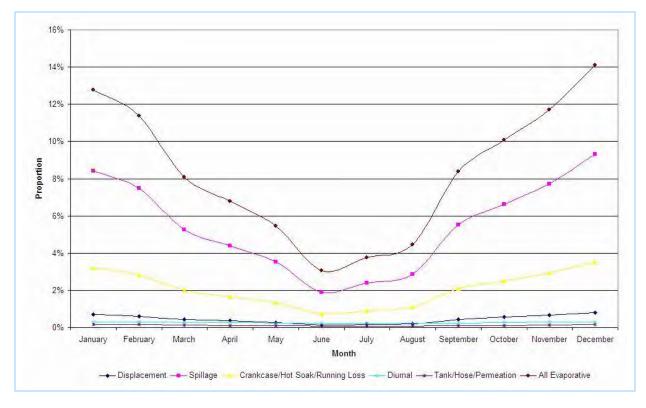


Figure 3-65: Lawn mowing and garden equipment (public open space) evaporative monthly temporal profile

3.7.7 *Emission Estimates*

Table 3-141 presents annual emissions of selected substances from lawn mowing and garden equipment by activity.

Activity	Substance	Emissions (kg/year)					
Activity	Substance	Newcastle	Non Urban	Sydney	Wollongong	GMR	
	1,3-BUTADIENE	704	1,612	11,033	523	13,873	
	ACETALDEHYDE	517	1,184	8,099	384	10,183	
	BENZENE	6,436	14,733	100,821	4,776	126,767	
	CARBON MONOXIDE	965,135	2,209,265	15,118,169	716,221	19,008,790	
	FORMALDEHYDE	1,175	2,691	18,413	872	23,152	
	ISOMERS OF XYLENE	22,583	51,694	353,746	16,759	444,782	
	LEAD & COMPOUNDS	4.91	11	77	3.64	97	
Lawn Mowing and garden	OXIDES OF NITROGEN	10,427	23,869	163,335	7,738	205,369	
Equipment Exhaust (Public	PARTICULATE MATTER ≤ 10 µm	7,358	16,843	115,255	5,460	144,915	
Open Space)	PARTICULATE MATTER ≤ 2.5µm	6,815	15,599	106,747	5,057	134,218	
	POLYCYCLIC AROMATIC HYDROCARBONS	56	129	882	42	1,109	
	SULFUR DIOXIDE	149	341	2,334	111	2,935	
	TOLUENE	20,866	47,765	326,858	15,485	410,974	
	TOTAL SUSPENDED PARTICULATE	7,585	17,363	118,819	5,629	149,397	
	TOTAL VOLATILE ORGANIC COMPOUNDS	222,707	509,793	3,488,553	165,270	4,386,323	
Lawn Mowing	BENZENE	148	338	2,311	109	2,905	
and Garden Equipment	ISOMERS OF XYLENE	104	238	1,629	77	2,049	
Evaporative	TOLUENE	359	822	5,628	267	7,077	
(Public Open Space)	TOTAL VOLATILE ORGANIC COMPOUNDS	18,911	43,288	296,225	14,034	372,458	

Table 3-141: Lawn mowing and garden equipment (public open space) emissions by activity

Table 3-142 presents annual emissions of selected substances from lawn mowing and garden equipment by source type.

TT 11 0 4 40 T	1 1		/ 11	· · ·	a
Lable 3-142. Lawn mowing	o and oarden	equinment	(nublic open si	nacel emissions	by source type
Table 3-142: Lawn mowing	S und Surden	equipment	(public open b)	succy chillobiono	by bounce type

	Caladaraa	Emissions (kg/year)						
Source type	Substance	Newcastle	Non Urban	Sydney	Wollongong	GMR		
	1,3-BUTADIENE	409	936	6,404	303	8,052		
	ACETALDEHYDE	317	726	4,967	235	6,245		
	BENZENE	4,794	10,974	75,093	3,558	94,418		
	CARBON MONOXIDE	431,147	986,928	6,753,622	319,952	8,491,649		
	FORMALDEHYDE	484	1,107	7,576	359	9,525		
	ISOMERS OF XYLENE	20,482	46,886	320,842	15,200	403,410		
	LEAD & COMPOUNDS	2.54	5.82	40	1.89	50		
	OXIDES OF NITROGEN	938	2,148	14,698	696	18,481		
Exhaust -	PARTICULATE MATTER ≤ 10 µm	5,996	13,726	93,930	4,450	118,103		
Petrol 2 Stroke	PARTICULATE MATTER ≤ 2.5µm	5,517	12,628	86,416	4,094	108,655		
	POLYCYCLIC AROMATIC HYDROCARBONS	8.67	20	136	6.43	171		
	SULFUR DIOXIDE	50	115	788	37	991		
	TOLUENE	18,635	42,658	291,910	13,829	367,032		
	TOTAL SUSPENDED PARTICULATE	6,182	14,151	96,835	4,588	121,756		
	TOTAL VOLATILE ORGANIC COMPOUNDS	190,551	436,186	2,984,854	141,407	3,752,998		
	1,3-BUTADIENE	293	671	4,588	217	5,769		
	ACETALDEHYDE	126	289	1,976	94	2,485		
	BENZENE	1,614	3,695	25,285	1,198	31,792		
	CARBON MONOXIDE	529,459	1,211,971	8,293,609	392,909	10,427,947		
	FORMALDEHYDE	528	1,208	8,265	392	10,392		
	ISOMERS OF XYLENE	2,086	4,775	32,674	1,548	41,083		
	LEAD & COMPOUNDS	2.34	5.35	37	1.74	46		
	OXIDES OF NITROGEN	2,118	4,849	33,179	1,572	41,718		
Exhaust -	PARTICULATE MATTER ≤ 10 μm	451	1,033	7,068	335	8,887		
Petrol 4 Stroke	PARTICULATE MATTER ≤ 2.5µm	415	950	6,503	308	8,176		
	POLYCYCLIC AROMATIC HYDROCARBONS	47	107	732	35	920		
	SULFUR DIOXIDE	85	194	1,328	63	1,669		
	TOLUENE	2,210	5,059	34,622	1,640	43,532		
	TOTAL SUSPENDED PARTICULATE	465	1,065	7,287	345	9,162		
	TOTAL VOLATILE ORGANIC COMPOUNDS	30,766	70,425	481,924	22,831	605,946		
	1,3-BUTADIENE	2.59	5.92	41	1.92	51		
Exhaust –	ACETALDEHYDE	74	169	1,156	55	1,453		
Diesel	BENZENE	28	65	443	21	557		
			I	1	1	1		

Source type	Substance	Emissions (kg/year)					
bource type	oubstatee	Newcastle	Non Urban	Sydney	Wollongong	GMR	
	CARBON MONOXIDE	4,529	10,366	70,938	3,361	89,194	
	FORMALDEHYDE	164	376	2,573	122	3,235	
	ISOMERS OF XYLENE	15	34	230	11	290	
	LEAD & COMPOUNDS	$2.81\times10^{\text{-}2}$	$6.44 imes 10^{-2}$	0.44	2.09×10^{-2}	0.55	
	OXIDES OF NITROGEN	7,371	16,872	115,458	5,470	145,171	
	PARTICULATE MATTER ≤ 10 µm	910	2,083	14,256	675	17,925	
	PARTICULATE MATTER ≤ 2.5µm	883	2,021	13,829	655	17,387	
	POLYCYCLIC AROMATIC HYDROCARBONS	0.94	2.16	15	0.70	19	
	SULFUR DIOXIDE	14	32	219	10	275	
	TOLUENE	21	48	326	15	410	
	TOTAL SUSPENDED PARTICULATE	938	2,148	14,697	696	18,479	
	TOTAL VOLATILE ORGANIC COMPOUNDS	1,390	3,182	21,775	1,032	27,379	
	BENZENE	148	338	2,311	109	2,905	
	ISOMERS OF XYLENE	104	238	1,629	77	2,049	
Evaporative	TOLUENE	359	822	5,628	267	7,077	
	TOTAL VOLATILE ORGANIC COMPOUNDS	18,911	43,288	296,225	14,034	372,458	

3.7.8 Emission Projection Methodology

Table 3-143 summarises the data used to estimate the emission projection factors for lawn mowing and garden equipment, while Figure 3-66 shows the emission projection factors for calendar years 2009 to 2036.

Emission source	Projection factor surrogate	Projection factor source
Exhaust and evaporative emissions	Final energy consumption for	- Australian Energy, National and State
from lawn mowing and garden	commercial and services	Projections to 2029-30, ABARE
equipment (public open space)	using petroleum	Research Report 06.26 (ABARE, 2006)

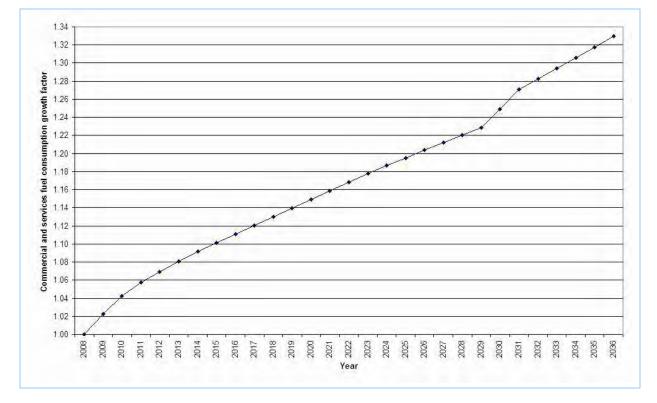


Figure 3-66: Lawn mowing and garden equipment (public open space) emission projection factors

3.8 Liquid Fuel Combustion

3.8.1 *Emission Source Description*

The domestic-commercial air emissions inventory includes emissions of combustion products from liquid fuel fired residential space and water heaters.

To estimate emissions from these sources, the following have been considered:

> Domestic survey

A domestic survey of liquid fuel fired residential space and water heater ownership and usage has been conducted, which includes each of the 64 local government areas (LGA)⁴² located in the GMR. The survey results include data about: heater number; fuel type; quantity of fuel used; and frequency and duration of heater use by hour, day and month (TR, 2009).

> Heater type

The inventory includes small boilers, furnaces and heaters used in residential applications as follows:

- Space heater; and
- Water heater.
- ➤ Fuel type

The inventory includes residential space and water heaters that use distillate heating oil.

Table 3-144 presents the liquid fuel type and properties used in the inventory (Caltex, 2011; and USEPA, 2010b).

Fuel type	Sulfur content	Density	Effective heating value	Carbon content
	(ppm)	(kg/L)	(MJ/L)	(%)
Heating oil	500	0.820	37.6	87.25

Table 3-144: Liquid fuel type and properties

3.8.2 Emission Estimation Methodology

Table 3-145 summarises the emission estimation methodology used for liquid fuel combustion.

⁴² The GMR includes 64 local government areas (LGA), plus two areas designated N/A and unincorporated. N/A areas are those located near the coastline and the majority area within the 1 km by 1 km grid cell lies over water. Unincorporated areas are those areas which are not under the responsibility of an incorporated local government. Emissions have been estimated for 64 LGA plus the two areas designated N/A and unincorporated.

Tuble 5 145. Elquid fuel combustion emission estimation memouology						
Emission source	Emission estimation methodology source					
Exhaust emissions from liquid fuel	- Documentation for the Final 2002 NonPoint Sector (FEB 06 version)					
combustion in space and water	National Emission Inventory for Criteria and Hazardous Air Pollutants					
heaters	(Pechan, 2006)					

Table 3-145: Liquid fuel combustion emission estimation methodology

Emissions of combustion products from liquid fuel fired residential space and water heaters have been estimated using fuel consumption based emission factors combined with activity rates. Activity rates include heater number, fuel type and quantity of fuel used (TR, 2009). Emissions have been determined using Equation 11 (Pechan, 2006):

$$E_i = C \times EF_i$$
 Equation 11

where:			
Ei	=	Emissions of substance i	(kg/year)
С	=	Heating oil consumption	(kL/year)
EFi	=	Emission factor for substance i	(kg/kL)
i	=	Substance (either "criteria pollutants", "speciated NO _x ", "speciated VOC",	(-)
		"organic air toxics", "metal air toxics", "PAH", "PCDD and PCDF",	
		"ammonia" or "greenhouse gases")	

3.8.3 Activity Data

Table 3-146 summarises the activity data used for liquid fuel combustion.

Table 3-140. Equilibriu fuel combustion activity data						
Activity data source						
- Domestic Liquid Fuel Combustion Pollution Survey (TR, 2009)						
 Forecasts for Total Dwelling from 2006 to 2036 (TDC, 2009) 						

Table 3-146: Liquid fuel combustion activity data

A domestic survey of liquid fuel fired residential space and water heater ownership and usage has been conducted, which includes each of the 64 local government areas (LGA) located in the GMR. The survey results include data about: heater number; fuel type; quantity of fuel used; and frequency and duration of heater use by hour, day and month (TR, 2009).

The key considerations in designing and conducting a domestic survey include:

Survey method - The domestic survey has been conducted using the computer assisted telephone interview (CATI) method for recruiting households to complete either an on-line or mail-out questionnaire.

Sample size - To provide a reasonable level of precision for estimating liquid fuel combustion activity rates across all households in the GMR, the survey sample was sized accordingly. While a total of 832 households were recruited, 31 households were outside the GMR so they were excluded from the

survey. Activity rates for liquid fuel combustion have been based on survey responses from 801 households in the GMR.

Confidence interval and confidence level - The confidence interval quantifies the uncertainty or range in possible values. For example, for a confidence interval of 3.5% and where 47% percent of the sample picks a particular answer one can be "sure" that if the question has been asked of the entire relevant population, between 43.5% (47-3.5) and 50.5% (47+3.5) would have picked that answer.

The confidence level quantifies the level of certainty to which an estimate can be trusted. It is expressed as a percentage and represents how often the true percentage of the population who would pick an answer lies within the confidence interval. The 95% confidence level means one can be 95% certain. Most researchers use the 95% confidence level.

When combining the confidence level and confidence interval together, one can be 95% sure that the true answer for the entire relevant population is between 43.5% and 50.5% for the example described above.

Table 3-147 presents the theoretical confidence intervals for samples of varied sizes for characteristics with a population incidence of 50% or 50%, 75% or 25% and 90% or 10%.

	Confidence	nce interval at 95% confidence level			
Sample size	Endorsement rate of 50%/50%	Endorsement rate of 75%/25%	Endorsement rate of 90%/10%		
100	9.8	8.5	5.9		
150	8.0	6.9	4.8		
200	6.9	6.0	4.2		
300	5.7	4.9	3.4		
400	4.9	4.2	2.9		
500	4.4	3.8	2.6		
600	4.0	3.5	2.4		
800	3.5	3.0	2.1		
1,000	3.1	2.7	1.9		

 Table 3-147: Confidence intervals at 95% confidence level by sample size for liquid fuel combustion survey

The domestic survey of liquid fuel combustion randomly sampled 801 households from a population of 5,284,560 in 1,901,680 households, so survey items with a true population incidence of 50% will produce estimates within $\pm 3.5\%$ of the true population value in 95% of the samples.

Random sampling and stratification - Households were selected at random across the GMR to limit bias. In practice, actual samples are not truly random since respondents always have the right to decline an interview and others cannot be reached for a variety of reasons. To reduce the standard error of estimated population values, samples were stratified on a geographic basis into the following subpopulations by location:

Sydney region, sub-grouped into

North East
 North West
 South East
 South West

Wollongong region

Development of survey questionnaires – Three survey questionnaires were developed including: initial recruitment using the computer assisted telephone interview (CATI) method to capture household details using pre-coded questions within OzQuest on-line software; self complete main survey using pre-coded questions within OzQuest on-line software; and self complete main survey using a traditional hard copy mail-out with a reply paid envelope. The questionnaires request information about: heater number; fuel type; quantity of fuel used; and frequency and duration of heater use by hour, day and month. The domestic survey questionnaire form is included at Appendix B: Domestic Survey Form (TR, 2009).

Recruitment and data collection - A random sample of phone numbers was selected from the 64 local government areas (LGA) located in the GMR, stratified into Sydney, Newcastle and Wollongong regions.

As part of the computer assisted telephone interview (CATI), households were phoned up to five times to make contact and the interviewer asked to speak to an "adult household member who is familiar with any devices the household uses that might burn solid fuel (like wood or coal heaters), liquid fuel (like kerosene heaters or petrol lawn mowers) or gas fuel (like natural gas cooktops or heaters)". If required, arrangements were made to call back at a more convenient time when an appropriate adult household member would be available.

When an adult household member was available for interview, respondents were asked what LGA they lived in. If not in the GMR they were thanked and the interview was terminated. If in the GMR, they were then asked about the number of residents in the household, the dwelling type and which of the fuel burning devices were used by the household. All were then asked for their postcode and age group. Respondents in households that had none of the fuel burning devices were thanked and the interview terminated. All other respondents were then asked if they would be willing to complete a further questionnaire either on-line or by mail. If willing, contact details were recorded, and the interview concluded. Those who initially declined were read material emphasizing the importance of obtaining data from all households, whether they make little use of fuel burning devices or not and asked again if they would be willing to take part.

Consenting respondents were then either e-mailed a link to a self complete on-line main survey or mailed a self complete hard copy main survey. The mailed questionnaires included an identifying serial number on the front page with a letter from DECCW encouraging completion of the survey.

Main survey completions on-line and mail-out were closely monitored and households were phoned on two occasions in order to remind them to complete. Some respondents indicated they preferred to go through the questions on the phone. Data for these were entered into the on-line version of the questionnaire.

Data capture – Data from the three survey questionnaires (i.e. CATI, on-line main survey and hard copy main survey) have all been entered into a database which captures pre-coded questions using OzQuest on-line software. All data was then checked, cleaned and saved in a Microsoft® Excel[™] 2003 workbook.

Survey timeframe - The survey took approximately 15 weeks to complete, from the time that questionnaire development commenced to the date data analysis and report were completed. The key tasks and milestones for the domestic survey are presented in Table 3-148.

Task	Milestones
Questionnaire development commenced	11 August 2009
CATI recruitment commenced	18 September 2009
CATI recruitment completed	21 October 2009
Main survey completed	12 November 2009
Data analysis and report completed	26 November 2009

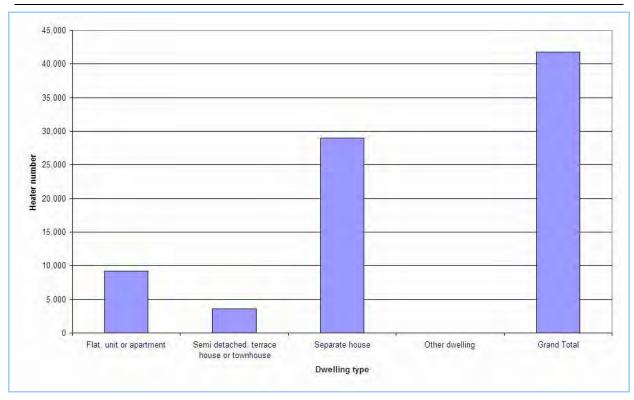
Table 3-148: Liquid fuel combustion survey milestones

Gridded 1 km by 1 km dwelling estimates (TDC, 2009) have been used to scale-up the liquid fuel combustion survey results (TR, 2009). Table 3-149 presents a summary of the population and dwelling by LGA data used to scale-up the domestic survey results to the GMR.

Table 3-149: Por	pulation and dwellin	g by LG	A used to scale-u	n liauid fue	el combustion survey
14010 0 149.10		S VY LUI	i uscu to scule u	p inquiù i u	i combustion survey

	2008 population and dwelling									
LGA	Population	Flat, unit or apartment	Semi- detached, row, terrace or town house	Separate house	Other dwelling ⁴³	Total dwelling				
Ashfield	47,887	7,660	2,728	7,882	142	18,412				
Auburn	69,555	7,358	2,326	11,421	284	21,390				
Bankstown	174,326	7,781	8,028	41,407	287	57,503				
Bathurst Regional	157	-	-	41	1	41				
Baulkham Hills	170,925	2,345	5,004	46,441	137	53,928				
Blacktown	286,162	3,915	9,712	77,217	700	91,544				

⁴³ Caravan, cabin, houseboat, improvised home, tent, sleepers out, house or flat attached to a shop or office (TDC, 2009).


	2008 population and dwelling								
LGA	Population	Flat, unit or apartment	Semi- detached, row, terrace or town house	Separate house	Other dwelling ⁴³	Total dwelling			
Blue Mountains	78,427	777	1,030	27,952	63	29,822			
Botany Bay	33,316	4,244	1,974	5,777	100	12,095			
Burwood	30,277	3,332	1,108	5,770	65	10,275			
Camden	55,287	258	499	16,910	161	17,828			
Campbelltown	150,373	1,333	8,057	39,856	97	49,343			
Canada Bay	58,880	6,445	2,342	13,157	137	22,080			
Canterbury	138,343	16,795	4,851	25,673	328	47,647			
Cessnock	48,845	562	339	16,615	150	17,667			
Dungog	7,659	23	60	2,581	38	2,702			
Fairfield	189,024	7,302	6,172	43,571	198	57,243			
Gosford	162,826	5,481	8,288	49,407	676	63,852			
Goulburn Mulwaree	341	-	1	79	-	80			
Great Lakes	4,062	10	29	1,301	44	1,383			
Hawkesbury	62,416	899	1,674	18,441	241	21,254			
Holroyd	95,192	6,969	3,562	22,399	144	33,074			
Hornsby	160,612	9,018	4,454	40,736	265	54,472			
Hunters Hill	9,295	898	318	1,892	3	3,111			
Hurstville	81,935	7,352	3,548	18,534	111	29,545			
Kiama	14,586	580	338	4,433	75	5,426			
Kogarah	57,349	6,558	1,565	11,945	81	20,148			
Ku-ring-gai	106,943	3,805	1,253	30,103	73	35,235			
Lake Macquarie	195,295	3,160	4,849	63,598	926	72,532			
Lane Cove	28,511	4,473	652	5,687	92	10,904			
Leichhardt	39,692	4,537	6,175	5,998	278	16,988			
Lithgow	19,595	227	341	6,350	59	6,977			
Liverpool	178,554	6,938	5,352	42,517	317	55,125			
Maitland	66,554	1,330	1,049	21,169	117	23,666			
Manly	33,804	5,898	1,520	5,676	97	13,192			
Marrickville	86,873	13,062	10,292	11,838	553	35,744			
Mid-western Regional	3,412	25	14	1,149	17	1,205			
Mosman	30,915	6,692	1,506	4,604	104	12,905			
Muswellbrook	15,221	364	121	4,582	62	5,128			
N/A	25,875	4,778	1,262	4,329	119	10,488			
Newcastle	150,930	8,242	6,306	44,792	500	59,840			
North Sydney	53,850	17,299	4,228	3,854	252	25,633			
Oberon	1,803	4	5	438	5	452			
Parramatta	152,570	16,729	6,975	29,743	348	53,796			
Penrith	177,459	3,483	4,905	51,040	349	59,776			
Pittwater	54,586	2,542	1,577	15,389	183	19,690			
Port Stephens	59,017	756	1,587	18,809	482	21,634			
Randwick	130,955	25,728	8,002	16,752	370	50,853			

	2008 population and dwelling								
LGA	Population	Flat, unit or apartment	Semi- detached, row, terrace or town house	Separate house	Other dwelling ⁴³	Total dwelling			
Rockdale	89,735	12,199	4,159	16,242	256	32,856			
Ryde	105,073	11,196	5,519	22,448	111	39,275			
Shellharbour	65,104	1,282	2,369	18,768	328	22,747			
Shoalhaven	81	-	-	30	-	30			
Singleton	22,222	405	275	6,357	132	7,169			
Strathfield	38,732	5,612	806	6,543	45	13,006			
Sutherland	212,924	16,252	8,522	52,450	274	77,498			
Sydney	167,382	52,686	17,811	4,651	1,028	76,176			
Unincorporated	42,682	9,672	2,028	5,866	146	17,713			
Upper Hunter	350	-	-	66	-	66			
Upper Lachlan	502	-	-	92	-	92			
Warringah	141,123	16,643	3,029	32,008	175	51,854			
Waverley	57,147	14,769	4,430	5,038	245	24,481			
Willoughby	69,528	11,760	2,038	12,473	82	26,353			
Wingecarribee	45,480	537	1,113	15,131	144	16,924			
Wollondilly	42,871	168	292	13,634	133	14,227			
Wollongong	193,292	11,210	7,296	52,219	992	71,717			
Woollahra	44,773	12,138	3,128	4,232	71	19,569			
Wyong	145,088	2,801	4,575	47,918	1,006	56,300			
Grand Total	5,284,560	417,295	213,366	1,256,021	14,998	1,901,680			

The total population of in-service liquid fuel fired residential space and water heaters have been estimated by combining the domestic survey results (TR, 2009) and gridded 1 km by 1 km dwelling estimates (TDC, 2009). In-service liquid fuel fired residential space and water heater population by dwelling type for the GMR is presented in Table 3-150 and shown in Figure 3-67.

	2008 statistics					
Dwelling type	Dwelling number	Heater number	Proportion of dwelling type with heater (%)			
Flat, unit or apartment	417,295	9,171	2.20			
Semi detached, terrace house or townhouse	213,366	3,616	1.69			
Separate house	1,256,021	29,030	2.31			
Other dwelling	14,998	-	-			
Grand Total	1,901,680	41,817	2.20			

Table 3-150: Liquid fuel fired residential space and water heater population in the GMR

Figure 3-67: Liquid fuel fired residential space and water heater population in the GMR

The total consumption of heating oil has been estimated by combining the domestic survey results (TR, 2009) and gridded 1 km by 1 km dwelling estimates (TDC, 2009). Table 3-151 presents the residential space and water heater heating oil consumption estimates.

Table 3-151: Liquid fuel fired residential space and water heater fuel consumption in the GMR

Dwelling type	2008 heating oil consumption (kL/year)
Flat, unit or apartment	2,818
Semi detached, terrace house or townhouse	1,111
Separate house	8,919
Other dwelling	-
Grand Total	12,848

3.8.4 Emission and Speciation Factors

Table 3-152 summarises the emission and speciation factors used for liquid fuel combustion.

Table 3-152: Liquid fuel combustion emission and speciation factors						
Emission source	Substance	Emission and speciation factor source ⁴⁴				
	Criteria pollutants: CO, NO _x , PM _{2.5} , PM ₁₀ , SO ₂ and VOC	- Table 1.3-1 Residential furnace/Distillate oil fired, Table 1.3-2 No.2 Oil fired, Table 1.3-3 Residential furnace and Table 1.3-7 Distillate oil - AP 42, Fifth Edition, Volume I, Chapter 1: External Combustion Sources, 1.3 Fuel Oil Combustion (USEPA, 2010b)				
	Criteria pollutants: TSP	- Table 1.3-1 Residential furnace/Distillate oil fired and Table 1.3-2 No. 2 Oil fired - AP 42, Fifth Edition, Volume I, Chapter 1: External Combustion Sources, 1.3 Fuel Oil Combustion (USEPA, 2010b)				
	Speciated NO _x	- Technology Transfer Network - Clearinghouse for Inventories & Emissions Factors (USEPA, 2003)				
	Speciated VOC	 RESIDENTIAL HEATING: DISTILLATE OIL Table 1 - Documentation for the Final 2002 NonPoint Sector (FEB 06 version) National Emission Inventory for Criteria and Hazardous Air Pollutants (Pechan, 2006) Table 1.3-9 Fuel oil combustion - AP 42, Fifth Edition, Volume I, Chapter 1: External Combustion Sources, 1.3 Fuel Oil Combustion (USEPA, 2010b)* Profile number 0002 External combustion boiler distillate oil - Speciate 4.2 Database Development Documentation (Pechan, 2009a) 				
Exhaust emissions from liquid fuel combustion	Organic air toxics	 RESIDENTIAL HEATING: DISTILLATE OIL Table 1 - Documentation for the Final 2002 NonPoint Sector (FEB 06 version) National Emission Inventory for Criteria and Hazardous Air Pollutants (Pechan, 2006) Table 1.3-9 Fuel oil combustion - AP 42, Fifth Edition, Volume I, Chapter 1: External Combustion Sources, 1.3 Fuel Oil Combustion (USEPA, 2010b)* Profile number 0002 External combustion boiler distillate oil - Speciate 4.2 Database Development Documentation (Pechan, 2009a) 				
	Metal air toxics	 RESIDENTIAL HEATING: DISTILLATE OIL Table 1 - Documentation for the Final 2002 NonPoint Sector (FEB 06 version) National Emission Inventory for Criteria and Hazardous Air Pollutants (Pechan, 2006) Table 1.3-10 Distillate fuel oil combustion and Table 1.3-11 No. 6 fuel oil combustion - AP 42, Fifth Edition, Volume I, Chapter 1: External Combustion Sources, 1.3 Fuel Oil Combustion (USEPA, 2010b)* Profile number 1230130 External combustion kerosene fired boiler composite - Speciate 4.2 Database Development Documentation (Pechan, 2009a) 				
	Polycyclic aromatic hydrocarbons: PAH	 RESIDENTIAL HEATING: DISTILLATE OIL Table 1 - Documentation for the Final 2002 NonPoint Sector (FEB 06 version) National Emission Inventory for Criteria and Hazardous Air Pollutants (Pechan, 2006) Table 1.3-9 Fuel oil combustion - AP 42, Fifth Edition, Volume I, 				

Table 3-152: Liquid fuel combustion emission and speciation factors

⁴⁴ Where references are marked with an asterisk (i.e. *), distillate fired residential space and water heaters use residual oil emission data, which have been adjusted to distillate equivalent based on effective heating value of 140,000 BTU/US gal for distillate and 150,000 BTU/US gal for residual oil (USEPA, 2010b).

Air Emissions Inventory for the Greater Metropolitan Region of New South Wales 3. Data Sources and Results

Emission source	Substance	Emission and speciation factor source ⁴⁴
		Chapter 1: External Combustion Sources, 1.3 Fuel Oil Combustion (USEPA, 2010b)*
	Polychlorinated dibenzo-p-dioxins and Polychlorinated dibenzofurans: PCDD and PCDF	 Table 4.54 Emission Factors – Household Heating and Cooking (Fossil Fuels) Oil - Australian Inventory of Dioxin Emissions 2004, National Dioxins Program Technical Report No. 3 (Bawden et. al., 2004)
	Ammonia	 Table III-1 Residential oil combustion -Estimating Ammonia Emissions from Anthropogenic Non-Agricultural Sources – Draft Final Report (Pechan, 2004)
	Greenhouse gases: CH4	- Table 1.3-3 Residential furnace - AP 42, Fifth Edition, Volume I, Chapter 1: External Combustion Sources, 1.3 Fuel Oil Combustion (USEPA, 2010b)
	Greenhouse gases: CO ₂	- Table 1.3-3 Fuel type No. 2 - AP 42, Fifth Edition, Volume I, Chapter 1: External Combustion Sources, 1.3 Fuel Oil Combustion (USEPA, 2010b)
	Greenhouse gases: N ₂ O	- Table 1.3-8 Residential furnace - AP 42, Fifth Edition, Volume I, Chapter 1: External Combustion Sources, 1.3 Fuel Oil Combustion (USEPA, 2010b)

Table 3-153 presents emission factors for liquid fuel combustion.

		Emission factors (kg/kL)										
Emission source	NO _x	N ₂ O	NH3	SO ₂	PM ₁₀	PM _{2.5}	VOC	CH ₄	CO	CO ₂	РАН	PCDF and PCDF
Exhaust emissions from liquid fuel combustion	2.16	0.006	0.120	0.851	0.29	0.26	0.09	0.213	0.60	2,672.46	1.43 × 10-4	3.76 × 10 ⁻¹⁰

Table 3-153: Liquid fuel combustion emission factors

3.8.5 Spatial Distribution of Emissions

Table 3-154 summarises the data used for spatially allocating emissions from liquid fuel combustion.

Emission source	Spatial data	Spatial data source
Exhaust emissions from liquid	Gridded 1 km x 1 km total	- Forecasts for Total Dwelling from 2006
fuel combustion	dwelling estimates	to 2036 (TDC, 2009)

Table 3-154: Liquid fuel combustion spatial data

Emissions from liquid fuel combustion have been spatially distributed according to heating oil consumption, which is proportional to total dwellings in each 1 km by 1 km grid cell (TDC, 2009). The

proportion of heating oil consumption by LGA and region is presented in Table 3-155 and shown in Figure 3-68.

Table 3-155: Liquid fuel combustion spatial distribution of heating oil consumption by LGA and region

		region						
LGA	2008 proportion of annual heating oil consumption (%)							
LGA	Newcastle	Non Urban	Sydney	Wollongong	Grand Total			
Ashfield	-	-	0.97	-	0.97			
Auburn	-	-	1.13	-	1.13			
Bankstown	-	-	3.03	-	3.03			
Bathurst Regional	-	2.18×10^{-3}	-	-	2.18×10^{-3}			
Baulkham Hills	-	2.39×10^{-3}	2.84	-	2.84			
Blacktown	-	-	4.82	-	4.82			
Blue Mountains	-	0.56	1.00	-	1.57			
Botany Bay	-	-	0.64	-	0.64			
Burwood	-	-	0.54	-	0.54			
Camden	-	-	0.94	-	0.94			
Campbelltown	-	-	2.60	-	2.60			
Canada Bay	-	-	1.16	-	1.16			
Canterbury	-	-	2.51	-	2.51			
Cessnock	3.84 × 10-2	0.89	-	-	0.93			
Dungog	-	0.14	-	-	0.14			
Fairfield	-	-	3.01	-	3.01			
Gosford	-	0.91	2.45	-	3.36			
Goulburn Mulwaree	-	4.14×10^{-3}	-	-	4.14×10^{-3}			
Great Lakes	-	6.80 × 10-2	-	-	6.80 × 10-2			
Hawkesbury	-	2.30 × 10-2	1.10	-	1.12			
Holroyd	-	-	1.74	-	1.74			
Hornsby	-	3.62 × 10 ⁻³	2.86	-	2.87			
Hunters Hill	-	-	0.16	-	0.16			
Hurstville	-	-	1.55	-	1.55			
Kiama	-	0.29	-	-	0.29			
Kogarah	-	-	1.06	-	1.06			
Ku-ring-gai	-	-	1.85	-	1.85			
Lake Macquarie	2.00	1.82	-	-	3.82			
Lane Cove	-	-	0.57	-	0.57			
Leichhardt	-	-	0.89	-	0.89			
Lithgow	-	0.36	-	-	0.36			
Liverpool	-	-	2.90	-	2.90			
Maitland	9.39 × 10-2	1.15	-	-	1.25			
Manly	-	-	0.69	-	0.69			
Marrickville	-	-	1.88	-	1.88			
Mid-western Regional	-	5.16 × 10 ⁻²	-	-	$5.16\times10^{\text{-2}}$			
Mosman	-	-	0.68	-	0.68			
Muswellbrook	-	0.26	-	-	0.26			
N/A	3.05 × 10-2	5.58×10^{-2}	0.39	$7.60\times10^{\text{-2}}$	0.55			
Newcastle	3.15	-	-	-	3.15			

Air Emissions Inventory for the Greater Metropolitan Region of New South Wales 3. *Data Sources and Results*

LGA	2008 proportion of annual heating oil consumption (%)				
	Newcastle	Non Urban	Sydney	Wollongong	Grand Total
North Sydney	-	-	1.35	-	1.35
Oberon	-	2.26 × 10-2	-	-	2.26 × 10 ⁻²
Parramatta	-	-	2.83	-	2.83
Penrith	-	-	3.15	-	3.15
Pittwater	-	-	1.04	-	1.04
Port Stephens	6.97 × 10-2	1.07	-	-	1.14
Randwick	-	-	2.68	-	2.68
Rockdale	-	-	1.73	-	1.73
Ryde	-	-	2.07	-	2.07
Shellharbour	-	0.89	-	0.31	1.20
Shoalhaven	-	1.50×10^{-3}	-	-	1.50×10^{-3}
Singleton	-	0.37	-	-	0.37
Strathfield	-	-	0.68	-	0.68
Sutherland	-	-	4.08	-	4.08
Sydney	-	-	4.01	-	4.01
Unincorporated	-	-	0.93	-	0.93
Upper Lachlan	-	$6.05 imes 10^{-4}$	-	-	$6.05 imes10^{-4}$
Warringah	-	-	2.73	-	2.73
Waverley	-	-	1.29	-	1.29
Willoughby	-	-	1.39	-	1.39
Wingecarribee	-	0.88	4.72×10^{-3}	1.50×10^{-3}	0.89
Wollondilly	-	1.16×10^{-2}	0.74	3.91×10^{-4}	0.75
Wollongong	-	-	0.27	3.50	3.77
Woollahra	-	-	1.03	-	1.03
Wyong	-	2.96	-	-	2.96
Grand Total	5.38	12.78	77.95	3.89	100.00

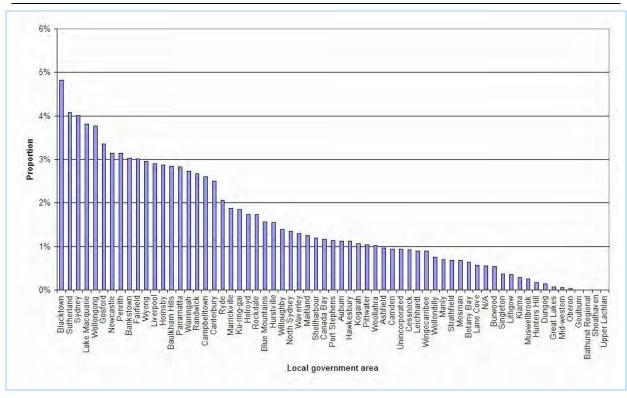
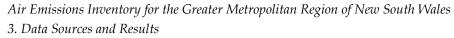
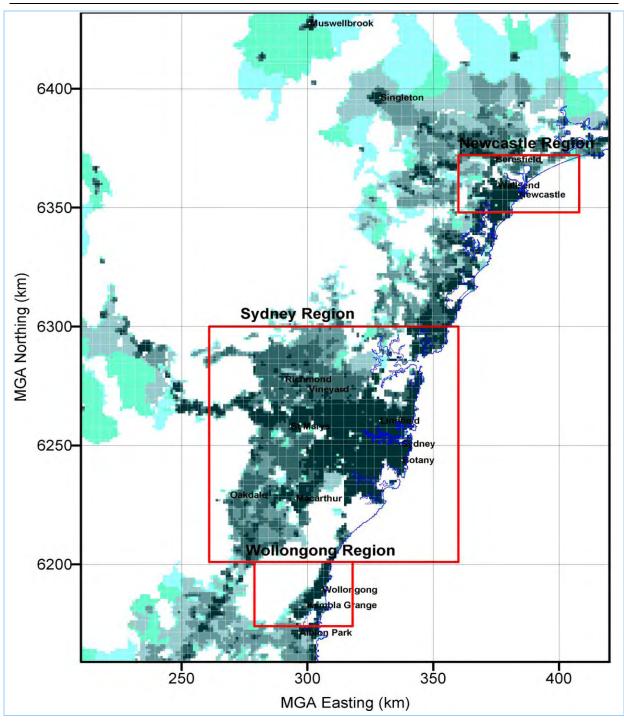




Figure 3-68: Liquid fuel combustion spatial distribution of heating oil consumption by LGA

Figure 3-69 shows the spatial distribution of liquid fuel combustion emissions.

3.8.6 Temporal Variation of Emissions

Table 3-156 summarises the data used to estimate the temporal variation in emissions from liquid fuel combustion.

	1	1
Emission source	Temporal data	Temporal data source
Exhaust emissions from liquid	Monthly, daily and hourly: Derived	- Domestic Liquid Fuel Combustion
fuel combustion	from domestic survey	Pollution Survey (TR, 2009)

Table 3-156: Liquid fuel combustion temporal data

The temporal variation in emissions from liquid fuel combustion have been estimated from heater number, fuel type, quantity of fuel used and frequency and duration of heater use by hour, day and month data (TR, 2009).

Hourly temporal variation profiles are presented in Table 3-157 and shown in Figure 3-70.

Tuble 5 157. Equila fuel combustion nourly temporal profile							
Hour	Week day and weekend proportion (%)	Hour	Week day and weekend proportion (%)				
1	-	13	2.08				
2	-	14	2.08				
3	-	15	2.08				
4	-	16	4.17				
5	-	17	6.25				
6	2.08	18	10.42				
7	2.08	19	10.42				
8	2.08	20	12.50				
9	2.08	21	12.50				
10	2.08	22	12.50				
11	2.08	23	8.33				
12	2.08	24	2.08				

Table 3-157: Liquid fuel combustion hourly temporal profile

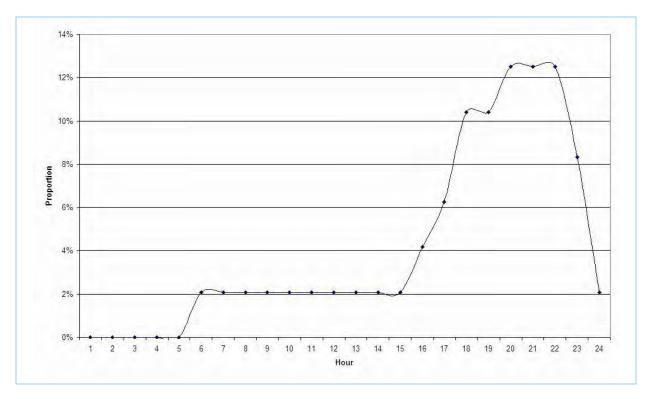
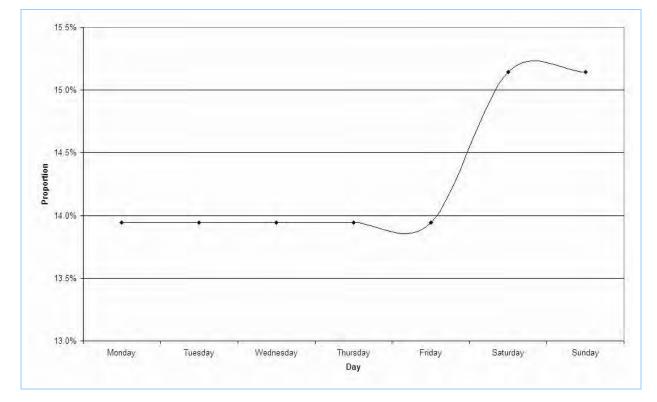



Figure 3-70: Liquid fuel combustion hourly temporal profile

Daily temporal variation profiles are presented in Table 3-158 and shown in Figure 3-71.

Day	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday	Sunday
Proportion (%)	13.94	13.94	13.94	13.94	13.94	15.14	15.14

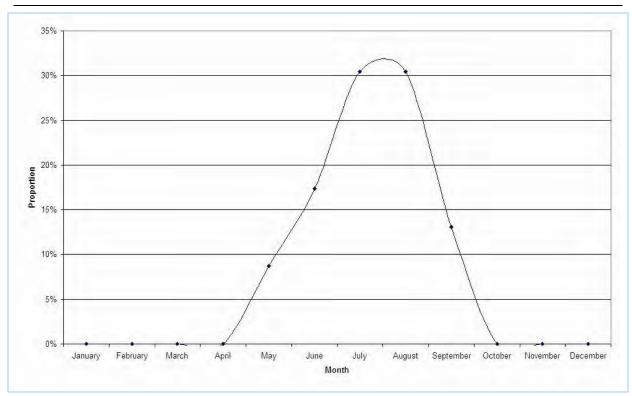


Figure 3-71: Liquid fuel combustion daily temporal profile

Monthly temporal variation profiles are presented in Table 3-159 and shown in Figure 3-72.

Month	Proportion (%)	Month	Proportion (%)
January	-	July	30.43
February	-	August	30.43
March	-	September	13.04
April	-	October	-
May	8.70	November	-
June	17.39	December	-

Table 3-159: Liquid fuel combustion monthly temporal profile

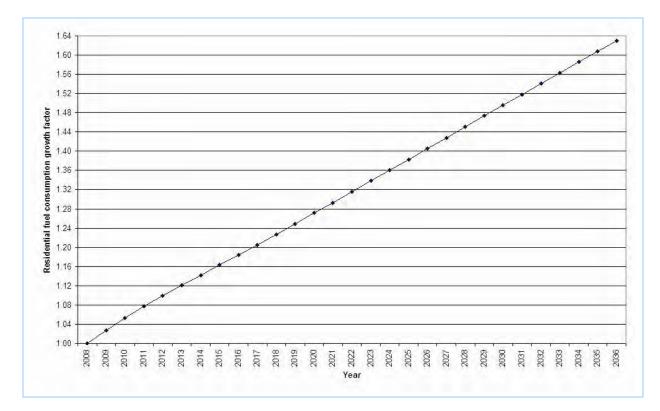
Figure 3-72: Liquid fuel combustion monthly temporal profile

3.8.7 *Emission Estimates*

Table 3-160 presents annual emissions of selected substances from liquid fuel combustion by activity.

Activity	Substance	Emissions (kg/year)					
neuvity	Jubstance	Newcastle	Non Urban	Sydney	Wollongong	GMR	
	ACETALDEHYDE	0.41	0.96	5.88	0.29	7.54	
	BENZENE	1.74×10^{-2}	$4.13\times10^{\text{-}2}$	0.25	1.26×10^{-2}	0.32	
	CARBON MONOXIDE	414	984	6,001	299	7,699	
	FORMALDEHYDE	2.78	6.61	40	2.01	52	
	ISOMERS OF XYLENE	8.42×10^{-3}	2.0 × 10-2	0.12	6.09 × 10 ⁻³	0.16	
	LEAD & COMPOUNDS	0.10	0.25	1.51	7.54×10^{-2}	1.94	
	OXIDES OF NITROGEN	1,491	3,543	21,604	1,077	27,715	
Liquid Fuel	PARTICULATE MATTER	197	468	2,856	142	3,664	
Combustion	≤ 10 µm PARTICULATE MATTER	17(410	2 55 (107	2 200	
	≤ 2.5 µm	176	419	2,556	127	3,280	
	POLYCYCLIC AROMATIC HYDROCARBONS	9.89 × 10-2	0.24	1.43	7.15 × 10 ⁻²	1.84	
	SULFUR DIOXIDE	588	1,398	8,521	425	10,932	
	TOLUENE	0.48	1.14	6.95	0.35	8.91	
	TOTAL SUSPENDED PARTICULATE	273	650	3,961	197	5,081	

Table 3-160: Liq	uid fuel combustion	emissions by	activity
------------------	---------------------	--------------	----------


Activity	Substance		Emiss	ions (kg/ye	ear)	
neuvity		Newcastle	Non Urban	Sydney	Wollongong	GMR
	TOTAL VOLATILE ORGANIC COMPOUNDS	59	140	856	43	1,098

3.8.8 Emission Projection Methodology

Table 3-161 summarises the data used to estimate the emission projection factors for liquid fuel fired residential space and water heaters, while Figure 3-73 shows the emission projection factors for calendar years 2009 to 2036.

Table 3-161: Liquid fuel combustion emission projection factors

Emission source	Projection factor surrogate	Projection factor source
Exhaust emissions from liquid fuel combustion	Final energy consumption for residential using petroleum	 Australian Energy, National and State Projections to 2029-30, ABARE Research Report 06.26 (ABARE, 2006)

Figure 3-73: Liquid fuel combustion emission projection factors

3.9 Natural Gas Leakage

3.9.1 *Emission Source Description*

The domestic-commercial air emissions inventory includes fugitive emissions from natural gas leakage. These emissions arise from losses through the natural gas reticulation system, which are the result of leaking fittings and the deterioration of piping.

Natural gas leakage is a source of carbon dioxide, hydrogen sulfide, methane, nitrogen and VOC emissions.

To estimate emissions from these sources, the following have been considered:

> NSW natural gas network performance

Unaccounted for gas (UAFG) for the period 2007-08 (DWE, 2009) and 2008-09 (II, 2009) in NSW has been used in combination with natural gas network access arrangement information (Jemena, 2009a; and Jemena, 2009b) and the fraction of UAFG allocated as leakage (DCC, 2009a) to estimate total natural gas leakage in the GMR.

➤ Fuel type

The inventory includes fugitive emissions of natural gas from the reticulation system.

Table 3-162 presents the natural gas properties used in the inventory (ABARE, 2009b; AGL, 2008; and USEPA, 1998a).

Table 5-102. Natural gas properties							
Fuel type	Sulfur	ır content Density		Effective	heating value	Carbon content (%)	
Natural gas	3.36	ppm	0.753	kg/m ³	38.3	MJ/m ³	76

Table 3-162: Natural gas properties

3.9.2 Emission Estimation Methodology

Table 3-163 summarises the emission estimation methodology used for fugitive emissions of natural gas from the reticulation system.

Table 3-163: Natural gas leakage emission estimation methodology

Emission source	Emission estimation methodology source
Fugitive emissions of natural gas from the reticulation	- National Greenhouse Accounts (NGA) Factors (DCC,
system	2009a)

Fugitive emissions of natural gas from the reticulation system have been estimated using the natural gas leakage rate (DCC, 2009a) and composition (AGL, 2008) combined with activity rates. Activity rates include unaccounted for gas (UAFG) for the period 2007-08 (DWE, 2009) and 2008-09 (II, 2009) in NSW and estimated UAFG in the GMR based on natural gas network access arrangement information (Jemena, 2009a; and Jemena, 2009b). Emissions have been determined using Equation 12 (DCC, 2009a):

Air Emissions Inventory for the Greater Metropolitan Region of New South Wales 3. Data Sources and Results

 $E_i = F \times UAFG \times 0.55 \times C_i$

Equation 12

where:			
Ei	=	Emissions of substance i	(kg/year)
F	=	Flowrate of natural gas through reticulation network	(Mm ³ /year)
UAFG	=	Fraction of unaccounted for gas	(Mm ³ /Mm ³)
0.55	=	Fraction of UAFG allocated as leakage (Section 2.4.2.7; DCC, 2009a)	(Mm ³ /Mm ³)
Ci	=	Composition of natural gas for substance i	(kg/Mm ³)
i	=	Substance (either "criteria pollutants", "speciated NO _x ", "speciated	(-)
		VOC", "organic air toxics", "metal air toxics", "PAH", "PCDD and	
		PCDF", "ammonia" or "greenhouse gases")	

3.9.3 Activity Data

Table 3-164 summarises the activity data used for fugitive emissions of natural gas from the reticulation system.

Activity data	Activity data source
Unaccounted for natural gas	 Jemena Gas Networks (NSW) Ltd Access Arrangement (JEMENA, 2009a) Jemena Gas Networks (NSW) Ltd Access Arrangement Information (JEMENA, 2009b) NSW gas networks Performance report 2007-08 (DWE, 2009) NSW gas networks Performance report 2008-09 (II, 2009)

Table 3-164: Natural gas leakage activity data

NSW natural gas network performance reports have been used to estimate unaccounted for gas (UAFG) for the period 2007-08 (DWE, 2009) and 2008-09 (II, 2009) in NSW. Table 3-165 presents the quantities of natural gas entering the NSW network and delivered to NSW customers for the 2007-08 and 2008-09 reporting periods. The proportion of UAFG has been calculated from the difference between gas entering the NSW network and gas delivered to NSW customers⁴⁵.

Reporting	NSW network		ering NSW twork	Gas delivered in NSW		UAFG in NSW		Proportion of UAFG	
period	length (km)	PJ/year	Mm³⁄year	PJ/year	Mm³⁄year	PJ/year	Mm³/year	(%)	
2007-08	26,500	108	2,819.8	105.7	2,759.8	2.3	60.1	2.13	
2008-09	26,696	111.5	2,911.2	109.5	2,859.0	2.0	52.2	1.79	

Table 3-165: Unaccounted for gas (UAFG) in NSW natural gas network

 $^{^{45}}$ Proportion of UAFG (%) = {(Gas entering NSW network – Gas delivered in NSW)/Gas entering NSW network} x 100/1 %.

Table 3-166 presents the quantities of natural gas entering the NSW network and delivered to NSW customers (DWE, 2009; and II, 2009). The proportion of UAFG has been calculated from the difference between gas entering the NSW network and gas delivered to NSW customers, while the fraction of UAFG allocated as leakage (DCC, 2009a) has been used to calculate natural gas leakage. Natural gas network access arrangement information (Jemena, 2009a; and Jemena, 2009b) for NSW has been used to estimate fugitive emissions of natural gas from the reticulation system in the GMR.

Region	2008 gas entering the network		2008 gas delivered		2008 UAFG ⁴⁶		2008 natural gas leakage ⁴⁷		
	PJ/year	Mm³/year	PJ/year	Mm³/year	PJ/year	Mm³/year	PJ/year	Mm³/year	kg/year
GMR ⁴⁸	100.9	2,634.3	98.9	2,582.7	2.0	51.6	1.1	28.4	21,383,299
NSW ⁴⁹	109.8	2,865.5	107.6	2,809.4	2.2	56.1	1.2	30.9	23,260,207

Table 3-166: Natural gas leakage in NSW and the GMR

3.9.4 Emission and Speciation Factors

Table 3-167 summarises the emission and speciation factors used for fugitive emissions of natural gas from the reticulation system.

Table 5-107. Natural gas leakage emission and speciation factors							
Substance	Emission and speciation factor source						
	- Jemena Gas Networks (NSW) Ltd Access Arrangement (JEMENA, 2009a)						
	- Jemena Gas Networks (NSW) Ltd Access Arrangement Information (JEMENA, 2009b)						
Criteria	- NSW gas networks Performance report 2007-08 (DWE, 2009)						
pollutants:	- NSW gas networks Performance report 2008-09 (II, 2009)						
VOC	- National Greenhouse Accounts (NGA) Factors (DCC, 2009a)						
	- National Greenhouse and Energy Reporting System Measurement, Technical Guidelines for the						
	Estimation of Greenhouse Gas Emissions by Facilities in Australia (DCC, 2009b)						
Speciated	- AGL Natural Gas, Chemwatch Material Safety Data Sheet (AGL, 2008)						
VOC	- MOL IVILIATII Ouo, Chemiwilen IVillerilli Sujety Dull Sheet (AGL, 2006)						
Organic air	- Eastern Gas Pipeline Measurement Manual (JEMENA, 2009c)						
toxics	- Eastern Gas Pipeline Operations Manual (JEMENA, 2009d)						

Table 3-167: Natural gas leakage emission and speciation factors

Table 3-168 presents the composition of natural gas in both volume and mass proportions. The ideal gas equation^{50,51} has been used to convert mole % to mass % proportions.

 $^{^{46}}$ Proportion of UAFG is 1.96% (DWE, 2009; and II, 2009).

⁴⁷ The fraction of UAFG allocated as leakage is 0.55 (DCC, 2009a).

⁴⁸ Approximately 91.9% of natural gas for NSW is consumed in the GMR (Jemena, 2009a; and Jemena, 2009b).

⁴⁹ 2008 calendar year is the average of 2007-08 (DWE, 2009) and 2008-09 (II, 2009) financial years.

 $^{^{50}}$ PV = nRT (where: P = pressure (101.325 kPa); V = volume (L); n = number of mole (mole); R = universal gas constant (8.31442 J.K⁻¹.mole⁻¹); and T = temperature (288.15 K).

Air Emissions Inventory for the Greater Metropolitan Region of New South Wales 3. Data Sources and Results

Table 3-168: Natural gas composition

Substance	Mole ⁵² (%)	Mass (%)
Butane	trace	trace
Carbon dioxide	2	4.91
Ethane	8	13.41
Hydrogen sulfide	5.7 ⁵³ mg/m ³	$7.57 imes 10^{-4}$
Methane	88.5	79.16
Nitrogen	1.3	2.03
Pentane	trace	trace
Propane	0.2	0.49
Total	100	100

Table 3-169 presents emission factors for fugitive emissions of natural gas from the reticulation system.

Table 5-109. Natural gas leakage emission factors							
Emission source	Emission factors (kg/Mm³)						
	VOC	CH_4	CO ₂				
Fugitive emissions of natural gas from the reticulation system	104,747	596,360	36,972				

Table 3-169: Natural gas leakage emission factors

3.9.5 Spatial Distribution of Emissions

Table 3-170 summarises the data used for spatially allocating fugitive emissions of natural gas from the reticulation system.

Table 3-170: Natural gas leakage spatial data

Emission source	Spatial data	Spatial data source
Fugitive emissions of natural gas from	Gridded 1 km x 1 km total	- Forecasts for Total Dwelling from
the reticulation system	dwelling estimates	2006 to 2036 (TDC, 2009)

Fugitive emissions of natural gas from the reticulation system have been spatially distributed according to natural gas leakage, which is proportional to total dwellings in each 1 km by 1 km grid cell (TDC, 2009). The proportion of natural gas leakage by LGA and region are presented in Table 3-171 and shown in Figure 3-74.

⁵¹ Original formulation published by Benoît Paul Émile Clapeyron in 1834 (1799 – 1864) as a combination of Boyle's law (published by Robert Boyle in 1662 (1627 – 1691)) and Charles's law (published by Joseph Louis Gay-Lussac in 1802 (1778 – 1850) and attributed to Jacques Alexandre César Charles (1746 – 1823)).

⁵² AGL Natural Gas, Chemwatch Material Safety Data Sheet (AGL, 2008).

⁵³ Eastern Gas Pipeline Measurement Manual (JEMENA, 2009c) and Eastern Gas Pipeline Operations Manual (JEMENA, 2009d).

	2008 proportion of annual natural gas leakage (%)						
LGA	Newcastle	Non Urban	Sydney	Wollongong	Grand Total		
Ashfield	-	-	0.97	-	0.97		
Auburn	-	-	1.13	-	1.13		
Bankstown	-	-	3.03	-	3.03		
Bathurst Regional	-	2.18 × 10 ⁻³	-	-	2.18 × 10-3		
Baulkham Hills	-	2.39 × 10 ⁻³	2.84	-	2.84		
Blacktown	-	-	4.82	-	4.82		
Blue Mountains	-	0.56	1.00	-	1.57		
Botany Bay	-	-	0.64	-	0.64		
Burwood	-	-	0.54	-	0.54		
Camden	-	-	0.94	-	0.94		
Campbelltown	-	-	2.60	-	2.60		
Canada Bay	-	-	1.16	-	1.16		
Canterbury	-	-	2.51	-	2.51		
Cessnock	3.84 × 10 ⁻²	0.89	-	-	0.93		
Dungog	-	0.14	-	-	0.14		
Fairfield	-	-	3.01	-	3.01		
Gosford	-	0.91	2.45	-	3.36		
Goulburn Mulwaree	-	4.14×10^{-3}	-	-	4.14×10^{-3}		
Great Lakes	-	6.80 × 10-2	-	-	6.80 × 10-2		
Hawkesbury	-	2.30 × 10-2	1.10	-	1.12		
Holroyd	-	-	1.74	-	1.74		
Hornsby	-	3.62×10^{-3}	2.86	-	2.87		
Hunters Hill	-	-	0.16	-	0.16		
Hurstville	-	-	1.55	-	1.55		
Kiama	-	0.29	-	-	0.29		
Kogarah	-	-	1.06	-	1.06		
Ku-ring-gai	-	-	1.85	-	1.85		
Lake Macquarie	2.00	1.82	-	-	3.82		
Lane Cove	-	-	0.57	-	0.57		
Leichhardt	-	-	0.89	-	0.89		
Lithgow	-	0.36	-	-	0.36		
Liverpool	-	-	2.90	-	2.90		
Maitland	9.39 × 10 ⁻²	1.15	-	-	1.25		
Manly	-	-	0.69	-	0.69		
Marrickville	-	-	1.88	-	1.88		
Mid-western Regional	-	5.16 × 10 ⁻²	-	-	5.16×10^{-2}		
Mosman	-	-	0.68	-	0.68		
Muswellbrook	-	0.26	-	-	0.26		
N/A	3.05 × 10-2	5.58×10^{-2}	0.39	7.60 × 10-2	0.55		
Newcastle	3.15	-	-	-	3.15		
North Sydney	-	-	1.35	-	1.35		
Oberon	-	2.26 × 10-2	-	-	2.26 × 10-2		
Parramatta	-	-	2.83	-	2.83		
Penrith	-	-	3.15	-	3.15		
Pittwater	-	-	1.04	-	1.04		

Table 3-171: Natural gas leakage spatial distribution by LGA and region

Air Emissions Inventory for the Greater Metropolitan Region of New South Wales 3. Data Sources and Results

LGA	2008 proportion of annual natural gas leakage (%)					
LUA	Newcastle	Non Urban	Sydney	Wollongong	Grand Total	
Port Stephens	6.97×10^{-2}	1.07	-	-	1.14	
Randwick	-	-	2.68	-	2.68	
Rockdale	-	-	1.73	-	1.73	
Ryde	-	-	2.07	-	2.07	
Shellharbour	-	0.89	-	0.31	1.20	
Shoalhaven	-	1.50×10^{-3}	-	-	1.50×10^{-3}	
Singleton	-	0.37	-	-	0.37	
Strathfield	-	-	0.68	-	0.68	
Sutherland	-	-	4.08	-	4.08	
Sydney	-	-	4.01	-	4.01	
Unincorporated	-	-	0.93	-	0.93	
Upper Lachlan	-	$6.05 imes 10^{-4}$	-	-	$6.05 imes 10^{-4}$	
Warringah	-	-	2.73	-	2.73	
Waverley	-	-	1.29	-	1.29	
Willoughby	-	-	1.39	-	1.39	
Wingecarribee	-	0.88	4.72×10^{-3}	1.50×10^{-3}	0.89	
Wollondilly	-	1.16×10^{-2}	0.74	3.91×10^{-4}	0.75	
Wollongong	-	-	0.27	3.50	3.77	
Woollahra	-	-	1.03	-	1.03	
Wyong	-	2.96	-	-	2.96	
Grand Total	5.38	12.78	77.95	3.89	100.00	

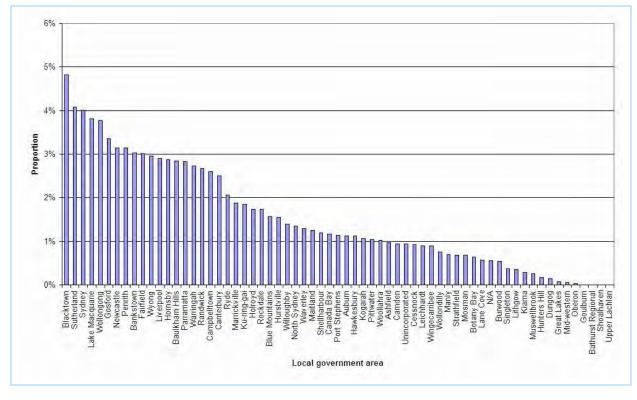


Figure 3-74: Natural gas leakage spatial distribution by LGA

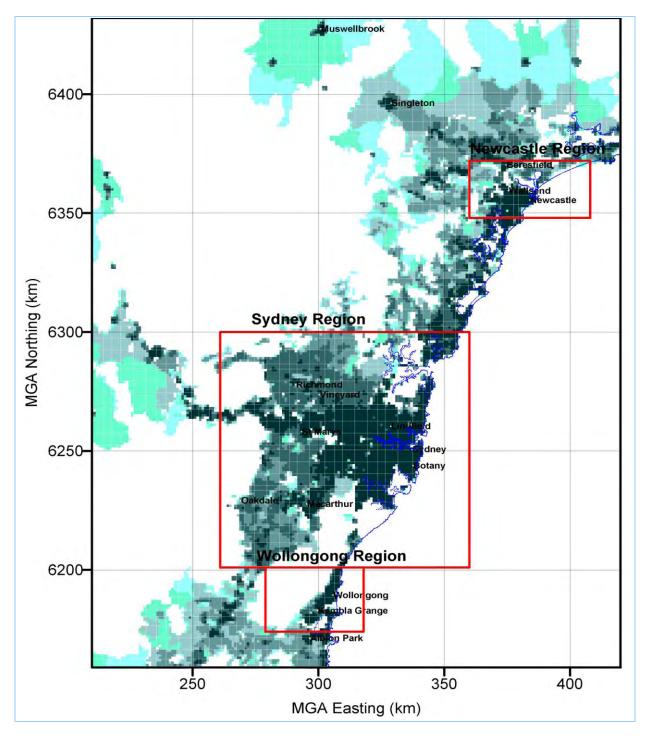


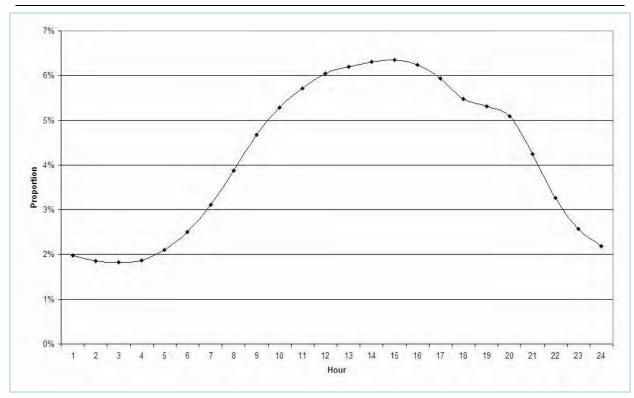
Figure 3-75 shows the spatial distribution of fugitive emissions of natural gas from the reticulation system.

Figure 3-75: Natural gas leakage spatial distribution of emissions

3.9.6 Temporal Variation of Emissions

Table 3-172 summarises the data used to estimate the temporal variation in fugitive emissions of natural gas from the reticulation system.

0 0 1							
Emission source	Temporal data	Temporal data source					
Fugitive emissions of	Monthly and daily: Daily natural gas flow	 National Gas Market Bulletin Board, Daily Natural Gas Flow, 1 August 2008 to 31 July 2009 (AEMOL, 2009) 					
natural gas from the reticulation system	Hourly: Source type specific temporal allocation factors	 Stationary Fuel Comb /Residential /Natural Gas /Total: All Combustor Types - Weekday diurnal profile number 26 and Weekend diurnal profile number 26 - CAIR Platform Temporal Allocation (USEPA, 2005) 					

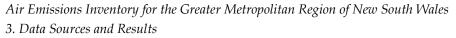

Table 3-172: Natural gas leakage temporal data

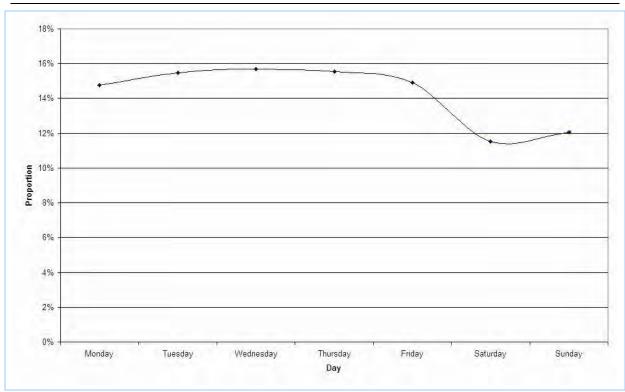
The daily and monthly temporal variation in fugitive emissions of natural gas from the reticulation system have been estimated from daily natural gas flow data (AEMOL, 2009), while the hourly temporal variation in emissions have been estimated from generic temporal profiles (USEPA, 2005).

Hourly temporal variation profiles are presented in Table 3-173 and shown in Figure 3-76.

Hour	Week day and weekend proportion (%)	Hour	Week day and weekend proportion (%)
1	1.98	13	6.20
2	1.86	14	6.31
3	1.82	15	6.35
4	1.87	16	6.24
5	2.10	17	5.94
6	2.50	18	5.48
7	3.11	19	5.31
8	3.88	20	5.09
9	4.67	21	4.25
10	5.28	22	3.27
11	5.71	23	2.57
12	6.04	24	2.18

Table 3-173: Natural gas leakage hourly temporal profile




Figure 3-76: Natural gas leakage hourly temporal profile

Daily temporal variation profiles are presented in Table 3-174 and shown in Figure 3-77.

Day	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday	Sunday
Proportion (%)	14.78	15.48	15.70	15.56	14.91	11.52	12.06

Table 3-174: Natural gas leakage daily temporal profile

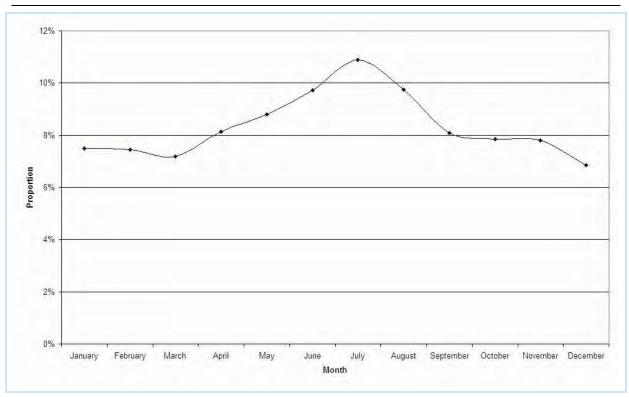


Figure 3-77: Natural gas leakage daily temporal profile

Monthly temporal variation profiles are presented in Table 3-175 and shown in Figure 3-78.

Month	Proportion (%)	Month	Proportion (%)
January	7.48	July	10.87
February	7.44	August	9.76
March	7.18	September	8.09
April	8.14	October	7.84
May	8.81	November	7.81
June	9.72	December	6.86

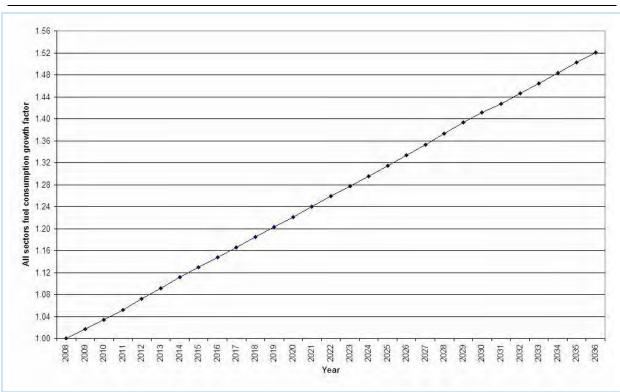
Table 3-175: Natural gas leakage monthly temporal profile

Figure 3-78: Natural gas leakage monthly temporal profile

3.9.7 *Emission Estimates*

Table 3-176 presents annual emissions of selected substances from the natural gas reticulation system by activity.

Activity	Substance	Emissions (kg/year)				
Activity	Substance	Newcastle Non Urban		Sydney	Wollongong	GMR
Natural Gas Leakage	TOTAL VOLATILE ORGANIC COMPOUNDS	159,909	380,091	2,317,515	115,548	2,973,063


Table 3-176: Natural gas leakage emissions by activity

3.9.8 Emission Projection Methodology

Table 3-177 summarises the data used to estimate the emission projection factors from the natural gas reticulation system, while Figure 3-79 shows the emission projection factors for calendar years 2009 to 2036.

Emission source	Projection factor surrogate	Projection factor source
Fugitive emissions of natural gas from the reticulation system	Primary energy consumption for all sectors using natural gas	- Australian Energy, National and State Projections to 2029-30, ABARE Research Report 06.26 (ABARE, 2006)

Table 3-177: Natural gas leakage emission projection factors

Air Emissions Inventory for the Greater Metropolitan Region of New South Wales 3. *Data Sources and Results*

Figure 3-79: Natural gas leakage emission projection factors

3.10 Portable Fuel Containers (domestic)

3.10.1 Emission Source Description

The domestic-commercial air emissions inventory includes emissions of evaporative VOC from portable fuel containers. These emissions arise:

- > From refuelling (i.e. vapour displacement and spillage);
- During transport (i.e. spillage);
- > Due to temperature changes (i.e. diurnal); and
- > Via permeation (i.e. plastic fuel containers).

To estimate emissions from these sources, the following have been considered:

> Domestic survey

A domestic survey of lawn mowing and garden equipment ownership and usage has been conducted, which includes each of the 64 local government areas (LGA)⁵⁴ located in the GMR. The survey results include data about: equipment type, number and age; engine type and fuel used; frequency and duration of equipment use by hour, day and season; lawn area; and proportion of private and commercial usage (TR, 2009). The survey data have been used to estimate the lawn mowing and garden equipment petrol consumption, the number of portable fuel containers and their usage.

Figure 3-80 shows how the domestic survey results have been used to estimate lawn mowing and garden equipment petrol consumption (USEPA, 2009). The estimated petrol consumption has been combined with emission factors from the technical literature (CARB, 1999; and USEPA, 2007b) to develop an inventory of portable fuel container emissions.

⁵⁴ The GMR includes 64 local government areas (LGA), plus two areas designated N/A and unincorporated. N/A areas are those located near the coastline and the majority area within the 1 km by 1 km grid cell lies over water. Unincorporated areas are those areas which are not under the responsibility of an incorporated local government. Emissions have been estimated for 64 LGA plus the two areas designated N/A and unincorporated.

Air Emissions Inventory for the Greater Metropolitan Region of New South Wales 3. Data Sources and Results

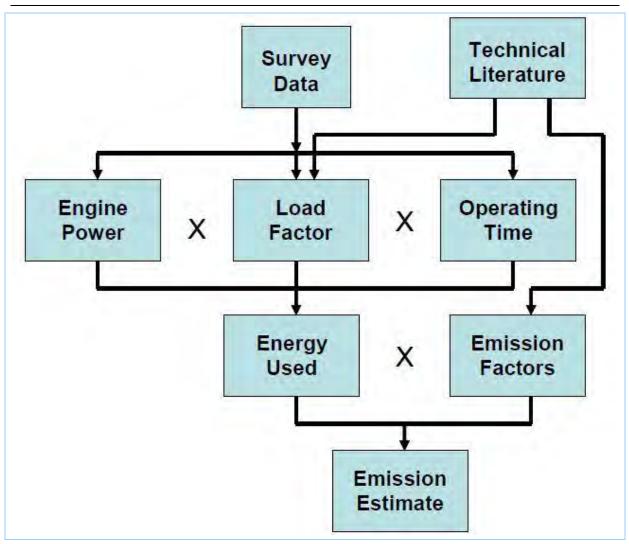


Figure 3-80: Portable fuel containers (domestic) - use of survey data

> *Portable fuel container type*

The inventory includes portable fuel containers with an average size of 8.86 litres (CARB, 1999; and USEPA, 2007b) for domestic use, which are constructed of:

- Metal; and
- Plastic.
- *▶ Fuel type*

The inventory includes portable fuel containers that use automotive gasoline (petrol).

Table 3-178 presents the fuel type and properties used in the inventory (ABARE, 2009b; and USEPA, 2009). The sulfur and oxygen contents are requirements of the *Fuel Standard (Petrol) Determination 2001* (Attorney-General's Department, 2008), which are relevant for the 2008 calendar year. Weighted average sulfur and oxygen contents have been calculated from *Australian Petroleum Statistics 2008* (DRET, 2009) and the requirements of the *Fuel Standard (Petrol) Determination 2001* (Attorney-General's Department, 2008).

1401	Table 5-176. Fortable ruler containers (domestic) ruler type and properties						
Fuel type	Sulfur content (ppm)	Oxygen content (%)	Density (kg/L)	Effective heating value (MJ/L)	Carbon content (%)		
	150 - All grades ⁵⁵	2.7 - All grades (no ethanol)					
Automotive gasoline (petrol)	50 - PULP	3.9 - All grades (with ethanol)	0.740	34.2	87		
	142 - Weighted	2.84 - Weighted					
	average ⁵⁶	average57					

Table 3-178: Portable fuel containers (domestic) fuel type and properties

> Source type

The inventory includes evaporative emissions from portable fuel containers.

Evaporation occurs in a number of ways, including:

- *Refuelling emissions* are the vapours displaced from the portable fuel container when it is filled plus any spillage that may occur;
- *Transport emissions* arise when any spillage occurs while the portable fuel container is in transit;
- *Diurnal emissions* arise with temperature changes that occur throughout the day. As the air temperature increases, the fuel temperature in the portable fuel container increases and begins to evaporate; and
- *Permeation emissions* occur when fuel moves through the walls of the portable fuel container. Since the outer surfaces of the portable fuel container are exposed to air, petrol molecules permeate through them and are directly emitted. Permeation is most common through plastic portable fuel containers.

Evaporative emissions mainly include VOC (total and speciated).

3.10.2 Emission Estimation Methodology

Table 3-179 summarises the emission estimation methodologies used for portable fuel containers.

Emission source	Emission estimation methodology source
	- Public Meeting to Consider Approval of California's Portable Gasoline
Evaporative emissions from portable	Container Emissions Inventory (CARB, 1999)
fuel containers (domestic)	- Estimating Emissions Associated with Portable Fuel Containers
	(<i>PFCs</i>) (USEPA, 2007b)

Table 3-179: Portable fuel containers (domestic) emission estimation methodologies

⁵⁵ Includes lead replacement petrol (LRP), unleaded petrol (ULP) and premium unleaded petrol (PULP). ⁵⁶ 5,509,243 kL (All grades) and 500,756 kL (PULP) (DRET, 2009).

⁵⁷ 5,332,615 kl (no ethanol) and 677,384 kL (with ethanol) (DRET, 2009).

Lawn mowing and garden equipment petrol consumption has been estimated using equipment population and activity data in combination with load and transient adjustment factors within the *NONROAD2008a Model* (USEPA, 2009).

Evaporative emission factors from portable fuel containers have been adjusted according to ambient temperature and Reid vapour pressure (RVP) of petrol (EEA, 2010; CARB, 1999; and USEPA, 2007b).

Equipment population is defined by fuel type, application and power, while activity rates include frequency and duration of use on an hourly, daily and seasonal basis. Equipment population and activity rates have been derived from a domestic survey (TR, 2009) and sales data (AIA, 2005). Petrol consumption has been determined using Equation 13 within the *NONROAD2008a Model* (USEPA, 2009):

$PC_{i,j,k} = P_{i,j,k} \times A_{i,j,k} \times HP_{i,j,k} \times LF_{i,j,k} \times TAF_{i,j,k} \times BSFC_{i,j,k} \times 1.36 \times 0.4536 / 1000$ Equation 13

where:			
$PC_{i,j,k}$	=	Consumption of petrol from lawn mowing and garden equipment type i, engine type j and engine power range k	(kL/year)
$P_{i,j,k} \\$	=	Population of lawn mowing and garden equipment type i, engine type j and engine power range k	(number)
$A_{i,j,k} \\$	=	Activity of lawn mowing and garden equipment type i, engine type j and engine power range k	(h/year)
$HP_{i,j,k} \\$	=	Maximum rated power of lawn mowing and garden equipment type i, engine type j and engine power range k	(hp)
LF _{i,j,k}	=	Fractional load factor for lawn mowing and garden equipment type i, engine type j and engine power range k	(hp/hp)
TAF _{i,j,k}	=	Fractional transient adjustment factor for lawn mowing and garden equipment type i, engine type j and engine power range k	(g.(hp.h) ⁻¹ / g.(hp.h) ⁻¹)
BSFC _{i,j,k}	=	Brake specific fuel consumption of petrol from lawn mowing and garden equipment type i, engine type j and engine power range k	(lb/hp.h)
i	=	Lawn mowing and garden equipment type (either "Chainsaw", "Chipper/Mulcher/Shredder", "Leafblower/Vacuum", "Pressure	(-)
		washer", "Push lawnmower", "Ride-on lawnmower" or "Trimmer/Edger/Brush cutter")	
j	=	Engine type (either "2-stroke petrol" or "4-stroke-petrol")	(-)
k	=	Engine power range	(hp)
1.36	=	Specific volume of petrol (ABARE, 2009b)	(L/kg)
0.4536	=	Conversion factor	(kg/lb)
1000	=	Conversion factor	(L/kL)

The number of portable fuel containers has been estimated using petrol consumption combined with residential portable fuel container survey data within Equation 14 (CARB, 1999):

 $N=PC_{\rm i,j,k}~\times~1000/$ 14.9 \times 3.7862

where:			
N	=	Number of portable fuel containers	
PC _{i,j,k}	=	Consumption of petrol from lawn mowing and garden equipment type i, engine type j and engine power range k (Equation 13)	(kL/year)
14.9	=	Petrol throughput for each portable fuel container (2.34 US	(US
		gal/refill/portable fuel container x 6.4 refill/year) (Part A - Section 4 c	gal/portable
		and Table 3; CARB, 1999)	fuel
			container/year)
i	=	Lawn mowing and garden equipment type (either "Chainsaw",	(-)
		"Chipper/Mulcher/Shredder", "Leafblower/Vacuum", "Pressure	
		washer", "Push lawnmower", "Ride-on lawnmower" or	
		"Trimmer/Edger/Brush cutter")	
j	=	Engine type (either "2-stroke petrol" or "4-stroke-petrol")	(-)
k	=	Engine power range	(hp)
1000	=	Conversion factor	(L/kL)
3.7862	=	Conversion factor	(L/US gal)

Vapour displacement emissions of VOC from portable fuel containers during refuelling have been estimated using the volume of petrol dispensed combined with ambient temperature and RVP of petrol data within Equation 15 (USEPA, 2009):

where:			
E _{VOC}	=	Vapour displacement emissions of VOC during refuelling	(kg/year)
T _d	=	Temperature of petrol dispensed ($T_d = 62 + 0.6 \times (T_a - 62)$) (USEPA, 2009)	(°F)
Ta	=	Temperature of ambient air	(°F)
RVP	=	Reid vapour pressure of petrol	(psia)
PD	=	Volume of petrol dispensed - PC _{i,j,k} (Equation 13)	(kL/year)
3.7862	=	Conversion factor	(L/US gal)

Spillage emissions of VOC from portable fuel containers during refuelling have been estimated using the volume of petrol dispensed combined with emission factors within Equation 16 (USEPA, 2007b):

$E_{\rm voc} = 0.3128 \times PD$	/ 3.7862	Equation 16
VUC		1

where:			
Evoc	=	Petrol spillage emissions of VOC during refuelling	(kg/year)
0.3128	=	Petrol spillage VOC emission factor during refuelling (Section 2.2.2; USEPA, 2007b)	(g/US gal)
PD	=	Volume of petrol dispensed - PC _{i,j,k} (Equation 13)	(kL/year)

where:			
3.7862	=	Conversion factor	(L/US gal)

Spillage emissions of VOC from portable fuel containers during transport have been estimated using the volume of petrol dispensed combined with emission factors within Equation 17 (CARB, 1999):

$$E_{VOC,i} = EF_{VOC,i} \times PC_i \times PD / 3.7862$$
Equation 17

where:			
E _{VOC,i}	=	Petrol spillage emissions of VOC during transport for portable fuel	(kg/year)
		container condition i	
EF _{VOC,i}	=	Petrol spillage VOC emission factor for portable fuel container condition	(g/US gal)
		i – 9.829 (23 g/refill ÷ 2.34 US gal/refill) and 13.889 (32.5 g/refill ÷ 2.34	
		US gal/refill) for closed and open, respectively (Part A - Section 4 c and	
		Table 3; CARB, 1999)	
PCi	=	Proportion of portable fuel containers transported in condition i - 66%	(%)
		and 34% for closed and open, respectively (Part A - Table 3; CARB, 1999)	
PD	=	Volume of petrol dispensed - PC _{i,j,k} (Equation 13)	(kL/year)
i	=	Portable fuel container condition (either "closed" or "open")	(-)
3.7862	=	Conversion factor	(L/US gal)

Diurnal emissions of VOC from closed portable fuel containers during storage have been estimated using the volume and number of containers combined with emission factors within Equation 18 (CARB, 1999):

where:			
E _{VOC,i,j}	=	Diurnal emissions of VOC during storage for portable fuel container condition i and type j	(kg/year)
EF _{VOC,i,j}	=	Diurnal VOC emission factor for portable fuel container condition i and	(g/US
		type j – 1.38 and 0.44 for closed plastic and metal, respectively (Part A - Section 4 b; CARB, 1999)	gal/day)
PSP	=	Proportion of portable fuel containers stored with petrol – 70% (Part A - Table 3; CARB, 1999)	(%)
PF	=	Petrol fill rate of portable fuel containers – 49% (Part A - Table 3; CARB, 1999)	(%)
PC _{i,j}	=	Proportion of portable fuel containers stored in condition i and type j - 53% and 13% for closed plastic and metal, respectively (Part A - Table 3; CARB, 1999)	(%)
V	=	Volume of portable fuel containers - 2.34 (Part A - Table 3; CARB, 1999)	(US gal)
Ν	=	Number of portable fuel containers (Equation 14)	(number)
i	=	Portable fuel container condition ("closed")	(-)
j	=	Portable fuel container type (either "metal" or "plastic")	(-)

where:			
365	=	Conversion factor	(day/year)
1000	=	Conversion factor	(g/kg)

Diurnal emissions of VOC from open portable fuel containers during storage have been estimated using the volume and number of containers combined with emission factors within Equation 19 (CARB, 1999):

where:			
E _{VOC,i,j}	=	Diurnal emissions of VOC during storage for portable fuel container	(kg/year)
		condition i and type j	
EF _{VOC,i,j}	=	Diurnal VOC emission factor for portable fuel container condition i and	(g/day)
		type j - 21.8 and 21.8 for open plastic and metal, respectively (Part A -	
		Section 4 b; CARB, 1999)	
PSP	=	Proportion of portable fuel containers stored with petrol - 70% (Part A -	(%)
		Table 3; CARB, 1999)	
PC _{i,j}	=	Proportion of portable fuel containers stored in condition i and type j -	(%)
		23% and 11% for open plastic and metal, respectively (Part A - Table 3;	
		CARB, 1999)	
Ν	=	Number of portable fuel containers (Equation 14)	(number)
i	=	Portable fuel container condition ("open")	(-)
j	=	Portable fuel container type (either "metal" or "plastic")	(-)
365	=	Conversion factor	(day/year)
1000	=	Conversion factor	(g/kg)

Diurnal emissions of VOC from portable fuel containers during storage have been adjusted using ambient temperature and RVP of petrol data for hourly, daily and monthly time periods within Equation 20 (EEA, 2010):

$$E_{\text{VOC},i,j,k} = E_{\text{VOC},i,j} \times \left(\text{RVP}_k \times 10^{(\text{AT}_{s,k} + B)} \right) / \sum_{k=1}^{n} \left(\text{RVP}_k \times 10^{(\text{AT}_{s,k} + B)} \right)$$
Equation 20

where:			
Evoc,i,j,k	=	Diurnal emissions of VOC during storage for portable fuel container	(kg/time
		condition i, type j and time interval k	interval)
E _{VOC,i,j}	=	Diurnal emissions of VOC during storage for portable fuel container	(kg/year)
		condition i and type j (Equation 18 and Equation 19)	
RVP _k	=	Reid vapour pressure of petrol for time interval k	(kPa)
А	=	0.000007047× RVP _k + 0.0132 (Table 3-11; EEA, 2010)	(kPa)
T _{s,k}	=	Portable fuel container storage temperature for time interval k ($T_{s,k} = T_{a,k}$	(°C)
		+ 5) (Section 2.3; USEPA, 2007b)	
T _{a,k}	=	Temperature of ambient air for time interval k	(°C)
В	=	0.0002311× RVP _k – 0.5236 (Table 3-11; EEA, 2010)	(kPa)

Air Emissions Inventory for the Greater Metropolitan Region of New South Wales 3. *Data Sources and Results*

where:			
i	=	Portable fuel container condition (either "closed" or "open")	(-)
j	=	Portable fuel container type (either "metal" or "plastic")	(-)
k	=	Time interval (either "24" for hour, "7" for day or "12" for month)	(number)
n	=	$\begin{cases} 24 \text{ for } k = \text{hour} \\ 7 \text{ for } k = \text{day} \\ 12 \text{ for } k = \text{month} \end{cases}$	(number)

Permeation emissions of VOC from closed portable fuel containers during storage have been estimated using the volume and number of containers combined with ambient temperature data and emission factors within Equation 21 (CARB, 1999)⁵⁸:

 $E_{VOC,i,j} = EF_{VOC,i,j} \times PSP/100 \times PF/100 \times PC_{i,j}/100 \times V \times N \times e^{(0.0327 \times (T_s - 85.53))} \times 365 / 1000$ Equation 21

where:			
Evoc,i,j	=	Permeation emissions of VOC during storage for portable fuel container	(kg/year)
		condition i and type j	
EF _{VOC,i,j}	=	Permeation VOC emission factor for portable fuel container condition i	(g/US
		and type j – 1.57 and 0.06 for closed plastic and metal, respectively (Part	gal/day)
		A - Section 4 a; CARB, 1999)	
PSP	=	Proportion of portable fuel containers stored with petrol - 70% (Part A -	(%)
		Table 3; CARB, 1999)	
PF	=	Petrol fill rate of portable fuel containers - 49% (Part A - Table 3; CARB,	(%)
		1999)	
PC_i	=	Proportion of portable fuel containers stored in condition i and type j -	(%)
		53% and 13% for closed plastic and metal, respectively (Part A - Table 3;	
		CARB, 1999)	
V	=	Volume of portable fuel containers (Part A - Table 3; CARB, 1999)	(US gal)
Ν	=	Number of portable fuel containers (Equation 14)	(number)
Ts	=	Portable fuel container storage temperature ($T_s = T_a + 5$) (Section 2.3;	(°F)
		USEPA, 2007b)	
Ta	=	Temperature of ambient air	(°F)
i	=	Portable fuel container condition ("closed")	(-)
j	=	Portable fuel container type (either "metal" or "plastic")	(-)
365	=	Conversion factor	(day/year)
1000	=	Conversion factor	(g/kg)

3.10.3 Activity Data

Table 3-180 summarises the activity data used for portable fuel containers.

⁵⁸ Since the diurnal emissions of VOC from open portable fuel containers are significantly higher than permeation emissions, Equation 19 combines both diurnal and permeation emissions for open containers (CARB, 1999).

Activity data	Activity data source		
Petrol consumption	 NONROAD2008a Model (USEPA, 2009) using: Domestic Lawn Mowing Pollution Survey (TR, 2009); Forecasts for Total Dwelling from 2006 to 2036 (TDC, 2009); and NSW Lawn Mowing and Garden Equipment Sales, Unit Cost and Operating Life Data for 2000 to 2004 (AIA, 2005) 		
Portable fuel container survey data	Public Meeting to Consider Approval of California's Portable Gasoline Container Emissions Inventory (CARB, 1999)		

Table 3-180: Portable fuel containers (domestic) activity data

A domestic survey of lawn mowing and garden equipment ownership and usage has been conducted, which includes each of the 64 local government areas (LGA) located in the GMR. The survey results include data about: equipment type, number and age; engine type and fuel used; frequency and duration of equipment use by hour, day and season; lawn area; and proportion of private and commercial usage (TR, 2009).

Gridded 1 km by 1 km dwelling estimates (TDC, 2009) have been used to scale-up the lawn mowing and garden equipment survey results (TR, 2009).

Lawn mowing and garden equipment sales data for the 2003 and 2004 calendar years (AIA, 2005) have been used to estimate the proportion of 2-stroke/4-stroke petrol and non-handheld/handheld equipment with a given maximum power rating, while the lawn mowing and garden equipment survey results (TR, 2009) have been used to estimate the total number of in-service equipment.

A detailed discussion about the activity data used to estimate petrol consumption from lawn mowing and garden equipment is presented in Section 3.6.3.

The domestic survey (TR, 2009), dwelling estimates (TDC, 2009) and sales (AIA, 2005) data have been used to estimate petrol consumption from lawn mowing and garden equipment. Table 3-181 presents the portable fuel container petrol throughput estimates by lawn mowing and garden equipment type from the *NONROAD2008a Model* (USEPA, 2009).

	Equipment description	2008 petrol throughput (kL/year)			
Classification		2-stroke petrol	4-stroke petrol	Grand Total	
Commercial Equipment	Pressure Washers	-	233	233	
Commercial Equipment Total		-	233	233	
	Lawn mowers	1,459	4,821	6,280	
	Leafblowers/Vacuums	484	288	772	
Lawn and Garden Equipment (com)	Other Lawn & Garden Eqp.	11	4	15	
	Rear Engine Riding Mowers	325	2,690	3,014	
	Trimmers/Edgers/Brush Cutter	1,938	541	2,479	
Lawn and Garden Equipment (com)	4,217	8,344	12,560		
Lawn and Garden Equipment (res)	Chain Saws < 6 HP	1,206	214	1,421	
Lawn and Garden Equipment (res)	Lawn mowers	3,988	13,875	17,864	

Table 3-181: Portable fuel containers (domestic) petrol throughput in the GMR

	Equipment description	2008 petrol throughput (kL/year)		
Classification		2-stroke petrol	4-stroke petrol	Grand Total
	Leafblowers/Vacuums	1,500	772	2,272
	Other Lawn & Garden Eqp.	174	63	236
	Rear Engine Riding Mowers	628	5,204	5,832
	Shredders < 6 HP	19	129	148
	Trimmers/Edgers/Brush Cutter	3,933	1,691	5,624
Lawn and Garden Equipment (res) To	11,448	21,948	33,396	
Grand Total	15,665	30,525	46,190	

Residential portable fuel container survey data, which includes container storage capacity, type and storage condition (CARB, 1999) have been combined with the petrol throughput estimates to determine the number of portable fuel containers and their emissions. Table 3-182 presents a summary of the residential portable fuel container survey data and estimated number of portable fuel containers.

Residential portable fuel container parameter	Measure			
Estimated number of portable fuel containers 818,751				
Weighted average container storage capacity	2.34 U	2.34 US gal ⁵⁹		
Weighted average stored petrol volume	49%			
Containers stored with petrol	70%			
Container type	plastic - 76%	metal - 24%		
Plastic container storage condition	open - 23%	closed - 53%		
Metal container storage condition	open - 11%	closed - 13%		
All containers storage condition	open - 34%	closed - 66%		

 Table 3-182: Portable fuel containers (domestic) survey data and estimates

Table 3-183 presents the petrol throughput, weighted average petrol RVP (PCO, 2011) and monthly average ambient temperature (Hurley, 2005) data used to estimate portable fuel container emissions.

Table 3-183: Portable fuel containers (domestic) petrol throughput, RVP and ambient temperature by month

Month	Petrol throughput (US gal)	Petrol throughput (kL)	RVP (psi)	RVP (kPa)	T _a (°F)	T _a (°C)
January	1,568,284	5,938	8.99	62.0	76.7	24.8
February	1,397,507	5,291	8.99	62.0	74.7	23.7
March	978,959	3,707	9.94	68.5	67.6	19.8
April	817,312	3,095	10.88	75.0	59.9	15.5

⁵⁹ 1 US gallon (US gal) is equivalent to 3.7862 Litres (L) (USEPA, 1995a).

2008 Calendar Year Domestic-Commercial Emissions: Results 3. Data Sources and Results

Month	Petrol throughput (US gal)	Petrol throughput (kL)	RVP (psi)	RVP (kPa)	T _a (°F)	T _a (°C)
May	655,664	2,482	10.88	75.0	54.5	12.5
June	354,435	1,342	10.88	75.0	50.5	10.3
July	444,660	1,684	10.88	75.0	48.0	8.9
August	534,886	2,025	10.88	75.0	49.3	9.6
September	1,032,232	3,908	10.88	75.0	54.4	12.5
October	1,236,209	4,681	10.88	75.0	60.2	15.7
November	1,440,186	5,453	9.94	68.5	68.3	20.2
December	1,739,060	6,584	8.99	62.0	76.4	24.7
Annual	12,199,393	46,190	9.96	68.7	61.7	16.5

Table 3-184 presents the petrol throughput, weighted average petrol RVP (PCO, 2011) and hourly average ambient temperature (Hurley, 2005) data used to estimate portable fuel container emissions.

Table 3-184: Portable fuel containers (domestic) petrol throughput, RVP and ambient temperature by hour

Hour	Petrol throughput (US gal)	Petrol throughput (kL)	RVP (psi)	RVP (kPa)	T _a (°F)	T _a (°C)
1	-	-	9.96	68.7	50.4	10.2
2	-	-	9.96	68.7	49.8	9.9
3	-	-	9.96	68.7	49.3	9.6
4	-	-	9.96	68.7	49.0	9.4
5	-	-	9.96	68.7	48.7	9.3
6	-	-	9.96	68.7	49.4	9.7
7	31,161	118	9.96	68.7	53.9	12.2
8	93,482	354	9.96	68.7	61.3	16.3
9	358,347	1,357	9.96	68.7	68.9	20.5
10	1,230,846	4,660	9.96	68.7	74.4	23.5
11	2,305,888	8,731	9.96	68.7	77.7	25.4
12	1,464,550	5,545	9.96	68.7	79.6	26.4
13	981,560	3,716	9.96	68.7	80.2	26.8
14	934,819	3,539	9.96	68.7	79.6	26.5
15	1,121,783	4,247	9.96	68.7	77.9	25.5
16	1,339,908	5,073	9.96	68.7	75.0	23.9
17	1,417,809	5,368	9.96	68.7	70.5	21.4
18	716,695	2,714	9.96	68.7	64.4	18.0
19	171,384	649	9.96	68.7	58.7	14.9
20	31,161	118	9.96	68.7	54.9	12.7
21	-	-	9.96	68.7	53.1	11.7
22	-	-	9.96	68.7	52.1	11.1
23	-	-	9.96	68.7	51.4	10.8
24	-	-	9.96	68.7	50.8	10.5
Annual	12,199,393	46,190	9.96	68.7	61.7	16.5

3.10.4 *Emission and Speciation Factors*

Table 3-185 summarises the emission and speciation factors used for portable fuel containers.

Emission source	Substance	Emission and speciation factor source
Vapour displacement, spillage, diurnal and permeation emissions from portable fuel containers (domestic)	Criteria pollutants: VOC Speciated VOC	 Public Meeting to Consider Approval of California's Portable Gasoline Container Emissions Inventory (CARB, 1999) Estimating Emissions Associated with Portable Fuel Containers (PFCs) (USEPA, 2007b) NONROAD2008a Model (USEPA, 2009) Air Emissions Inventory for the Greater Metropolitan Region in NSW, Commercial Emissions Module: Results (DECC, 2007a)
	Organic air toxics	- Air Emissions Inventory for the Greater Metropolitan Region in NSW, Commercial Emissions Module: Results (DECC, 2007a)

Table 3-185: Portable fuel containers (domestic) emission and speciation factors

Table 3-186 presents average activity weighted emission factors for portable fuel containers.

Table 3-186: Portable fuel containers (domestic) emission factors

Emission source	Emission factor (kg/kL)
	VOC
Vapour displacement during refuelling	1.0129
Spillage during refuelling	0.0826
Spillage during transport	2.9606
Diurnal during storage	37.6636
Permeation during storage	2.4949
Grand Total	44.2146

3.10.5 Spatial Distribution of Emissions

Table 3-187 summarises the data used for spatially allocating emissions from portable fuel containers.

Emission source	Spatial data	Spatial data source
Vapour displacement, spillage, diurnal and permeation emissions from portable fuel containers (domestic)	Gridded 1 km x 1 km free standing dwelling estimates	- Forecasts for Free Standing Dwelling from 2006 to 2036 (TDC, 2009)

Table 3-187: Portable fuel containers (domestic) spatial data

Emissions from portable fuel containers have been spatially distributed according to petrol throughput, which is proportional to free standing dwellings in each 1 km by 1 km grid cell (TDC, 2009). The proportion of petrol throughput by LGA and region is presented in Table 3-188 and shown in Figure 3-81.

Table 3-188: Portable fuel containers (domestic) spatial distribution of petrol throughput by LGA and region

LGA	2008 proportion of annual petrol throughput (%)						
LGA	Newcastle	Non Urban	Sydney	Wollongong	Grand Total		
Ashfield	-	-	0.72	-	0.72		
Auburn	-	-	0.94	-	0.94		
Bankstown	-	-	3.37	-	3.37		
Bathurst Regional	-	$2.78 imes 10^{-3}$	-	-	$2.78\times10^{\text{-}3}$		
Baulkham Hills	-	2.50×10^{-3}	3.50	-	3.50		
Blacktown	-	-	5.92	-	5.92		
Blue Mountains	-	0.70	1.28	-	1.97		
Botany Bay	-	-	0.53	-	0.53		
Burwood	-	-	0.47	-	0.47		
Camden	-	-	1.19	-	1.19		
Campbelltown	-	-	3.26	-	3.26		
Canada Bay	-	-	1.06	-	1.06		
Canterbury	-	-	2.08	-	2.08		
Cessnock	4.90×10^{-2}	1.11	-	-	1.15		
Dungog	-	0.18	-	-	0.18		
Fairfield	-	-	3.39	-	3.39		
Gosford	-	1.06	2.87	-	3.93		
Goulburn Mulwaree	-	5.41×10^{-3}	-	-	5.41×10^{-3}		
Great Lakes	-	8.49×10^{-2}	-	-	8.49×10^{-2}		
Hawkesbury	-	2.90×10^{-2}	1.34	-	1.37		
Holroyd	-	-	1.77	-	1.77		
Hornsby	-	4.26×10^{-3}	3.07	-	3.08		
Hunters Hill	-	-	0.15	-	0.15		
Hurstville	-	-	1.50	-	1.50		
Kiama	-	0.32	-	-	0.32		
Kogarah	-	-	0.92	-	0.92		
Ku-ring-gai	-	-	2.14	-	2.14		
Lake Macquarie	2.46	2.21	-	-	4.66		
Lane Cove	-	-	0.43	-	0.43		
Leichhardt	-	-	0.83	-	0.83		
Lithgow	-	0.45	-	-	0.45		
Liverpool	-	-	3.26	-	3.26		
Maitland	0.12	1.39	-	-	1.51		
Manly	-	-	0.49	-	0.49		
Marrickville	-	-	1.51	-	1.51		
Mid-western Regional	-	6.41 × 10-2	-	-	6.41 × 10-2		
Mosman	-	-	0.42	-	0.42		
Muswellbrook	-	0.31	-	-	0.31		
N/A	1.46 × 10-2	6.58 × 10-2	0.27	3.05×10^{-2}	0.38		
Newcastle	3.48	-	-	-	3.48		
North Sydney	-	-	0.55	-	0.55		
Oberon	-	2.87×10^{-2}	-	-	2.87×10^{-2}		
Parramatta	-	-	2.50	-	2.50		
Penrith	-	-	3.81	-	3.81		

Air Emissions Inventory for the Greater Metropolitan Region of New South Wales 3. *Data Sources and Results*

LGA	2008 proportion of annual petrol throughput (%)						
LUA	Newcastle	Non Urban	Sydney	Wollongong	Grand Total		
Pittwater	-	-	1.16	-	1.16		
Port Stephens	7.89 × 10 ⁻²	1.31	-	-	1.39		
Randwick	-	-	1.69	-	1.69		
Rockdale	-	-	1.39	-	1.39		
Ryde	-	-	1.90	-	1.90		
Shellharbour	-	1.10	-	0.34	1.44		
Shoalhaven	-	2.06×10^{-3}	-	-	2.06×10^{-3}		
Singleton	-	0.44	-	-	0.44		
Strathfield	-	-	0.50	-	0.50		
Sutherland	-	-	4.15	-	4.15		
Sydney	-	-	1.53	-	1.53		
Unincorporated	-	-	0.54	-	0.54		
Upper Lachlan	-	8.65×10^{-4}	-	-	$8.65\times10^{\text{-}4}$		
Warringah	-	-	2.39	-	2.39		
Waverley	-	-	0.64	-	0.64		
Willoughby	-	-	0.99	-	0.99		
Wingecarribee	-	1.10	6.02×10^{-3}	$1.94 imes 10^{-3}$	1.11		
Wollondilly	-	$1.49 imes 10^{-2}$	0.93	$4.83\times10^{\text{-}4}$	0.95		
Wollongong	-	-	0.33	3.72	4.05		
Woollahra	-	-	0.50	-	0.50		
Wyong	-	3.57	-	-	3.57		
Grand Total	6.20	15.55	74.16	4.09	100.00		

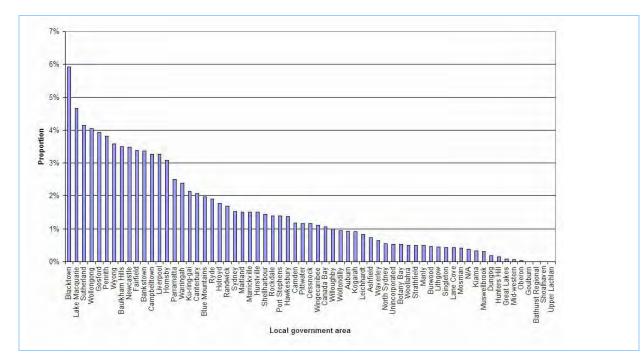


Figure 3-81: Portable fuel containers (domestic) spatial distribution of petrol throughput by LGA

Figure 3-82 shows the spatial distribution of portable fuel container emissions.

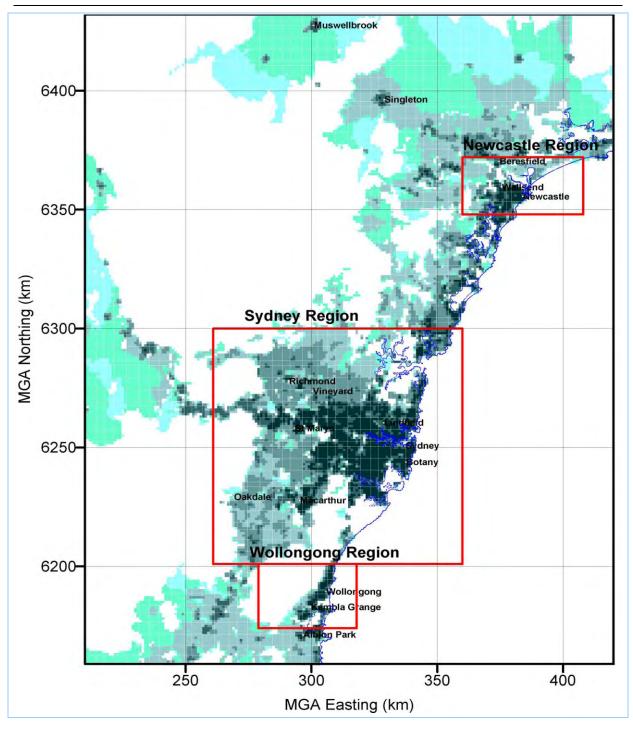


Figure 3-82: Portable fuel containers (domestic) spatial distribution of emissions

3.10.6 Temporal Variation of Emissions

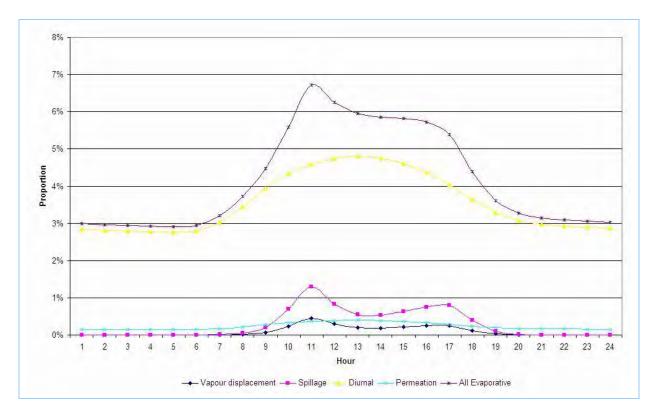
Table 3-189 summarises the data used to estimate the temporal variation in emissions from portable fuel containers.

Emission source	Temporal data		Temporal data source
		-	Domestic Lawn Mowing Pollution
Vapour displacement, spillage,	Monthly, daily and hourly: Derived		Survey (TR, 2009)
diurnal and permeation emissions	from domestic survey combined	-	The Air Pollution Model (TAPM)
from portable fuel containers	with hourly meteorological data		Version 3 (Hurley, 2005)
1	(temperature (Kelvin) and monthly	-	Protection of the Environment
(domestic)	petrol Reid vapour pressure (RVP)		Operations (Clean Air)
			Regulation 2010 (PCO, 2011)

Table 3-189: Portable fuel containers (domestic) temporal data

The domestic survey (TR, 2009), dwelling estimates (TDC, 2009) and sales (AIA, 2005) data have been used to estimate hourly, daily and monthly petrol consumption from lawn mowing and garden equipment within the *NONROAD2008a Model* (USEPA, 2009). The temporal variation in evaporative emissions from portable fuel containers have been estimated using the hourly, daily and monthly petrol throughput estimates by lawn mowing and garden equipment type combined with petrol RVP (PCO, 2011) and ambient temperature (Hurley, 2005) data within Equation 15 to Equation 21.

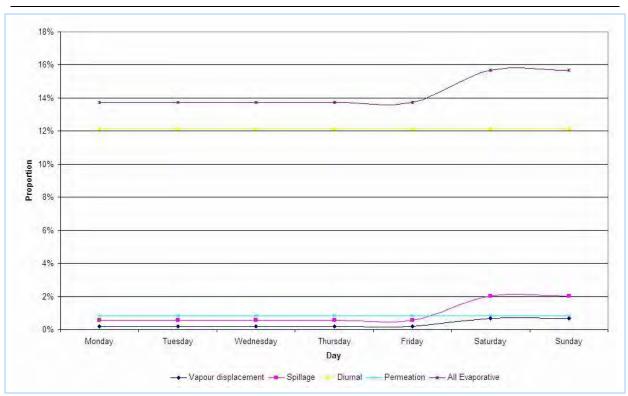
The temporal variation in evaporative emissions of VOC from portable fuel containers is a function of a number of factors including, temperature, RVP of petrol, volume of petrol dispensed and/or volume and number of portable fuel containers, so annual emissions have been apportioned to hourly, daily and monthly time periods using Equation 22:


$E_{VOC,i,j,k} = E_{VOC,i,j} \times f(T_k, RVP_k, PD_k, V, N) / \sum_{k=1}^n f(T_k, RVP_k, PD_k, V, N)$	Equation 22
---	-------------

where:			
$E_{VOC,i,j,k}$	=	Evaporative emissions of VOC for portable fuel container emission	(kg/time
		source i, type j and time interval k	interval)
Evoc,i,j	=	Evaporative emissions of VOC for portable fuel container emission	(kg/year)
		source i and type j (Equation 15 to Equation 21)	
T_k	=	Temperature for time interval k	(°C)
RVP_k	=	Reid vapour pressure of petrol for time interval k	(kPa)
PD_k	=	Volume of petrol dispensed for time interval k	(kL/time
			interval)
V	=	Volume of portable fuel containers - 8.86 (Part A - Table 3; CARB, 1999)	(L)
Ν	=	Number of portable fuel containers (Equation 14)	(number)
i	=	Portable fuel container emission source (either "vapour displacement",	(-)
		"spillage", "diurnal" or "storage")	
j	=	Portable fuel container type (either "metal" or "plastic")	(-)
k	=	Time interval (either "24" for hour, "7" for day or "12" for month)	(number)
		24 for $k = hour$	
n	=	$\begin{cases} 24 \text{ for } k = \text{hour} \\ 7 \text{ for } k = \text{day} \\ 12 \text{ for } k = \text{month} \end{cases}$	(number)
		$\int 12 \text{ for } \mathbf{k} = \text{month}$	

Hourly temporal variation profiles for evaporative emissions are presented in Table 3-190 (weighted hourly composite) and shown in Figure 3-83 (weighted hourly composite by source type).

Hour	Week day proportion (%)	Weekend proportion (%)	Hour	Week day proportion (%)	Weekend proportion (%)
1	3.12	2.73	13	5.86	6.15
2	3.09	2.70	14	5.78	6.03
3	3.06	2.68	15	5.69	6.13
4	3.04	2.66	16	5.51	6.18
5	3.02	2.65	17	5.14	5.92
6	3.06	2.68	18	4.34	4.51
7	3.34	2.95	19	3.71	3.41
8	3.85	3.47	20	3.40	3.01
9	4.54	4.33	21	3.28	2.87
10	5.40	5.98	22	3.22	2.82
11	6.21	7.81	23	3.18	2.78
12	6.02	6.78	24	3.14	2.75



Daily temporal variation profiles for evaporative emissions are presented in Table 3-191 (weighted daily composite) and shown in Figure 3-84 (weighted daily composite by source type).

Day	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday	Sunday
Proportion (%)	13.73	13.73	13.73	13.73	13.73	15.67	15.67

Table 3-191: Portable fuel containers (domestic) daily temporal profile

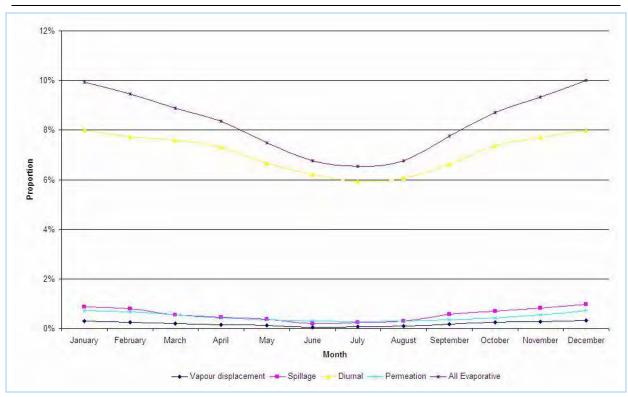

Air Emissions Inventory for the Greater Metropolitan Region of New South Wales 3. *Data Sources and Results*

Figure 3-84: Portable fuel containers (domestic) daily temporal profile

Monthly temporal variation profiles for evaporative emissions are presented in Table 3-192 (weighted monthly composite) and shown in Figure 3-85 (weighted monthly composite by source type).

Tuble 5 192. I bluble fuel containers (domestic) monthly temporal prome						
Month	Proportion (%)	Month	Proportion (%)			
January	9.92	July	6.54			
February	9.46	August	6.75			
March	8.87	September	7.76			
April	8.36	October	8.72			
May	7.49	November	9.34			
June	6.77	December	10.01			

Table 3-192: Portable fuel containers (domestic) monthly temporal profile

Figure 3-85: Portable fuel containers (domestic) monthly temporal profile

3.10.7 Emission Estimates

Table 3-193 presents annual emissions of selected substances from portable fuel containers by activity.

Activity		Emissions (kg/year)						
Activity	Substance	Newcastle	Non Urban	Sydney	Wollongong	GMR		
	BENZENE	987	2,478	11,813	652	15,930		
Portable Fuel Containers (Domestic)	ISOMERS OF XYLENE	696	1,747	8,330	460	11,232		
	TOLUENE	2,405	6,035	28,775	1,588	38,803		
	TOTAL VOLATILE ORGANIC COMPOUNDS	126,557	317,638	1,514,493	83,576	2,042,263		

Table 3-193: Portable fuel	containers	(domestic)	emissions by	activitv
	containero	(aomeone)		activity

3.10.8 Emission Projection Methodology

Table 3-194 summarises the data used to estimate the emission projection factors for portable fuel containers, while Figure 3-86 shows the emission projection factors for calendar years 2009 to 2036.

Table 3-194: Portable fuel containers (domestic) emission projection factors	
--	--

Emission source	Projection factor surrogate		Projection factor source
Vapour displacement, spillage, diurnal and permeation	Total dwelling	-	Forecasts for Total Dwelling

Air Emissions Inventory for the Greater Metropolitan Region of New South Wales 3. Data Sources and Results

Emission source	Projection factor surrogate	Projection factor source
emissions from portable fuel containers (domestic)	growth	from 2006 to 2036 (TDC, 2009)

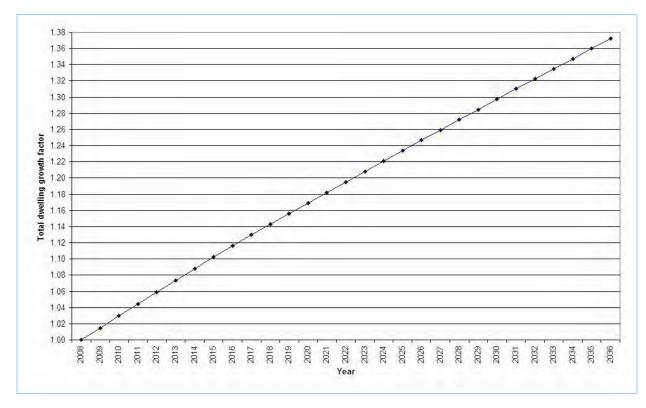


Figure 3-86: Portable fuel containers (domestic) emission projection factors

3.11 Portable Fuel Containers (public open space)

3.11.1 Emission Source Description

The domestic-commercial air emissions inventory includes emissions of evaporative VOC from portable fuel containers. These emissions arise:

- > From refuelling (i.e. vapour displacement and spillage);
- During transport (i.e. spillage);
- > Due to temperature changes (i.e. diurnal); and
- > Via permeation (i.e. plastic fuel containers).

To estimate emissions from these sources, the following have been considered:

> Commercial survey

A commercial survey of lawn mowing and garden equipment ownership and usage has been conducted, which includes 5 golf courses and 9 LGA⁶⁰ located in the GMR. The survey results include data about: equipment type, number and age; engine type and fuel used; and frequency and duration of equipment use by hour, day and season (DECC, 2007b). The survey data have been used to estimate the lawn mowing and garden equipment petrol consumption, the number of portable fuel containers and their usage.

Figure 3-87 shows how the commercial survey results have been used to estimate lawn mowing and garden equipment petrol consumption (USEPA, 2009). The estimated petrol consumption has been combined with emission factors from the technical literature (CARB, 1999; and USEPA, 2007b) to develop an inventory of portable fuel container emissions.

⁶⁰ The GMR includes 64 local government areas (LGA), plus two areas designated N/A and unincorporated. N/A areas are those located near the coastline and the majority area within the 1 km by 1 km grid cell lies over water. Unincorporated areas are those areas which are not under the responsibility of an incorporated local government. Emissions have been estimated for 59 LGA plus the two areas designated N/A and unincorporated.

Air Emissions Inventory for the Greater Metropolitan Region of New South Wales 3. Data Sources and Results

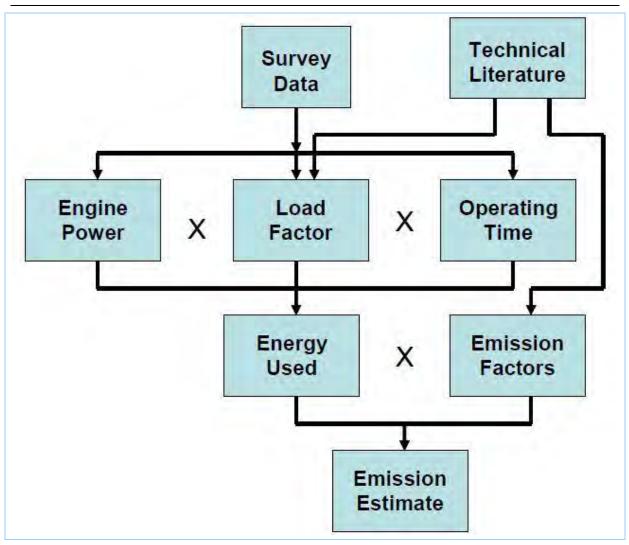


Figure 3-87: Portable fuel containers (public open space) - use of survey data

> *Portable fuel container type*

The inventory includes portable fuel containers with an average size of 12.99 litres (CARB, 1999; and USEPA, 2007b) for commercial use, which are constructed of:

- *Metal; and*
- Plastic.
- *▶ Fuel type*

The inventory includes portable fuel containers that use automotive gasoline (petrol).

Table 3-195 presents the fuel type and properties used in the inventory (ABARE, 2009b; and USEPA, 2009). The sulfur and oxygen contents are requirements of the *Fuel Standard (Petrol) Determination 2001* (Attorney-General's Department, 2008), which are relevant for the 2008 calendar year. Weighted average sulfur and oxygen contents have been calculated from *Australian Petroleum Statistics 2008* (DRET, 2009) and the requirements of the *Fuel Standard (Petrol) Determination 2001* (Attorney-General's Department, 2008).

Fuel type	Sulfur content (ppm)	Oxygen content (%)	Density (kg/L)	Effective heating value (MJ/L)	Carbon content (%)		
	150 - All	2.7 - All grades (no					
	grades ⁶¹	ethanol)					
Automotive	50 – PULP	3.9 - All grades	0.740	34.2	87		
gasoline (petrol)	50 - I OLI	(with ethanol)	0.740	04.2	07		
	142 - Weighted	2.84 - Weighted					
	average ⁶²	average ⁶³					

Table 3-195: Portable fuel containers (public open space) fuel type and properties

> Source type

The inventory includes evaporative emissions from portable fuel containers.

Evaporation occurs in a number of ways, including:

- *Refuelling emissions* are the vapours displaced from the portable fuel container when it is filled plus any spillage that may occur;
- *Transport emissions* arise when any spillage occurs while the portable fuel container is in transit;
- *Diurnal emissions* arise with temperature changes that occur throughout the day. As the air temperature increases, the fuel temperature in the portable fuel container increases and begins to evaporate; and
- *Permeation emissions* occur when fuel moves through the walls of the portable fuel container. Since the outer surfaces of the portable fuel container are exposed to air, petrol molecules permeate through them and are directly emitted. Permeation is most common through plastic portable fuel containers.

Evaporative emissions mainly include VOC (total and speciated).

3.11.2 Emission Estimation Methodology

Table 3-196 summarises the emission estimation methodologies used for portable fuel containers.

Emission source	Emission estimation methodology source
Evaporative emissions from portable fuel containers (public open space)	 Public Meeting to Consider Approval of California's Portable Gasoline Container Emissions Inventory (CARB, 1999) Estimating Emissions Associated with Portable Fuel Containers (PFCs) (USEPA, 2007b)

Table 3-196: Portable fuel containers (public open space) emission estimation methodologies

⁶¹ Includes lead replacement petrol (LRP), unleaded petrol (ULP) and premium unleaded petrol (PULP). ⁶² 5,509,243 kL (All grades) and 500,756 kL (PULP) (DRET, 2009).

^{63 5,332,615} kl (no ethanol) and 677,384 kL (with ethanol) (DRET, 2009).

Lawn mowing and garden equipment petrol consumption has been estimated using equipment population and activity data in combination with load and transient adjustment factors within the *NONROAD2008a Model* (USEPA, 2009).

Evaporative emission factors from portable fuel containers have been adjusted according to ambient temperature and Reid vapour pressure (RVP) of petrol (EEA, 2010; CARB, 1999; and USEPA, 2007b).

Equipment population is defined by fuel type, application and power, while activity rates include frequency and duration of use on an hourly, daily and seasonal basis. Equipment population and activity rates have been derived from a commercial survey (DECC, 2007b) and sales data (AIA, 2005). Petrol consumption has been determined using Equation 23 within the *NONROAD2008a Model* (USEPA, 2009):

$PC_{i,j,k} = P_{i,j,k} \times A_{i,j,k} \times HP_{i,j,k} \times LF_{i,j,k} \times TAF_{i,j,k} \times BSFC_{i,j,k} \times 1.36 \times 0.4536 / 1000$ Equation 23

where:			
$PC_{i,j,k}$	=	Consumption of petrol from lawn mowing and garden equipment type i,	(kL/year)
		engine type j and engine power range k	
$P_{i,j,k} \\$	=	Population of lawn mowing and garden equipment type i, engine type j	(number)
		and engine power range k	
$A_{i,j,k} \\$	=	Activity of lawn mowing and garden equipment type i, engine type j and	(h/year)
		engine power range k	
HP _{i,j,k}	=	Maximum rated power of lawn mowing and garden equipment type i,	(hp)
		engine type j and engine power range k	
LF _{i,j,k}	=	Fractional load factor for lawn mowing and garden equipment type i,	(hp/hp)
		engine type j and engine power range k	
TAF _{i,j,k}	=	Fractional transient adjustment factor for lawn mowing and garden	(g.(hp.h)-1/
		equipment type i, engine type j and engine power range k	g.(hp.h)-1)
BSFC _{i,j,k}	=	Brake specific fuel consumption of petrol from lawn mowing and garden	(lb/hp.h)
		equipment type i, engine type j and engine power range k	
i	=	Lawn mowing and garden equipment type (either "Chainsaw",	(-)
		"Chipper/Stump grinder", "Commercial mower", "Commercial turf	
		equipment", "Front mower", "Golf cart", "Lawn and garden tractor",	
		"Leafblower/Vacuum", "Other lawn and garden equipment", "Push	
		lawnmower", "Rear engine ride-on lawnmower", "Rotary tiller",	
		"Shredder", "Speciality vehicle cart" or "Trimmer/Edger/Brush cutter")	
j	=	Engine type (either "2-stroke petrol" or "4-stroke-petrol")	(-)
k	=	Engine power range	(hp)
1.36	=	Specific volume of petrol (ABARE, 2009b)	(L/kg)
0.4536	=	Conversion factor	(kg/lb)
1000	=	Conversion factor	(L/kL)

The number of portable fuel containers has been estimated using petrol consumption combined with commercial portable fuel container survey data within Equation 24 (CARB, 1999):

$N = PC_{i,j,k} \times 1000 / 1206.9 \times 3.7862$

Equation 26

where:			
Ν	=	Number of portable fuel containers	
PC _{i,j,k}	=	Consumption of petrol from lawn mowing and garden equipment	(kL/year)
		type i, engine type j and engine power range k (Equation 23)	
1206.9	=	Petrol throughput for each portable fuel container (3.43 US	(US
		gal/refill/portable fuel container x 351.9 refill/year) (Part B - Table 8	gal/portable
		and Section 3 c; CARB, 1999)	fuel
			container/year)
i	=	Lawn mowing and garden equipment type (either "Chainsaw",	(-)
		"Chipper/Stump grinder", "Commercial mower", "Commercial turf	
		equipment", "Front mower", "Golf cart", "Lawn and garden tractor",	
		"Leafblower/Vacuum", "Other lawn and garden equipment", "Push	
		lawnmower", "Rear engine ride-on lawnmower", "Rotary tiller",	
		"Shredder", "Speciality vehicle cart" or "Trimmer/Edger/Brush	
		cutter")	
j	=	Engine type (either "2-stroke petrol" or "4-stroke-petrol")	(-)
k	=	Engine power range	(hp)
1000	=	Conversion factor	(L/kL)
3.7862	=	Conversion factor	(L/US gal)

Vapour displacement emissions of VOC from portable fuel containers during refuelling have been estimated using the volume of petrol dispensed combined with ambient temperature and RVP of petrol data within Equation 25 (USEPA, 2009):

$E_{VOC} = e^{(-1.2798 - 0.0049 \times (T_d - T_a) + 0.0203 \times T_d + 0.1315 \times RVP)}$	< PD / 3.7862	Equation 25
---	---------------	-------------

where:			
E _{VOC}	=	Vapour displacement emissions of VOC during refuelling	(kg/year)
T _d	=	Temperature of petrol dispensed ($T_d = 62 + 0.6 \times (T_a - 62)$) (USEPA, 2009)	(°F)
Ta	=	Temperature of ambient air	(°F)
RVP	=	Reid vapour pressure of petrol	(psia)
PD	=	Volume of petrol dispensed - PC _{i,j,k} (Equation 23)	(kL/year)
3.7862	=	Conversion factor	(L/US gal)

Spillage emissions of VOC from portable fuel containers during refuelling have been estimated using the volume of petrol dispensed combined with emission factors within Equation 26 (USEPA, 2007b):

$E_{VOC} = 0.3128$	×	PD	/ 3.7862
--------------------	---	----	----------

where:			
Evoc	=	Petrol spillage emissions of VOC during refuelling	(kg/year)

where:			
0.3128	=	Petrol spillage VOC emission factor during refuelling (Section 2.2.2; USEPA, 2007b)	(g/US gal)
PD	=	Volume of petrol dispensed - PC _{i,j,k} (Equation 23)	(kL/year)
3.7862	=	Conversion factor	(L/US gal)

Spillage emissions of VOC from portable fuel containers during transport have been estimated using the volume of petrol dispensed combined with emission factors within Equation 27 (CARB, 1999):

$$E_{VOC,i} = EF_{VOC,i} \times PC_i \times PD / 3.7862$$
Equation 27

where:			
E _{VOC,i}	=	Petrol spillage emissions of VOC during transport for portable fuel	(kg/year)
		container condition i	
EF _{VOC,i}	=	Petrol spillage VOC emission factor for portable fuel container condition	(g/US gal)
		i – 9.829 (23 g/refill ÷ 2.34 US gal/refill) and 13.889 (32.5 g/refill ÷ 2.34	
		US gal/refill) for closed and open, respectively (Part A - Table 3 and	
		Section 4 c and Part B - Section 3 c; CARB, 1999)	
PCi	=	Proportion of portable fuel containers transported in condition i - 51%	(%)
		and 49% for closed and open, respectively (Part B - Table 8; CARB, 1999)	
PD	=	Volume of petrol dispensed - PC _{i,j,k} (Equation 23)	(kL/year)
i	=	Portable fuel container condition (either "closed" or "open")	(-)
3.7862	=	Conversion factor	(L/US gal)

Diurnal emissions of VOC from closed portable fuel containers during storage have been estimated using the volume and number of containers combined with emission factors within Equation 28 (CARB, 1999):

$$E_{VOC,i,j} = EF_{VOC,i,j} \times PSP/100 \times PF/100 \times PC_{i,j}/100 \times V \times N \times 365 / 1000$$
Equation 28

where:			
E _{VOC,i,j}	=	Diurnal emissions of VOC during storage for portable fuel container condition i and type j	(kg/year)
EF _{VOC,i,j}	=	Diurnal VOC emission factor for portable fuel container condition i and	(g/US
		type j – 1.38 and 0.44 for closed plastic and metal, respectively (Part B - Section 3 b; CARB, 1999)	gal/day)
PSP	=	Proportion of portable fuel containers stored with petrol – 70% (Part A - Table 3; CARB, 1999)	(%)
PF	=	Petrol fill rate of portable fuel containers – 49% (Part A - Table 3; CARB, 1999)	(%)
PC _{i,j}	=	Proportion of portable fuel containers stored in condition i and type j - 33% and 18% for closed plastic and metal, respectively (Part B - Table 8; CARB, 1999)	(%)
V	=	Volume of portable fuel containers – 3.43 (Part B - Table 8; CARB, 1999)	(US gal)

where:			
Ν	=	Number of portable fuel containers (Equation 24)	(number)
i	=	Portable fuel container condition ("closed")	(-)
j	=	Portable fuel container type (either "metal" or "plastic")	(-)
365	=	Conversion factor	(day/year)
1000	=	Conversion factor	(g/kg)

Diurnal emissions of VOC from open portable fuel containers during storage have been estimated using the volume and number of containers combined with emission factors within Equation 29 (CARB, 1999):

$F_{\text{VOC},i,j} = EF_{\text{VOC},i,j} \times PSP/100 \times PC_{i,j}/100 \times N \times N$	65 / 1000 Equation 29
---	-----------------------

where:			
Evoc,i,j	=	Diurnal emissions of VOC during storage for portable fuel container	(kg/year)
		condition i and type j	
EF _{VOC,i,j}	=	Diurnal VOC emission factor for portable fuel container condition i and	(g/day)
		type j – 21.8 and 21.8 for open plastic and metal, respectively (Part B -	
		Section 3 b; CARB, 1999)	
PSP	=	Proportion of portable fuel containers stored with petrol - 70% (Part A -	(%)
		Table 3; CARB, 1999)	
PC _{i,j}	=	Proportion of portable fuel containers stored in condition i and type j -	(%)
		39% and 10% for open plastic and metal, respectively (Part B - Table 8;	
		CARB, 1999)	
Ν	=	Number of portable fuel containers (Equation 24)	(number)
i	=	Portable fuel container condition ("open")	(-)
j	=	Portable fuel container type (either "metal" or "plastic")	(-)
365	=	Conversion factor	(day/year)
1000	=	Conversion factor	(g/kg)

Diurnal emissions of VOC from portable fuel containers during storage have been adjusted using ambient temperature and RVP of petrol data for hourly, daily and monthly time periods within Equation 30 (EEA, 2010):

$$E_{\text{VOC},i,j,k} = E_{\text{VOC},i,j} \times \left(\text{RVP}_k \times 10^{(\text{AT}_{s,k} + B)} \right) / \sum_{k=1}^{n} \left(\text{RVP}_k \times 10^{(\text{AT}_{s,k} + B)} \right)$$
Equation 30

where:			
Evoc,i,j,k	=	Diurnal emissions of VOC during storage for portable fuel container	(kg/time
		condition i, type j and time interval k	interval)
Evoc,i,j	=	Diurnal emissions of VOC during storage for portable fuel container	(kg/year)
		condition i and type j (Equation 28 and Equation 29)	
RVP _k	=	Reid vapour pressure of petrol for time interval k	(kPa)
А	=	0.000007047× RVP _k + 0.0132 (Table 3-11; EEA, 2010)	(kPa)

Air Emissions Inventory for the Greater Metropolitan Region of New South Wales 3. Data Sources and Results

where:			
T _{s,k}	=	Portable fuel container storage temperature for time interval k ($T_{s,k} = T_{a,k}$	(°C)
		+ 5) (Section 2.3; USEPA, 2007b)	
T _{a,k}	=	Temperature of ambient air for time interval k	(°C)
В	=	0.0002311× RVP _k – 0.5236 (Table 3-11; EEA, 2010)	(kPa)
i	=	Portable fuel container condition (either "closed" or "open")	(-)
j	=	Portable fuel container type (either "metal" or "plastic")	(-)
k	=	Time interval (either "24" for hour, "7" for day or "12" for month)	(number)
		24 for $k = hour$	
n	=	7 for $k = day$	(number)
		$\begin{cases} 24 \text{ for } k = \text{hour} \\ 7 \text{ for } k = \text{day} \\ 12 \text{ for } k = \text{month} \end{cases}$. ,

Permeation emissions of VOC from closed portable fuel containers during storage have been estimated using the volume and number of containers combined with ambient temperature data and emission factors within Equation 31 (CARB, 1999)⁶⁴:

$E_{\text{VOC},i,j} = EF_{\text{VOC},i,j} \times PSP/100 \times PF/100 \times PC_{i,j}/100 \times V \times N \times e^{(0.0327 \times (T_s - 8553))} \times 30^{-10}$	55 / 1000	Equation 31
---	------------------	-------------

where:			
E _{VOC,i,j}	=	Permeation emissions of VOC during storage for portable fuel container	(kg/year)
		condition i and type j	
EF _{VOC,i,j}	=	Permeation VOC emission factor for portable fuel container condition i	(g/US
		and type j – 1.57 and 0.06 for closed plastic and metal, respectively (Part	gal/day)
		B - Section 3 a; CARB, 1999)	
PSP	=	Proportion of portable fuel containers stored with petrol - 70% (Part A -	(%)
		Table 3; CARB, 1999)	
PF	=	Petrol fill rate of portable fuel containers - 49% (Part A - Table 3; CARB,	(%)
		1999)	
PC_i	=	Proportion of portable fuel containers stored in condition i and type j -	(%)
		33% and 18% for closed plastic and metal, respectively (Part B - Table 8;	
		CARB, 1999)	
V	=	Volume of portable fuel containers (Part B - Table 8; CARB, 1999)	(US gal)
Ν	=	Number of portable fuel containers (Equation 24)	(number)
T_s	=	Portable fuel container storage temperature ($T_s = T_a + 5$) (Section 2.3;	(°F)
		USEPA, 2007b)	
Ta	=	Temperature of ambient air	(°F)
i	=	Portable fuel container condition ("closed")	(-)
j	=	Portable fuel container type (either "metal" or "plastic")	(-)
365	=	Conversion factor	(day/year)
1000	=	Conversion factor	(g/kg)

⁶⁴ Since the diurnal emissions of VOC from open portable fuel containers are significantly higher than permeation emissions, Equation 29 combines both diurnal and permeation emissions for open containers (CARB, 1999).

3.11.3 Activity Data

Table 3-197 summarises the activity data used for portable fuel containers.

Activity data	Activity data source			
Petrol consumption	 NONROAD2008a Model (USEPA, 2009) using: Public Open Space Lawn Mowing Pollution Survey (DECC, 2007b); Australian Course Directory (Iseekgolf.com, 2011); Forecasts for Total Dwelling from 2006 to 2036 (TDC, 2009); and NSW Lawn Mowing and Garden Equipment Sales, Unit Cost and Operating Life Data for 2000 to 2004 (AIA, 2005) 			
Portable fuel container survey data	- Public Meeting to Consider Approval of California's Portable Gasoline Container Emissions Inventory (CARB, 1999)			

Table 3-197: Portable fuel containers (public open space) activity data

A commercial survey of lawn mowing and garden equipment ownership and usage has been conducted, which includes 5 golf courses and 9 LGA located in the GMR. The survey results include data about: equipment type, number and age; engine type and fuel used; and frequency and duration of equipment use by hour, day and season (DECC, 2007b).

The 5 golf courses surveyed include Castle Hill Country Club, Killara Golf Club, Manly Golf Club, Pennant Hills Golf Course and St Michaels Golf Club (DECC, 2007b). The golf course survey results (DECC, 2007b) have been used to scale-up activity data to the 162 golf courses in the GMR (Iseekgolf.com, 2011) using the average activity levels for each golf course.

The 9 LGA surveyed include Auburn, Bankstown, Canada Bay, Great Lakes, Kiama, Ku-ring-gai, Newcastle, Port Stephens and Strathfield (DECC, 2007b). While the GMR includes 64 local government areas (LGA), plus two areas designated N/A and unincorporated, the LGA survey results (DECC, 2007b) have been used to scale-up activity data to 59 LGA, plus the two areas designated N/A and unincorporated, using a linear regression of activity levels for each LGA.

Lawn mowing and garden equipment sales data for the 2003 and 2004 calendar years (AIA, 2005) have been used to estimate the proportion of 2-stroke/4-stroke petrol and non-handheld/handheld equipment with a given maximum power rating, while the lawn mowing and garden equipment survey results (DECC, 2007b) have been used to estimate the total number of in-service equipment.

A detailed discussion about the activity data used to estimate petrol consumption from lawn mowing and garden equipment is presented in Section 3.7.3.

The commercial survey (DECC, 2007b), golf course (Iseekgolf.com, 2011), population estimates (TDC, 2009) and sales (AIA, 2005) data have been used to estimate petrol consumption from lawn mowing and garden equipment. Table 3-198 presents the portable fuel container petrol throughput estimates by lawn mowing and garden equipment type from the *NONROAD2008a Model* (USEPA, 2009).

		2008 petrol throughput (kL/year)			
Classification	Equipment description	2-stroke petrol	4-stroke petrol	Grand Total	
	Chain Saws < 6 HP	1,663	-	1,663	
	Chippers/Stump Grinders	-	204	204	
	Commercial Turf Equipment	56	659	715	
	Front Mowers	-	1,780	1,780	
	Lawn & Garden Tractors	-	91	91	
Lawn and Garden Equipment	Lawn mowers	1,214	1,660	2,874	
(com)	Leafblowers/Vacuums	2,500	186	2,686	
(cont)	Other Lawn & Garden Eqp.	307	2,334	2,641	
	Rear Engine Riding Mowers	-	101	101	
	Rotary Tillers < 6 HP	-	55	55	
	Shredders < 6 HP	-	6	6	
	Trimmers/Edgers/Brush Cutter	4,274	-	4,274	
Lawn and Garden Equipment (co	10,014	7,076	17,090		
Descretional Essimant	Golf Carts	-	2,136	2,136	
Recreational Equipment	Speciality Vehicle Carts	-	-	-	
Recreational Equipment Total		-	2,136	2,136	
Grand Total		10,014	9,212	19,226	

Table 3-198: Portable fuel containers (public open space) petrol throughput in the GMR

Commercial portable fuel container survey data, which includes container storage capacity, type and storage condition (CARB, 1999) have been combined with the petrol throughput estimates to determine the number of portable fuel containers and their emissions. Table 3-199 presents a summary of the commercial portable fuel container survey data.

Table 3-199: Portable fuel containers (public open space) survey data and estimates

Commercial portable fuel container parameter	М	easure
Estimated number of portable fuel containers	4,2	207
Weighted average container storage capacity	3.43 U	S gal ⁶⁵
Weighted average stored petrol volume	petrol volume 49%	
Containers stored with petrol 70%		1%
Container type	plastic - 72% metal - 28%	
Plastic container storage condition	open - 39%	closed - 33%
Metal container storage condition	open - 10%	closed - 18%
All containers storage condition open - 49% closed -		closed – 51%

 $^{^{65}}$ 1 US gallon (US gal) is equivalent to 3.7862 Litres (L) (USEPA, 1995a).

Table 3-200 presents the petrol throughput, weighted average petrol RVP (PCO, 2011) and monthly average ambient temperature (Hurley, 2005) data used to estimate portable fuel container emissions.

		temperature by month	n			
Month	Petrol throughput (US gal)	Petrol throughput (kL)	RVP (psi)	RVP (kPa)	T _a (°F)	T _a (°C)
January	652,781	2,472	8.99	62.0	76.7	24.8
February	581,697	2,202	8.99	62.0	74.7	23.7
March	407,481	1,543	9.94	68.5	67.6	19.8
April	340,197	1,288	10.88	75.0	59.9	15.5
May	272,913	1,033	10.88	75.0	54.5	12.5
June	147,530	559	10.88	75.0	50.5	10.3
July	185,085	701	10.88	75.0	48.0	8.9
August	222,640	843	10.88	75.0	49.3	9.6
September	429,655	1,627	10.88	75.0	54.4	12.5
October	514,558	1,948	10.88	75.0	60.2	15.7
November	599,461	2,270	9.94	68.5	68.3	20.2
December	723,865	2,741	8.99	62.0	76.4	24.7
Annual	5,077,863	19,226	9.96	68.7	61.7	16.5

Table 3-200: Portable fuel containers (public open space) petrol throughput, RVP and ambienttemperature by month

Table 3-201 presents the petrol throughput, weighted average petrol RVP (PCO, 2011) and hourly average ambient temperature (Hurley, 2005) data used to estimate portable fuel container emissions.

Table 3-201: Portable fuel containers (public open space) petrol throughput, RVP and ambient
temperature by hour

temperature by nour									
Hour	Petrol throughput (US gal)	Petrol throughput (kL)	RVP (psi)	RVP (kPa)	T _a (°F)	T _a (°C)			
1	-	-	9.96	68.7	50.4	10.2			
2	-	-	9.96	68.7	49.8	9.9			
3	-	-	9.96	68.7	49.3	9.6			
4	-	-	9.96	68.7	49.0	9.4			
5	7,622	29	9.96	68.7	48.7	9.3			
6	28,793	109	9.96	68.7	49.4	9.7			
7	234,303	887	9.96	68.7	53.9	12.2			
8	541,572	2,051	9.96	68.7	61.3	16.3			
9	543,646	2,058	9.96	68.7	68.9	20.5			
10	543,646	2,058	9.96	68.7	74.4	23.5			
11	543,646	2,058	9.96	68.7	77.7	25.4			
12	543,646	2,058	9.96	68.7	79.6	26.4			
13	543,646	2,058	9.96	68.7	80.2	26.8			
14	543,646	2,058	9.96	68.7	79.6	26.5			
15	543,646	2,058	9.96	68.7	77.9	25.5			
16	397,881	1,506	9.96	68.7	75.0	23.9			
17	62,167	235	9.96	68.7	70.5	21.4			
18	-	-	9.96	68.7	64.4	18.0			
19	-	-	9.96	68.7	58.7	14.9			

Air Emissions Inventory for the Greater Metropolitan Region of New South Wales 3. Data Sources and Results

Hour	Petrol throughput (US gal)	Petrol throughput (kL)	RVP (psi)	RVP (kPa)	T _a (°F)	T _a (°C)
20	-	-	9.96	68.7	54.9	12.7
21	-	-	9.96	68.7	53.1	11.7
22	-	-	9.96	68.7	52.1	11.1
23	-	-	9.96	68.7	51.4	10.8
24	-	-	9.96	68.7	50.8	10.5
Annual	5,077,863	19,226	9.96	68.7	61.7	16.5

3.11.4 Emission and Speciation Factors

Table 3-202 summarises the emission and speciation factors used for portable fuel containers.

Emission source	Substance	Emission and speciation factor source
Vapour displacement, spillage, diurnal and permeation emissions from portable fuel containers (public open space)	Criteria pollutants: VOC Speciated VOC	 Public Meeting to Consider Approval of California's Portable Gasoline Container Emissions Inventory (CARB, 1999) Estimating Emissions Associated with Portable Fuel Containers (PFCs) (USEPA, 2007b) NONROAD2008a Model (USEPA, 2009) Air Emissions Inventory for the Greater Metropolitan Region in NSW, Commercial Emissions Module: Results (DECC, 2007a)
	Organic air toxics	 Air Emissions Inventory for the Greater Metropolitan Region in NSW, Commercial Emissions Module: Results (DECC, 2007a)

Table 3-202: Portable fuel containers (public open space) emission and speciation factors

Table 3-203 presents average activity weighted emission factors for portable fuel containers.

Table 3-203: Portable fuel containers (public open space) emission factors

Emission source	Emission factor (kg/kL)
	VOC
Vapour displacement during refuelling	1.0129
Spillage during refuelling	0.0826
Spillage during transport	3.1214
Diurnal during storage	0.6475
Permeation during storage	0.0284
Grand Total	4.8929

3.11.5 Spatial Distribution of Emissions

Table 3-204 summarises the data used for spatially allocating emissions from portable fuel containers.

Emission source	Spatial data	Spatial data source						
Vapour displacement, spillage, diurnal and permeation emissions from portable fuel containers (public open space)	Gridded 1 km x 1 km population estimates (≥ 50 per grid cell)	- Forecasts for Free Standing Dwelling from 2006 to 2036 (TDC, 2009)						

Table 3-204: Portable fuel containers (public open space) spatial data

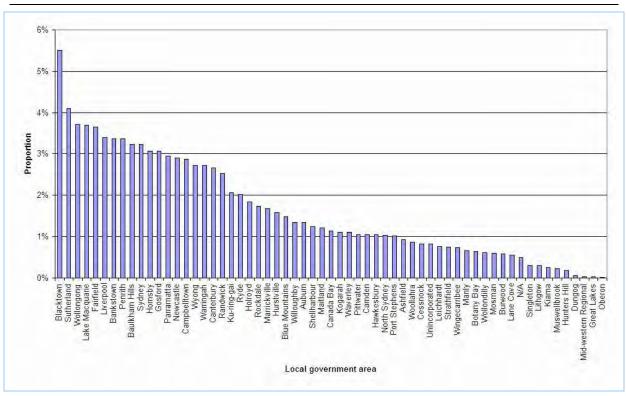

Emissions from portable fuel containers have been spatially distributed according to petrol throughput, which is proportional to population \geq 50 persons in each 1 km by 1 km grid cell (TDC, 2009). The proportion of petrol throughput by LGA and region is presented in Table 3-205 and shown in Figure 3-88.

Table 3-205: Portable fuel containers (public open space) spatial distribution of petrol throughputby LGA and region

LGA		2008 proportion of annual petrol throughput (%)						
LGA	Newcastle	Non Urban	Sydney	Wollongong	Grand Total			
Ashfield	-	-	0.92	-	0.92			
Auburn	-	-	1.34	-	1.34			
Bankstown	-	-	3.36	-	3.36			
Baulkham Hills	-	-	3.23	-	3.23			
Blacktown	-	-	5.51	-	5.51			
Blue Mountains	-	0.48	1.00	-	1.48			
Botany Bay	-	-	0.64	-	0.64			
Burwood	-	-	0.58	-	0.58			
Camden	-	-	1.04	-	1.04			
Campbelltown	-	-	2.88	-	2.88			
Canada Bay	-	-	1.14	-	1.14			
Canterbury	-	-	2.67	-	2.67			
Cessnock	3.36 × 10 ⁻²	0.79	-	-	0.83			
Dungog	-	$6.63 imes 10^{-2}$	-	-	$6.63 imes 10^{-2}$			
Fairfield	-	-	3.64	-	3.64			
Gosford	-	0.85	2.22	-	3.06			
Great Lakes	-	$3.15 imes 10^{-2}$	-	-	$3.15 imes 10^{-2}$			
Hawkesbury	-	$5.14 imes 10^{-3}$	1.04	-	1.04			
Holroyd	-	-	1.84	-	1.84			
Hornsby	-	-	3.06	-	3.06			
Hunters Hill	-	-	0.18	-	0.18			
Hurstville	-	-	1.58	-	1.58			
Kiama	-	0.26	-	-	0.26			
Kogarah	-	-	1.11	-	1.11			
Ku-ring-gai	-	-	2.06	-	2.06			
Lake Macquarie	1.98	1.72	-	-	3.70			
Lane Cove	-	-	0.55	-	0.55			
Leichhardt	-	-	0.77	-	0.77			
Lithgow	-	0.29	-	-	0.29			
Liverpool	-	-	3.40	-	3.40			

Air Emissions Inventory for the Greater Metropolitan Region of New South Wales 3. *Data Sources and Results*

LGA		2008 proportion of annual petrol throughput (%)						
LGA	Newcastle	Non Urban	Sydney	Wollongong	Grand Total			
Maitland	0.10	1.11	-	-	1.21			
Manly	-	-	0.65	-	0.65			
Marrickville	-	-	1.68	-	1.68			
Mid-western Regional	-	3.67×10^{-2}	-	-	$3.67\times10^{\text{-2}}$			
Mosman	-	-	0.60	-	0.60			
Muswellbrook	-	0.23	-	-	0.23			
N/A	2.48×10^{-2}	5.06×10^{-2}	0.36	6.08×10^{-2}	0.49			
Newcastle	2.90	-	-	-	2.90			
North Sydney	-	-	1.04	-	1.04			
Oberon	-	$1.64\times10^{\text{-}2}$	-	-	$1.64\times10^{\text{-}2}$			
Parramatta	-	-	2.94	-	2.94			
Penrith	-	-	3.36	-	3.36			
Pittwater	-	-	1.05	-	1.05			
Port Stephens	3.70×10^{-2}	0.98	-	-	1.02			
Randwick	-	-	2.53	-	2.53			
Rockdale	-	-	1.73	-	1.73			
Ryde	-	-	2.03	-	2.03			
Shellharbour	-	0.94	-	0.30	1.24			
Singleton	-	0.30	-	-	0.30			
Strathfield	-	-	0.75	-	0.75			
Sutherland	-	-	4.10	-	4.10			
Sydney	-	-	3.23	-	3.23			
Unincorporated	-	-	0.82	-	0.82			
Warringah	-	-	2.72	-	2.72			
Waverley	-	-	1.10	-	1.10			
Willoughby	-	-	1.34	-	1.34			
Wingecarribee	-	0.73	1.48×10^{-3}	-	0.73			
Wollondilly	-	1.10×10^{-2}	0.60	-	0.61			
Wollongong	-	-	0.29	3.41	3.70			
Woollahra	-	-	0.86	-	0.86			
Wyong	-	2.72	-	-	2.72			
Grand Total	5.08	11.62	79.53	3.77	100.00			

2008 Calendar Year Domestic-Commercial Emissions: Results3. Data Sources and Results

Figure 3-88: Portable fuel containers (public open space) spatial distribution of petrol throughput by LGA

Figure 3-89 shows the spatial distribution of portable fuel container emissions.

Air Emissions Inventory for the Greater Metropolitan Region of New South Wales 3. Data Sources and Results

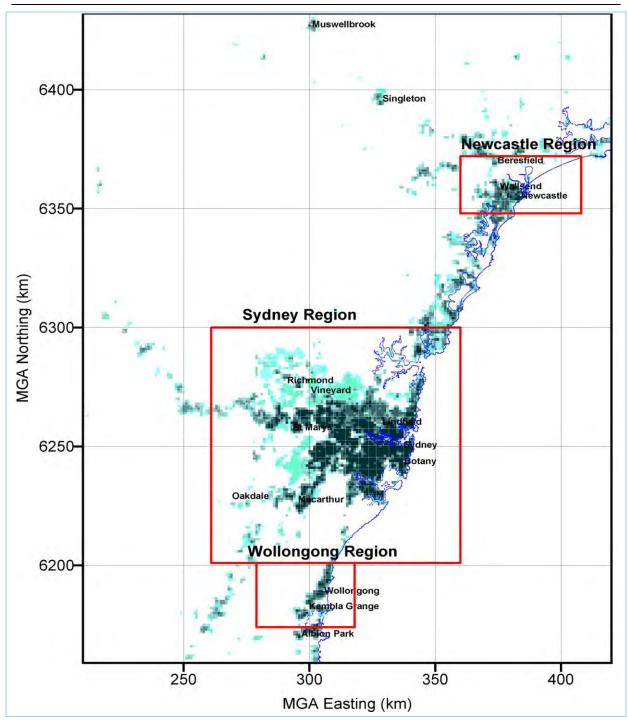


Figure 3-89: Portable fuel containers (public open space) spatial distribution of emissions

3.11.6 Temporal Variation of Emissions

Table 3-206 summarises the data used to estimate the temporal variation in emissions from portable fuel containers.

Emission source	Temporal data	Temporal data source
Vapour displacement, spillage, diurnal and permeation emissions from portable fuel containers (public open space)	Monthly, daily and hourly: Derived from commercial survey combined with hourly meteorological data (temperature (Kelvin) and monthly petrol Reid vapour pressure (RVP)	 Public Open Space Lawn Mowing Pollution Survey (DECC, 2007b) The Air Pollution Model (TAPM) Version 3 (Hurley, 2005) Protection of the Environment Operations (Clean Air) Regulation 2010 (PCO, 2011)

Table 3-206: Portable fuel containers (public open space) temporal data

The commercial survey (DECC, 2007b), golf course (Iseekgolf.com, 2011), population estimates (TDC, 2009) and sales (AIA, 2005) data have been used to estimate hourly, daily and monthly petrol consumption from lawn mowing and garden equipment within the *NONROAD2008a Model* (USEPA, 2009). The temporal variation in evaporative emissions from portable fuel containers have been estimated using the hourly, daily and monthly petrol throughput estimates by lawn mowing and garden equipment type combined with petrol RVP (PCO, 2011) and ambient temperature (Hurley, 2005) data within Equation 25 to Equation 31.

The temporal variation in evaporative emissions of VOC from portable fuel containers is a function of a number of factors including, temperature, RVP of petrol, volume of petrol dispensed and/or volume and number of portable fuel containers, so annual emissions have been apportioned to hourly, daily and monthly time periods using Equation 32:

$E_{VOC,i,j,k} = E_{VOC,i,j} \times f(T_k, RVP_k, PD_k, V, N) / \sum_{k=1}^{n} f(T_k, RVP_k, PD_k, V, N) $ Equation 32
--

where:			
$E_{\text{VOC},i,j,k}$	=	Evaporative emissions of VOC for portable fuel container emission	(kg/time
		source i, type j and time interval k	interval)
Evoc,i,j	=	Evaporative emissions of VOC for portable fuel container emission	(kg/year)
		source i and type j (Equation 25 to Equation 31)	
T_k	=	Temperature for time interval k	(°C)
RVP_k	=	Reid vapour pressure of petrol for time interval k	(kPa)
PD_k	=	Volume of petrol dispensed for time interval k	(kL/time
			interval)
V	=	Volume of portable fuel containers - 8.86 (Part B - Table 8; CARB, 1999)	(L)
Ν	=	Number of portable fuel containers (Equation 24)	(number)
i	=	Portable fuel container emission source (either "vapour displacement",	(-)
		"spillage", "diurnal" or "storage")	
j	=	Portable fuel container type (either "metal" or "plastic")	(-)
k	=	Time interval (either "24" for hour, "7" for day or "12" for month)	(number)
		24 for $k = hour$	
n	=	$\begin{cases} 24 \text{ for } k = \text{hour} \\ 7 \text{ for } k = \text{day} \\ 12 \text{ for } k = \text{month} \end{cases}$	(number)
		$\int 12 \text{ for } \mathbf{k} = \text{month}$. ,

Hourly temporal variation profiles for evaporative emissions are presented in Table 3-207 (weighted hourly composite) and shown in Figure 3-90 (weighted hourly composite by source type).

	······································									
Hour	Week day proportion (%)	Weekend proportion (%)	Hour	Week day proportion (%)	Weekend proportion (%)					
1	0.35	1.75	13	10.38	8.17					
2	0.35	1.73	14	10.35	8.12					
3	0.35	1.72	15	10.27	8.00					
4	0.34	1.71	16	7.57	6.44					
5	0.47	1.77	17	1.59	3.09					
6	0.82	1.97	18	0.46	2.26					
7	4.25	3.91	19	0.41	2.04					
8	9.58	6.96	20	0.38	1.90					
9	9.89	7.41	21	0.37	1.84					
10	10.12	7.76	22	0.36	1.81					
11	10.27	7.99	23	0.36	1.78					
12	10.35	8.12	24	0.36	1.77					

Table 3-207: Portable fuel containers (public open space) hourly temporal profile

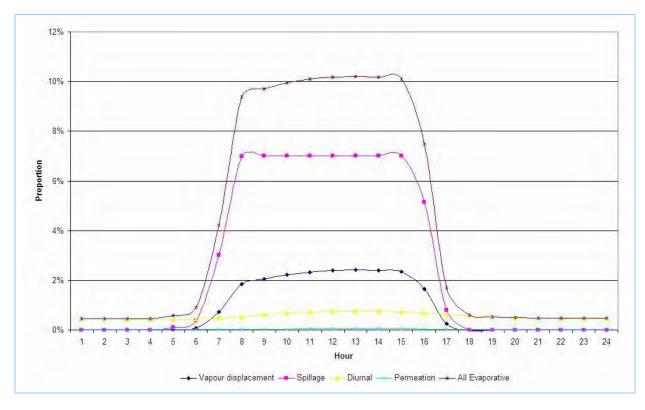
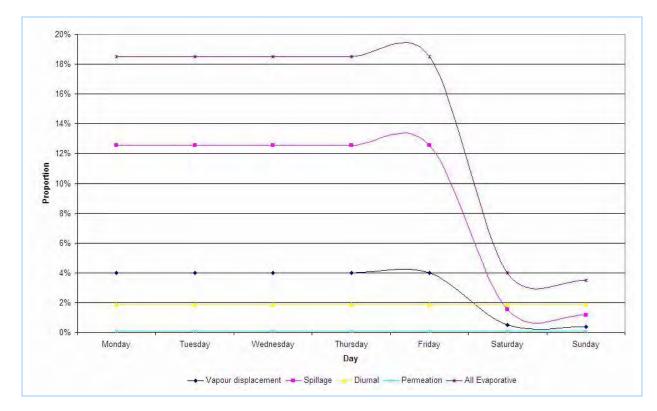
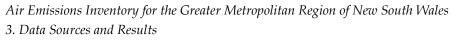
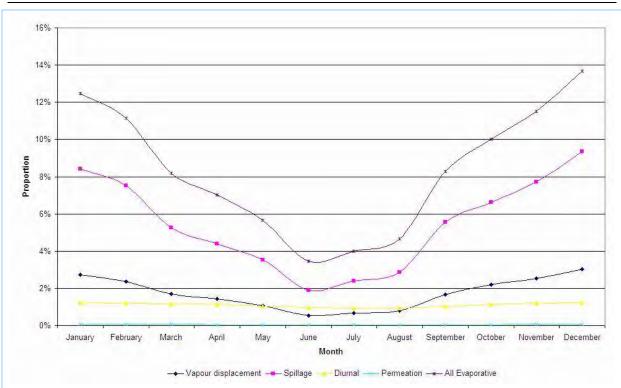



Figure 3-90: Portable fuel containers (public open space) hourly temporal profile

Daily temporal variation profiles for evaporative emissions are presented in Table 3-208 (weighted daily composite) and shown in Figure 3-91 (weighted daily composite by source type).

Tuble	Tuble 5 200. For uble fuel containers (public open space) uaity temporar prome								
Day	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday	Sunday		
Proportion (%)	18.51	18.51	18.51	18.51	18.51	3.97	3.49		


Table 3-208: Portable fuel containers (public open space) daily temporal profile


Figure 3-91: Portable fuel containers (public open space) daily temporal profile

Monthly temporal variation profiles for evaporative emissions are presented in Table 3-209 (weighted monthly composite) and shown in Figure 3-92 (weighted monthly composite by source type).

Month	Proportion (%)	Month	Proportion (%)	
January	12.47	July	4.00	
February	11.14	August	4.65	
March	8.18	September	8.29	
April	7.00	October	10.01	
May	5.66	November	11.50	
June	3.44	December	13.66	

Table 3-209: Portable fuel containers (public open space) monthly temporal profile

Figure 3-92: Portable fuel containers (public open space) monthly temporal profile

3.11.7 *Emission Estimates*

Table 3-210 presents annual emissions of selected substances from portable fuel containers by activity.

Activity		Emissions (kg/year)						
Activity	Substance	Newcastle	Non Urban	Sydney	Wollongong	GMR		
	BENZENE	37	85	584	28	734		
Portable Fuel	ISOMERS OF XYLENE	26	60	411	19	517		
Containers (Public Open Space)	TOLUENE	91	208	1,422	67	1,787		
	TOTAL VOLATILE ORGANIC COMPOUNDS	4,776	10,933	74,817	3,544	94,070		

Table 3-210: Portable fuel containers (public open space) emissions by activity

3.11.8 Emission Projection Methodology

Table 3-211 summarises the data used to estimate the emission projection factors for portable fuel containers, while Figure 3-93 shows the emission projection factors for calendar years 2009 to 2036.

Emission source	Projection factor surrogate	Projection factor source
Vapour displacement, spillage, diurnal and permeation emissions from portable fuel containers (public open space)	Final energy consumption for commercial and services using petroleum	 Australian Energy, National and State Projections to 2029-30, ABARE Research Report 06.26 (ABARE, 2006)

Table 3-211: Portable fuel containers (public open space) emission projection factors

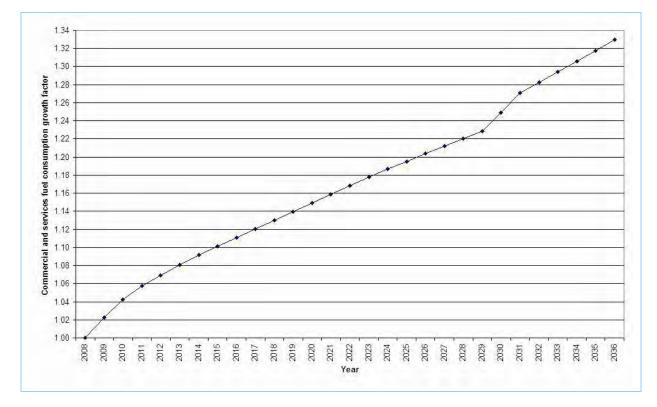


Figure 3-93: Portable fuel containers (public open space) emission projection factors

3.12 Solid Fuel Combustion

3.12.1 Emission Source Description

The domestic-commercial air emissions inventory includes emissions of combustion products from wood fuel fired residential space heaters.

To estimate emissions from these sources, the following have been considered:

> Domestic survey

A domestic survey of wood fuel fired residential space heater ownership and usage has been conducted, which includes each of the 64 local government areas (LGA)⁶⁶ located in the GMR. The survey results include data about: heater type, number and age; amount, type and source of wood used; and frequency and duration of heater use by hour, day and month (TR, 2009).

> Heater type

The inventory includes wood fuel fired space heaters used in residential applications as follows:

- Slow combustion heater with compliance plate⁶⁷;
- Slow combustion heater without compliance plate⁶⁸;
- Open fireplace; and
- *Potbelly stove.*
- ➤ Fuel type

The inventory includes residential space heaters that use wood.

Table 3-212 presents the solid fuel type and properties used in the inventory (ABARE, 2009b; DPI, 2007; and USEPA, 2000).

Fuel type	Sulfur content	Density		Effective heating value		Carbon content (%)	
Wood	-	769	kg/m ³	16.2	MJ/kg	45	

Table 3-212: Solid fuel type and properties

⁶⁶ The GMR includes 64 local government areas (LGA), plus two areas designated N/A and unincorporated. N/A areas are those located near the coastline and the majority area within the 1 km by 1 km grid cell lies over water. Unincorporated areas are those areas which are not under the responsibility of an incorporated local government. Emissions have been estimated for 64 LGA plus the two areas designated N/A and unincorporated.

⁶⁷ This includes appliances with plates attached and marked in accordance with Standards Australia, 1992a and Standards Australia, 1992b or Standards Australia, 1999a and Standards Australia 1999b.

⁶⁸ This includes appliances without plates attached and not marked in accordance with Standards Australia, 1992a and Standards Australia, 1992b or Standards Australia, 1999a and Standards Australia 1999b.

3.12.2 Emission Estimation Methodology

Table 3-213 summarises the emission estimation methodology used for solid fuel combustion.

Table 5-215. Solid fuel combustion emission estimation methodology			
Emission source	Emission estimation methodology source		
Exhaust emissions from wood fuel combustion in space heaters	 2008 National Emissions Inventory, 2008 Nonpoint Emission Estimates, Residential Heating, 2104008nnn & 2104009000, Residential Wood Combustion and Wax Firelogs (Pechan, 2009c) 		

Table 3-213: Solid fuel combustion emission estimation methodology

Emissions of combustion products from wood fuel fired residential space heaters have been estimated using fuel consumption based emission factors combined with activity rates. Activity rates include heater type, number and quantity of wood used (TR, 2009). Emissions have been determined using Equation 33 (Pechan, 2009c):

$$E_{i,j} = C_j \times EF_{i,j}$$
 Equation 33

where:			
E _{i,j}	=	Emissions of substance i from residential space heater type j	(kg/year)
Cj	=	Wood fuel consumption for residential space heater type j	(tonne/year)
EF _{i,j}	=	Emission factor for substance i and residential space heater type j	(kg/tonne)
i	=	Substance (either "criteria pollutants", "speciated NO_x ", "speciated	(-)
		VOC", "organic air toxics", "metal air toxics", "PAH", "PCDD and	
		PCDF", "ammonia" or "greenhouse gases")	
j	=	Residential space heater type (either "slow combustion heater with	(-)
		compliance plate", "slow combustion heater without compliance plate",	
		"open fireplace" or "potbelly stove ")	

3.12.3 Activity Data

Table 3-214 summarises the activity data used for solid fuel combustion.

Activity data	Activity data source
Wood heater type, number and fuel consumption	- Domestic Wood Heater Pollution Survey (TR, 2009)
Gridded 1 km x 1 km total dwelling estimates	- Forecasts for Total Dwelling from 2006 to 2036 (TDC,
required to scale-up domestic survey	2009)

Table 3-214: Solid fuel combustion activity data

A domestic survey of solid fuel fired residential space heater ownership and usage has been conducted, which includes each of the 64 local government areas (LGA) located in the GMR. The survey results include data about: heater type, number and age; amount, type and source of solid fuel used; and frequency and duration of heater use by hour, day and month (TR, 2009).

The key considerations in designing and conducting a domestic survey include:

Survey method - The domestic survey has been conducted using the computer assisted telephone interview (CATI) method for recruiting households to complete either an on-line or mail-out questionnaire.

Sample size - To provide a reasonable level of precision for estimating solid fuel combustion activity rates across all households in the GMR, the survey sample was sized accordingly. While a total of 832 households were recruited, 31 households were outside the GMR so they were excluded from the survey. Activity rates for solid fuel combustion have been based on survey responses from 801 households in the GMR.

Confidence interval and confidence level - The confidence interval quantifies the uncertainty or range in possible values. For example, for a confidence interval of 3.5% and where 47% percent of the sample picks a particular answer one can be "sure" that if the question has been asked of the entire relevant population, between 43.5% (47-3.5) and 50.5% (47+3.5) would have picked that answer.

The confidence level quantifies the level of certainty to which an estimate can be trusted. It is expressed as a percentage and represents how often the true percentage of the population who would pick an answer lies within the confidence interval. The 95% confidence level means one can be 95% certain. Most researchers use the 95% confidence level.

When combining the confidence level and confidence interval together, one can be 95% sure that the true answer for the entire relevant population is between 43.5% and 50.5% for the example described above.

Table 3-215 presents the theoretical confidence intervals for samples of varied sizes for characteristics with a population incidence of 50% or 50%, 75% or 25% and 90% or 10%.

	Confidence interval at 95% confidence level				
Sample size	Endorsement rate of 50%/50%	Endorsement rate of 75%/25%	Endorsement rate of 90%/10%		
100	9.8	8.5	5.9		
150	8.0	6.9	4.8		
200	6.9	6.0	4.2		
300	5.7	4.9	3.4		
400	4.9	4.2	2.9		
500	4.4	3.8	2.6		
600	4.0	3.5	2.4		
800	3.5	3.0	2.1		
1,000	3.1	2.7	1.9		

Table 3-215: Confidence intervals at 95% confidence level by sample size for solid fuel combustion
survey

The domestic survey of solid fuel combustion randomly sampled 801 households from a population of 5,284,560 in 1,901,680 households, so survey items with a true population incidence of 50% will produce estimates within $\pm 3.5\%$ of the true population value in 95% of the samples.

Random sampling and stratification - Households were selected at random across the GMR to limit bias. In practice, actual samples are not truly random since respondents always have the right to decline an interview and others cannot be reached for a variety of reasons. To reduce the standard error of estimated population values, samples were stratified on a geographic basis into the following subpopulations by location:

Sydney region, sub-grouped into

- North East
- 0 North West
- South East
- South West

Newcastle region

Wollongong region

Development of survey questionnaires – Three survey questionnaires were developed including: initial recruitment using the computer assisted telephone interview (CATI) method to capture household details using pre-coded questions within OzQuest on-line software; self complete main survey using pre-coded questions within OzQuest on-line software; and self complete main survey using a traditional hard copy mail-out with a reply paid envelope. The questionnaires request information about: heater number; fuel type; quantity of fuel used; and frequency and duration of heater use by hour, day and month. The domestic survey questionnaire form is included at Appendix B: Domestic Survey Form (TR, 2009).

Recruitment and data collection - A random sample of phone numbers was selected from the 64 local government areas (LGA) located in the GMR, stratified into Sydney, Newcastle and Wollongong regions.

As part of the computer assisted telephone interview (CATI), households were phoned up to five times to make contact and the interviewer asked to speak to an "adult household member who is familiar with any devices the household uses that might burn solid fuel (like wood or coal heaters), liquid fuel (like kerosene heaters or petrol lawn mowers) or gas fuel (like natural gas cooktops or heaters)". If required, arrangements were made to call back at a more convenient time when an appropriate adult household member would be available.

When an adult household member was available for interview, respondents were asked what LGA they lived in. If not in the GMR they were thanked and the interview was terminated. If in the GMR, they were then asked about the number of residents in the household, the dwelling type and which of the fuel burning devices were used by the household. All were then asked for their postcode and age group. Respondents in households that had none of the fuel burning devices were thanked and the interview terminated. All other respondents were then asked if they would be willing to complete a further questionnaire either on-line or by mail. If willing, contact details were recorded, and the interview concluded. Those who initially declined were read material emphasizing the importance of

obtaining data from all households, whether they make little use of fuel burning devices or not and asked again if they would be willing to take part.

Consenting respondents were then either e-mailed a link to a self complete on-line main survey or mailed a self complete hard copy main survey. The mailed questionnaires included an identifying serial number on the front page with a letter from DECCW encouraging completion of the survey.

Main survey completions on-line and mail-out were closely monitored and households were phoned on two occasions in order to remind them to complete. Some respondents indicated they preferred to go through the questions on the phone. Data for these were entered into the on-line version of the questionnaire.

Data capture – Data from the three survey questionnaires (i.e. CATI, on-line main survey and hard copy main survey) have all been entered into a database which captures pre-coded questions using OzQuest on-line software. All data was then checked, cleaned and saved in a Microsoft® Excel[™] 2003 workbook.

Survey timeframe - The survey took approximately 15 weeks to complete, from the time that questionnaire development commenced to the date data analysis and report were completed. The key tasks and milestones for the domestic survey are presented in Table 3-216.

Task	Milestones	
Questionnaire development commenced	11 August 2009	
CATI recruitment commenced	18 September 2009	
CATI recruitment completed	21 October 2009	
Main survey completed	12 November 2009	
Data analysis and report completed	26 November 2009	

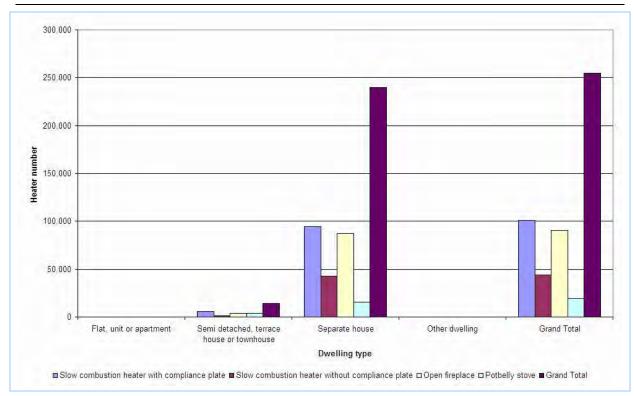
Table 3-216: Solid fuel combustion survey milestones

Gridded 1 km by 1 km dwelling estimates (TDC, 2009) have been used to scale-up the solid fuel combustion survey results (TR, 2009). Table 3-217 presents a summary of the population and dwelling by LGA data used to scale-up the domestic survey results to the GMR.

			2008 population an	d dwelling		
LGA	Population	Flat, unit or apartment	Semi-detached, row, terrace or town house	Separate house	Other dwelling ⁶⁹	Total dwelling
Ashfield	47,887	7,660	2,728	7,882	142	18,412

⁶⁹ Caravan, cabin, houseboat, improvised home, tent, sleepers out, house or flat attached to a shop or office (TDC, 2009).

	2008 population and dwelling							
LGA	Population	Flat, unit or apartment	Semi-detached, row, terrace or town house	Separate house	Other dwelling ⁶⁹	Total dwelling		
Auburn	69,555	7,358	2,326	11,421	284	21,390		
Bankstown	174,326	7,781	8,028	41,407	287	57,503		
Bathurst Regional	157	-	-	41	1	41		
Baulkham Hills	170,925	2,345	5,004	46,441	137	53,928		
Blacktown	286,162	3,915	9,712	77,217	700	91,544		
Blue Mountains	78,427	777	1,030	27,952	63	29,822		
Botany Bay	33,316	4,244	1,974	5,777	100	12,095		
Burwood	30,277	3,332	1,108	5,770	65	10,275		
Camden	55,287	258	499	16,910	161	17,828		
Campbelltown	150,373	1,333	8,057	39,856	97	49,343		
Canada Bay	58,880	6,445	2,342	13,157	137	22,080		
Canterbury	138,343	16,795	4,851	25,673	328	47,647		
Cessnock	48,845	562	339	16,615	150	17,667		
Dungog	7,659	23	60	2,581	38	2,702		
Fairfield	189,024	7,302	6,172	43,571	198	57,243		
Gosford	162,826	5,481	8,288	49,407	676	63,852		
Goulburn Mulwaree	341	-	1	79	-	80		
Great Lakes	4,062	10	29	1,301	44	1,383		
Hawkesbury	62,416	899	1,674	18,441	241	21,254		
Holroyd	95,192	6,969	3,562	22,399	144	33,074		
Hornsby	160,612	9,018	4,454	40,736	265	54,472		
Hunters Hill	9,295	898	318	1,892	3	3,111		
Hurstville	81,935	7,352	3,548	18,534	111	29,545		
Kiama	14,586	580	338	4,433	75	5,426		
Kogarah	57,349	6,558	1,565	11,945	81	20,148		
Ku-ring-gai	106,943	3,805	1,253	30,103	73	35,235		
Lake Macquarie	195,295	3,160	4,849	63,598	926	72,532		
Lane Cove	28,511	4,473	652	5,687	92	10,904		
Leichhardt	39,692	4,537	6,175	5,998	278 59	16,988		
Lithgow	19,595	227	341	6,350		6,977		
Liverpool	178,554	6,938	5,352	42,517	317	55,125		
Maitland	66,554	1,330	1,049	21,169	117 97	23,666		
Manly Marrickville	33,804	5,898	1,520	5,676		13,192		
	86,873	13,062	10,292	11,838	553	35,744		
Mid-western Regional	3,412	25	14	1,149	17	1,205		
Mosman Muswellbrook	30,915	6,692 364	1,506	4,604	104	12,905		
	15,221		121	4,582	62	5,128		
N/A	25,875	4,778	1,262	4,329	119 500	10,488		
Newcastle	150,930	8,242	6,306	44,792	500	59,840		
North Sydney	53,850	17,299	4,228	3,854	252	25,633		
Oberon	1,803	4	5	438	5	452 52 706		
Parramatta	152,570	16,729	6,975	29,743	348	53,796		


Air Emissions Inventory for the Greater Metropolitan Region of New South Wales 3. *Data Sources and Results*

	2008 population and dwelling							
LGA	Population	Flat, unit or apartment	Semi-detached, row, terrace or town house	Separate house	Other dwelling ⁶⁹	Total dwelling		
Penrith	177,459	3,483	4,905	51,040	349	59,776		
Pittwater	54,586	2,542	1,577	15,389	183	19,690		
Port Stephens	59,017	756	1,587	18,809	482	21,634		
Randwick	130,955	25,728	8,002	16,752	370	50,853		
Rockdale	89,735	12,199	4,159	16,242	256	32,856		
Ryde	105,073	11,196	5,519	22,448	111	39,275		
Shellharbour	65,104	1,282	2,369	18,768	328	22,747		
Shoalhaven	81	-	-	30	-	30		
Singleton	22,222	405	275	6,357	132	7,169		
Strathfield	38,732	5,612	806	6,543	45	13,006		
Sutherland	212,924	16,252	8,522	52,450	274	77,498		
Sydney	167,382	52,686	17,811	4,651	1,028	76,176		
Unincorporated	42,682	9,672	2,028	5,866	146	17,713		
Upper Hunter	350	-	-	66	-	66		
Upper Lachlan	502	-	-	92	-	92		
Warringah	141,123	16,643	3,029	32,008	175	51,854		
Waverley	57,147	14,769	4,430	5,038	245	24,481		
Willoughby	69,528	11,760	2,038	12,473	82	26,353		
Wingecarribee	45,480	537	1,113	15,131	144	16,924		
Wollondilly	42,871	168	292	13,634	133	14,227		
Wollongong	193,292	11,210	7,296	52,219	992	71,717		
Woollahra	44,773	12,138	3,128	4,232	71	19,569		
Wyong	145,088	2,801	4,575	47,918	1,006	56,300		
Grand Total	5,284,560	417,295	213,366	1,256,021	14,998	1,901,680		

The total population of in-service wood fuel fired residential space heaters have been estimated by combining the domestic survey results (TR, 2009) and gridded 1 km by 1 km dwelling estimates (TDC, 2009). In-service wood fuel fired residential space heater population by dwelling type for the GMR is presented in Table 3-218 and shown in Figure 3-94.

Table 3-218: Wood fuel fired residential s	ace heater population by dwelling type in the GMR

	2008 statistics				
Dwelling type	Dwelling number	Heater number	Proportion of dwelling type with heater (%)		
Flat, unit or apartment	417,295	-	-		
Semi detached, terrace house or townhouse	213,366	14,466	6.78		
Separate house	1,256,021	239,979	19.11		
Other dwelling	14,998	-	-		
Grand Total	1,901,680	254,445	13.38		

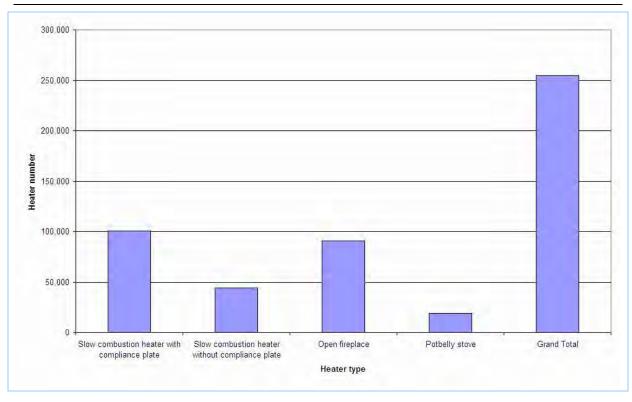


Figure 3-94: Wood fuel fired residential space heater population by dwelling type in the GMR

In-service wood fuel fired residential space heater population by fuel type for the GMR are presented in Table 3-219 and shown in Figure 3-95.

Dwelling type	Slow combustion heater with compliance plate	Slow combustion heater without compliance plate	Open fireplace	Potbelly stove	Grand Total
Flat, unit or	_		_	_	_
apartment	-		_	_	-
Semi detached,					
terrace house or	6,120	1,113	3,616	3,616	14,466
townhouse					
Separate house	94,533	42,875	87,089	15,483	239,979
Other dwelling	-	-	-	-	
Grand Total	100,653	43,987	90,706	19,099	254,445

Table 3-219: Wood fuel fired residential space heater population by heater type in the GMR

Figure 3-95: Wood fuel fired residential space heater population by heater type in the GMR

The total consumption of wood has been estimated by combining the domestic survey results (TR, 2009) and gridded 1 km by 1 km dwelling estimates (TDC, 2009). Table 3-220 presents the residential space heater wood fuel consumption estimates by heater type and dwelling type.

	2008 wood consumption (tonne/year)						
		year)					
Dwelling type	Slow combustion heater with compliance plate	Slow combustion heater without compliance plate	Open fireplace	Potbelly stove	Grand Total		
Flat, unit or			_	_	_		
apartment	-	-	-	_	-		
Semi detached,							
terrace house	17,781	3,221	7,275	8,388	36,664		
or townhouse							
Separate house	274,654	124,093	175,196	35,909	609,852		
Other dwelling	-	-	-	-	-		
Grand Total	292,435	127,314	182,471	44,296	646,517		

Table 3-220: Wood fuel fired residential space heater fuel consumption in the GMR

Table 3-221 presents the average age and fuel consumption of wood fuel fired residential space heaters in the GMR (TR, 2009).

Table 3-221: Wood fuel fired residential space heater average age and wood consumption in the GMR

	2008 statistics		
Heater type	Average age (year)	Average wood consumption (tonne/heater/year)	
Slow combustion heater with compliance plate	12	2.9	
Slow combustion heater without compliance plate	17	2.9	
Open fireplace	22	2.0	
Potbelly stove	14	2.3	
Grand Total	16	2.5	

3.12.4 Emission and Speciation Factors

Table 3-222 summarises the emission and speciation factors used for solid fuel combustion.

Substance	Emission source	Emission and speciation factor source
	Slow combustion heater with compliance plate	 2104008320 Woodstove: freestanding, EPA certified, non-catalytic - 2008 National Emissions Inventory, 2008 Nonpoint Emission Estimates, Residential Heating, 2104008nnn & 2104009000, Residential Wood Combustion and Wax Firelogs (Pechan, 2009c)
Criteria pollutants: CO, NO _x , PM ₁₀ , SO ₂ and VOC	Slow combustion heater without compliance plate	 2104008310 Woodstove: freestanding, non-EPA certified - 2008 National Emissions Inventory, 2008 Nonpoint Emission Estimates, Residential Heating, 2104008nnn & 2104009000, Residential Wood Combustion and Wax Firelogs (Pechan, 2009c)
	Open fireplace	 2104008100 Fireplace: general - 2008 National Emissions Inventory, 2008 Nonpoint Emission Estimates, Residential Heating, 2104008nnn & 2104009000, Residential Wood Combustion and Wax Firelogs (Pechan, 2009c)
	Potbelly stove	 2104008210 Woodstove: fireplace inserts; non- EPA certified - 2008 National Emissions Inventory, 2008 Nonpoint Emission Estimates, Residential Heating, 2104008nnn & 2104009000, Residential Wood Combustion and Wax Firelogs (Pechan, 2009c)
Criteria pollutants: PM _{2.5} and TSP	Slow combustion heater with compliance plate Slow combustion heater without compliance plate Open fireplace	- PMPROF 424 - California Emission Inventory and Reporting System (CEIDARS), Particulate Matter (PM) Speciation Profiles (CARB, 2008b)

Table 3-222: Solid fuel combustion emission and speciation factors

Air Emissions Inventory for the Greater Metropolitan Region of New South Wales 3. *Data Sources and Results*

Substance	Emission source	Emission and speciation factor source
	Potbelly stove	
Speciated NO _x	Slow combustion heater with compliance plate Slow combustion heater without compliance plate Open fireplace Potbelly stove	- Technology Transfer Network - Clearinghouse for Inventories & Emissions Factors (USEPA, 2003)
	Slow combustion heater with compliance plate	 2104008320 Woodstove: freestanding, EPA certified, non-catalytic - 2008 National Emissions Inventory, 2008 Nonpoint Emission Estimates, Residential Heating, 2104008nnn & 2104009000, Residential Wood Combustion and Wax Firelogs (Pechan, 2009c) Profile number 4642 Fireplace wood combustion pine wood - Speciate 4.2 Database Development Documentation (Pechan, 2009a)
Speciated VOC	Slow combustion heater without compliance plate	 2104008310 Woodstove: freestanding, non-EPA certified - 2008 National Emissions Inventory, 2008 Nonpoint Emission Estimates, Residential Heating, 2104008nnn & 2104009000, Residential Wood Combustion and Wax Firelogs (Pechan, 2009c) Profile number 4642 Fireplace wood combustion pine wood - Speciate 4.2 Database Development Documentation (Pechan, 2009a)
	Open fireplace	 2104008100 Fireplace: general - 2008 National Emissions Inventory, 2008 Nonpoint Emission Estimates, Residential Heating, 2104008nnn & 2104009000, Residential Wood Combustion and Wax Firelogs (Pechan, 2009c) Profile number 4642 Fireplace wood combustion pine wood - Speciate 4.2 Database Development Documentation (Pechan, 2009a)
	Potbelly stove	 2104008210 Woodstove: fireplace inserts; non- EPA certified - 2008 National Emissions Inventory, 2008 Nonpoint Emission Estimates, Residential Heating, 2104008nnn & 2104009000, Residential Wood Combustion and Wax Firelogs (Pechan, 2009c) Profile number 4642 Fireplace wood combustion pine wood - Speciate 4.2 Database Development Documentation (Pechan, 2009a)
Organic air toxics	Slow combustion heater with compliance plate	 2104008320 Woodstove: freestanding, EPA certified, non-catalytic - 2008 National Emissions Inventory, 2008 Nonpoint Emission Estimates, Residential Heating, 2104008nnn & 2104009000, Residential Wood Combustion and Wax Firelogs (Pechan, 2009c) Profile number 4642 Fireplace wood combustion

Substance	Emission source	Emission and speciation factor source
		pine wood - Speciate 4.2 Database Development Documentation (Pechan, 2009a)
	Slow combustion heater without compliance plate	 2104008310 Woodstove: freestanding, non-EPA certified - 2008 National Emissions Inventory, 2008 Nonpoint Emission Estimates, Residential Heating, 2104008nnn & 2104009000, Residential Wood Combustion and Wax Firelogs (Pechan, 2009c) Profile number 4642 Fireplace wood combustion pine wood - Speciate 4.2 Database Development Documentation (Pechan, 2009a)
	Open fireplace	 2104008100 Fireplace: general - 2008 National Emissions Inventory, 2008 Nonpoint Emission Estimates, Residential Heating, 2104008nnn & 2104009000, Residential Wood Combustion and Wax Firelogs (Pechan, 2009c) Profile number 4642 Fireplace wood combustion pine wood - Speciate 4.2 Database Development Documentation (Pechan, 2009a)
	Potbelly stove	 2104008210 Woodstove: fireplace inserts; non- EPA certified - 2008 National Emissions Inventory, 2008 Nonpoint Emission Estimates, Residential Heating, 2104008nnn & 2104009000, Residential Wood Combustion and Wax Firelogs (Pechan, 2009c) Profile number 4642 Fireplace wood combustion pine wood - Speciate 4.2 Database Development Documentation (Pechan, 2009a)
	Slow combustion heater with compliance plate	 2104008320 Woodstove: freestanding, EPA certified, non-catalytic - 2008 National Emissions Inventory, 2008 Nonpoint Emission Estimates, Residential Heating, 2104008nnn & 2104009000, Residential Wood Combustion and Wax Firelogs (Pechan, 2009c) Composite profile number 3831, 3832, 3833, 3835, 3846 and 3856 Residential wood burning - Speciate 4.2 Database Development Documentation (Pechan, 2009a)
Metal air toxics	Slow combustion heater without compliance plate	 2104008310 Woodstove: freestanding, non-EPA certified - 2008 National Emissions Inventory, 2008 Nonpoint Emission Estimates, Residential Heating, 2104008nnn & 2104009000, Residential Wood Combustion and Wax Firelogs (Pechan, 2009c) Composite profile number 3831, 3832, 3833, 3835, 3846 and 3856 Residential wood burning - Speciate 4.2 Database Development Documentation (Pechan, 2009a)
	Open fireplace	- 2104008100 Fireplace: general - 2008 National Emissions Inventory, 2008 Nonpoint Emission Estimates, Residential Heating, 2104008nnn &

Substance	Emission source	Emission and speciation factor source
		 2104009000, Residential Wood Combustion and Wax Firelogs (Pechan, 2009c) Composite profile number 3831, 3832, 3833, 3835, 3846 and 3856 Residential wood burning - Speciate 4.2 Database Development Documentation (Pechan, 2009a)
	Potbelly stove	 2104008210 Woodstove: fireplace inserts; non- EPA certified - 2008 National Emissions Inventory, 2008 Nonpoint Emission Estimates, Residential Heating, 2104008nnn & 2104009000, Residential Wood Combustion and Wax Firelogs (Pechan, 2009c) Composite profile number 3831, 3832, 3833, 3835, 3846 and 3856 Residential wood burning - Speciate 4.2 Database Development Documentation (Pechan, 2009a)
	Slow combustion heater with compliance plate	 2104008320 Woodstove: freestanding, EPA certified, non-catalytic - 2008 National Emissions Inventory, 2008 Nonpoint Emission Estimates, Residential Heating, 2104008nnn & 2104009000, Residential Wood Combustion and Wax Firelogs (Pechan, 2009c)
Polycyclic aromatic hydrocarbons: PAH	Slow combustion heater without compliance plate	 2104008310 Woodstove: freestanding, non-EPA certified - 2008 National Emissions Inventory, 2008 Nonpoint Emission Estimates, Residential Heating, 2104008nnn & 2104009000, Residential Wood Combustion and Wax Firelogs (Pechan, 2009c)
	Open fireplace	 Table 1.10-3 Conventional stove - AP 42, Fifth Edition, Volume I, Chapter 1: External Combustion Sources, 1.10 Residential Wood Stoves (USEPA, 1996b)
	Potbelly stove	 2104008210 Woodstove: fireplace inserts; non- EPA certified - 2008 National Emissions Inventory, 2008 Nonpoint Emission Estimates, Residential Heating, 2104008nnn & 2104009000, Residential Wood Combustion and Wax Firelogs (Pechan, 2009c)
Polychlorinated dibenzo-p-dioxins and Polychlorinated dibenzofurans: PCDD and PCDF	Slow combustion heater with compliance plate Slow combustion heater without compliance plate Open fireplace Potbelly stove	- Table 4.51 Emission Factors – Household Heating and Cooking (Biomass) - Australian Inventory of Dioxin Emissions 2004, National Dioxins Program Technical Report No. 3 (Bawden et. al., 2004)
Ammonia	Slow combustion heater with compliance plate	- 2104008320 Woodstove: freestanding, EPA certified, non-catalytic - 2008 National Emissions Inventory, 2008 Nonpoint Emission Estimates, Residential Heating, 2104008nnn & 2104009000, Residential Wood Combustion and Wax Firelogs

Substance	Emission source	Emission and speciation factor source
		(Pechan, 2009c) - 2104008310 Woodstove: freestanding, non-EPA
	Slow combustion heater without compliance plate	certified - 2008 National Emissions Inventory, 2008 Nonpoint Emission Estimates, Residential Heating, 2104008nnn & 2104009000, Residential Wood Combustion and Wax Firelogs (Pechan, 2009c)
	Open fireplace	 2104008100 Fireplace: general - 2008 National Emissions Inventory, 2008 Nonpoint Emission Estimates, Residential Heating, 2104008nnn & 2104009000, Residential Wood Combustion and Wax Firelogs (Pechan, 2009c)
	Potbelly stove	 2104008210 Woodstove: fireplace inserts; non- EPA certified - 2008 National Emissions Inventory, 2008 Nonpoint Emission Estimates, Residential Heating, 2104008nnn & 2104009000, Residential Wood Combustion and Wax Firelogs (Pechan, 2009c)
Greenhouse gases:	Slow combustion heater with compliance plate	 2104008320 Woodstove: freestanding, EPA certified, non-catalytic - 2008 National Emissions Inventory, 2008 Nonpoint Emission Estimates, Residential Heating, 2104008nnn & 2104009000, Residential Wood Combustion and Wax Firelogs (Pechan, 2009c)
	Slow combustion heater without compliance plate	 2104008310 Woodstove: freestanding, non-EPA certified - 2008 National Emissions Inventory, 2008 Nonpoint Emission Estimates, Residential Heating, 2104008nnn & 2104009000, Residential Wood Combustion and Wax Firelogs (Pechan, 2009c)
CH4	Open fireplace	 2104008100 Fireplace: general - 2008 National Emissions Inventory, 2008 Nonpoint Emission Estimates, Residential Heating, 2104008nnn & 2104009000, Residential Wood Combustion and Wax Firelogs (Pechan, 2009c)
	Potbelly stove	 2104008210 Woodstove: fireplace inserts; non- EPA certified - 2008 National Emissions Inventory, 2008 Nonpoint Emission Estimates, Residential Heating, 2104008nnn & 2104009000, Residential Wood Combustion and Wax Firelogs (Pechan, 2009c)
Greenhouse gases: CO ₂	Slow combustion heater with compliance plate Slow combustion heater without compliance plate Open fireplace Potbelly stove	- Greenhouse Gases from Small-Scale Combustion Devices in Developing Countries: Phase IIA Household Stoves in India (USEPA, 2000)
Greenhouse gases: N ₂ O	Slow combustion heater with	- Table 1.9-1 - AP 42, Fifth Edition, Volume I, Chapter 1: External Combustion Sources, 1.9

Air Emissions Inventory for the Greater Metropolitan Region of New South Wales 3. *Data Sources and Results*

Substance	Emission source	Emission and speciation factor source
	compliance plate	Residential Fireplaces (USEPA, 1996a)
	Slow combustion	
	heater without	
	compliance plate	
	Open fireplace	
	Potbelly stove	

3. Data Sources and Results

Table 3-223 presents emission factors for wood fuel fired residential space heaters.

Emission source						Emis	sion fact	tors (kg/t	onne)			
	NO _x	N ₂ O	\mathbf{NH}_3	SO ₂	PM ₁₀	PM _{2.5}	VOC	CH_4	СО	CO ₂	РАН	PCDF and PCDF
Slow combustion heater with compliance plate	1.14	0.150	0.450	0.200	9.80	9.43	6.00	14.20	70.40	1,387.79	0.1014	$4.10 imes 10^{-9}$
Slow combustion heater without compliance plate	1.40	0.150	0.850	0.200	15.30	14.73	26.50	32.00	115.40	1,146.19	0.2269	4.10×10^{-9}
Open fireplace	1.30	0.150	0.900	0.200	11.80	11.36	9.45	7.20	74.50	1,357.88	0.3650	4.10×10^{_9}
Potbelly stove	1.40	0.150	0.850	0.200	15.30	14.73	26.50	32.00	115.40	1,146.19	0.2269	4.10×10^{-9}

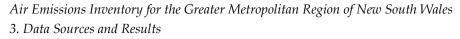
Table 3-223: Solid fuel combustion emission factors

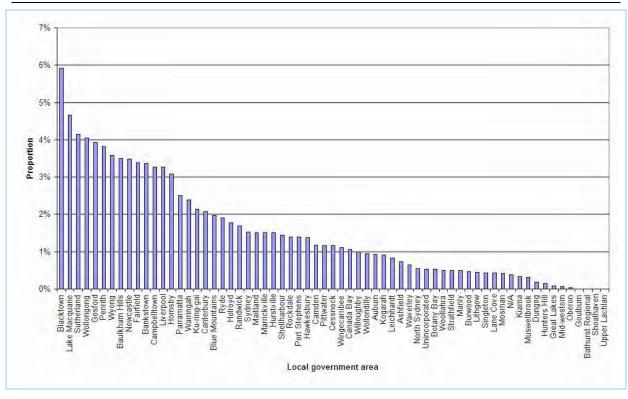
3.12.5 Spatial Distribution of Emissions

Table 3-224 summarises the data used for spatially allocating emissions from solid fuel combustion.

Emission source	Spatial data	Spatial data source
Exhaust emissions from wood fuel combustion in space heaters	Gridded 1 km x 1 km free standing dwelling estimates	- Forecasts for Free Standing Dwelling from 2006 to 2036 (TDC, 2009)

Table 3-224: Solid fuel combustion spatial data


Emissions from solid fuel combustion have been spatially distributed according to wood consumption, which is proportional to free standing dwellings in each 1 km by 1 km grid cell (TDC, 2009). The proportion of wood consumption by LGA and region is presented in Table 3-225 and shown in Figure 3-96.


Table 3-225: Solid fuel combustion s	patial distribution of wood consum	ption by LGA and region
		prion by Lori una region

LGA	2008 proportion of annual wood consumption (%)				
LON	Newcastle	Non Urban	Sydney	Wollongong	Grand Total
Ashfield	-	-	0.72	-	0.72
Auburn	-	-	0.94	-	0.94
Bankstown	-	-	3.37	-	3.37
Bathurst Regional	-	2.78×10^{-3}	-	-	2.78×10^{-3}
Baulkham Hills	-	2.50×10^{-3}	3.50	-	3.50
Blacktown	-	-	5.92	-	5.92
Blue Mountains	-	0.70	1.28	-	1.97
Botany Bay	-	-	0.53	-	0.53
Burwood	-	-	0.47	-	0.47
Camden	-	-	1.19	-	1.19
Campbelltown	-	-	3.26	-	3.26
Canada Bay	-	-	1.06	-	1.06
Canterbury	-	-	2.08	-	2.08
Cessnock	4.90×10^{-2}	1.11	-	-	1.15
Dungog	-	0.18	-	-	0.18
Fairfield	-	-	3.39	-	3.39
Gosford	-	1.06	2.87	-	3.93
Goulburn Mulwaree	-	5.41×10^{-3}	-	-	5.41×10^{-3}
Great Lakes	-	$8.49\times10^{\text{-}2}$	-	-	$8.49\times10^{\text{-}2}$
Hawkesbury	-	$2.90 imes 10^{-2}$	1.34	-	1.37
Holroyd	-	-	1.77	-	1.77
Hornsby	-	4.26×10^{-3}	3.07	-	3.08
Hunters Hill	-	-	0.15	-	0.15
Hurstville	-	-	1.50	-	1.50
Kiama	-	0.32	-	-	0.32
Kogarah	-	-	0.92	-	0.92
Ku-ring-gai	-	-	2.14	-	2.14
Lake Macquarie	2.46	2.21	-	-	4.66

2008 Calendar Year Domestic-Commercial Emissions: Results 3. Data Sources and Results

LGA	2008 proportion of annual wood consumption (%)					
LOA	Newcastle	Non Urban	Sydney	Wollongong	Grand Total	
Lane Cove	-	-	0.43	-	0.43	
Leichhardt	-	-	0.83	-	0.83	
Lithgow	-	0.45	-	-	0.45	
Liverpool	-	-	3.26	-	3.26	
Maitland	0.12	1.39	-	-	1.51	
Manly	-	-	0.49	-	0.49	
Marrickville	-	-	1.51	-	1.51	
Mid-western Regional	-	6.41 × 10-2	-	-	6.41 × 10 ⁻²	
Mosman	-	-	0.42	-	0.42	
Muswellbrook	-	0.31	-	-	0.31	
N/A	1.46×10^{-2}	$6.58 imes 10^{-2}$	0.27	3.05×10^{-2}	0.38	
Newcastle	3.48	-	-	-	3.48	
North Sydney	-	-	0.55	-	0.55	
Oberon	-	$2.87 imes 10^{-2}$	-	-	$2.87\times10^{\text{-}2}$	
Parramatta	-	-	2.50	-	2.50	
Penrith	-	-	3.81	-	3.81	
Pittwater	-	-	1.16	-	1.16	
Port Stephens	7.89 × 10-2	1.31	-	-	1.39	
Randwick	-	-	1.69	-	1.69	
Rockdale	-	-	1.39	-	1.39	
Ryde	-	-	1.90	-	1.90	
Shellharbour	-	1.10	-	0.34	1.44	
Shoalhaven	-	2.06 × 10-3	-	-	2.06 × 10 ⁻³	
Singleton	-	0.44	-	-	0.44	
Strathfield	-	-	0.50	-	0.50	
Sutherland	-	-	4.15	-	4.15	
Sydney	-	-	1.53	-	1.53	
Unincorporated	-	-	0.54	-	0.54	
Upper Lachlan	-	$8.65 imes 10^{-4}$	-	-	8.65×10^{-4}	
Warringah	-	-	2.39	-	2.39	
Waverley	-	-	0.64	-	0.64	
Willoughby	-	-	0.99	-	0.99	
Wingecarribee	-	1.10	6.02 × 10 ⁻³	1.94×10^{-3}	1.11	
Wollondilly	-	1.49×10^{-2}	0.93	4.83×10^{-4}	0.95	
Wollongong	-	-	0.33	3.72	4.05	
Woollahra	-	_	0.50	-	0.50	
Wyong	-	3.57	-	-	3.57	
Grand Total	6.20	15.55	74.16	4.09	100.00	

Figure 3-96: Solid fuel combustion spatial distribution of wood consumption by LGA and region

The proportion of total dwellings with wood fuel fired residential space heaters by LGA is presented in Table 3-226 and shown in Figure 3-97.

	2008 proportion of total dwellings (%)					
LGA	Slow combustion heater with compliance plate	Slow combustion heater without compliance plate	Open fireplace	Potbelly stove	Grand Total	
Ashfield	3.95	1.73	3.56	0.75	9.98	
Auburn	4.40	1.92	3.97	0.84	11.13	
Bankstown	5.89	2.57	5.31	1.12	14.89	
Bathurst Regional	6.74	2.95	6.08	1.28	17.04	
Baulkham Hills	6.53	2.86	5.89	1.24	16.52	
Blacktown	6.50	2.84	5.86	1.23	16.44	
Blue Mountains	6.66	2.91	6.00	1.26	16.83	
Botany Bay	4.39	1.92	3.96	0.83	11.10	
Burwood	4.59	2.00	4.13	0.87	11.59	
Camden	6.69	2.92	6.03	1.27	16.91	
Campbelltown	6.65	2.91	5.99	1.26	16.81	
Canada Bay	4.81	2.10	4.33	0.91	12.15	
Canterbury	4.39	1.92	3.95	0.83	11.09	
Cessnock	6.58	2.87	5.93	1.25	16.62	
Dungog	6.92	3.02	6.24	1.31	17.50	
Fairfield	5.95	2.60	5.36	1.13	15.05	

Table 3-226: Wood fuel fired residential space heater ownership by LGA

LGASlov combusilor heater with complance platSlov combusilor heater with complance platGrey and ineplacePathelly heaterSlow complance platGesford6.192.705.811.1715.65Geulhurn Mulwaree6.6612.8035.641.7316.30Great Lakes6.6632.8285.841.2316.39Havkesbury6.6482.8235.4481.12316.39Harboyd7.6582.7234.4380.09212.34Hornshy6.6512.2244.4610.09712.94Kiama6.6202.6335.4481.12316.31Kograh7.6612.6435.4481.6431.641Lake Macquarie6.6642.6235.481.12316.34Lake Macquarie6.6642.6245.481.12316.64Lachord7.4132.6241.6431.6411.641Lithgow6.6642.6253.6341.6121.626Marind6.6432.6245.891.12316.62Marker Megioan6.6541.1241.6261.6341.624Lithgow6.6452.6265.691.1216.62Marker Megioan6.6452.6261.231.6211.626Marker Megioan6.6541.231.6261.6341.626Marker Megioan6.6572.6261.231.6261.6341.626Marker Megioan6.6562			2008 proportion of total dv	8 proportion of total dwellings (%)			
Goulburn Mulwaree 6.69 3.02 6.62 1.31 17.46 Great Lakes 6.61 2.89 5.95 1.25 16.70 Hawksbury 6.63 2.83 5.84 1.12 13.99 Horsyd 5.58 2.23 4.45 1.02 13.99 Hornsby 5.68 2.48 5.12 1.08 14.37 Hurtsr Hill 4.487 2.23 4.461 0.09 12.30 Karan 6.02 2.63 5.43 1.14 15.23 Kogarah 4.459 2.001 4.14 0.87 11.61 Ku-ring-gai 6.610 2.82 5.83 1.12 16.34 Lake Macquarie 6.646 2.82 5.83 10.07 14.13 Likehardt 4.91 2.15 4.42 0.03 12.11 Likehardt 6.63 2.92 6.02 1.27 16.90 Likehardt 6.643 2.81 5.80 1.22 16.20 <th>LGA</th> <th>heater with</th> <th>heater without</th> <th></th> <th></th> <th></th>	LGA	heater with	heater without				
Great Lakes6.612.895.951.251.670Havkesbury6.482.835.841.231.639Holroyd5.382.354.851.021.359Hornsby5.682.434.830.9212.30Hurstville5.122.244.610.9712.44Kiama6.022.635.431.141523Kogarah4.6592.0104.140.871.611Ku-ring-gai6.0102.665.491.161.511Lake Macquarie6.642.825.831.2316.34Lane Cove3.981.743.590.0710.07Leichhardt4.912.1554.420.9312.41Lithgow6.682.926.621.1315.02Marinkdt6.432.815.801.2216.50Marinkdt6.432.815.801.2216.50Marinkville4.421.853.820.8010.72Mid-vestern Regional6.572.871.3516.60NyA3.651.603.290.693.23Newsellbrook6.332.795.761.1114.79North Sydney2.160.0433.230.61216.61N/A3.651.603.290.693.23Newsellbrook6.332.795.761.1114.79Paramatia6.442.843.830.691.81							
Hawkesbury6.482.835.841.2316.39Horloyd5.382.354.851.0213.59Hornsby5.662.485.121.0814.37HuntersHill4.872.134.330.9212.94Kiama6.022.244.610.9712.94Kiama6.022.635.431.1415.23Kograh4.592.014.140.8711.61Laringgai6.102.665.491.1615.41Lake Maquarie6.642.825.831.2316.34Lingow6.682.926.021.2716.90Liverpol5.942.014.421.6315.12Likepol5.942.613.3710.7716.90Liverpol5.942.815.801.2216.26Marikand6.632.926.021.2716.90Mid-western Regional6.572.875.751.1216.16N/A3.652.775.761.2116.16N/A3.652.795.761.2116.16N/A3.652.795.761.2216.21Nichwestern Regional6.642.044.210.99Newastle5.882.044.211.99Narth Sydney2.161.642.044.211.63Newastle5.852.521.111.479Porth Sydney2.642.							
Holroyd 5.38 2.35 4.85 1.02 13.39 Hornsby 5.68 2.48 5.12 1.08 14.37 Hunters Hill 4.87 2.13 4.38 0.09 12.30 Hurstville 5.12 2.24 4.61 0.07 12.34 Kaama 6.02 2.63 5.43 1.14 15.23 Kogarah 4.59 2.01 4.14 0.87 11.61 Ku-ring-gai 6.60 2.82 5.83 1.23 16.34 Lane Cove 3.98 1.74 3.59 0.76 10.07 Lickhardt 4.91 2.15 4.42 0.93 12.41 Lithgow 6.68 2.92 6.02 1.27 16.90 Liverpol 5.94 2.60 5.36 1.13 15.02 Maritand 6.63 2.81 5.80 1.22 16.62 Marity 3.74 1.63 3.82 0.80 10.72							
Hornsby 5.68 2.48 5.12 1.08 14.37 Hunters Hill 4.87 2.13 4.88 0.92 12.30 Hurstville 5.12 2.24 4.61 0.97 12.30 Kaana 6.02 2.63 5.43 1.14 1523 Kogarah 4.59 2.01 4.14 0.87 11.61 Ku-ring-gai 6.10 2.66 5.49 1.16 15.41 Lake Macquarie 6.646 2.82 5.83 1.23 16.34 Lake Macquarie 6.68 2.92 6.02 1.27 16.90 Liverpool 5.94 2.60 5.36 1.13 15.02 Maithand 6.63 2.87 6.52 1.25 16.62 Marik Ville 4.24 1.85 3.82 0.80 10.72 Mid-western Regional 6.57 2.87 5.92 1.25 16.62 Muswellbrook 6.39 2.79 6.63 2.27 1							
Hunters Hill 4.87 2.13 4.48 0.02 12.30 Hurstville 5.12 2.24 4.61 0.07 12.94 Kiama 6.02 2.63 5.43 1.14 15.23 Kogarah 4.59 2.01 4.14 0.87 11.61 Ku-ring-gai 6.610 2.66 5.49 1.16 15.41 Lake Macquarie 6.646 2.82 5.83 1.23 16.34 Lane Cove 3.98 1.74 3.59 0.76 10.07 Leichhardt 4.91 2.15 4.42 0.93 12.11 Liverpool 5.54 2.60 5.36 1.13 15.02 Maitland 6.63 2.81 5.80 1.22 16.62 Markokille 4.24 1.85 3.82 0.80 10.22 Markokille 4.23 2.87 5.82 1.22 16.62 Many 3.74 1.63 3.37 0.71 9.45							
Hurstville 5.12 2.24 4.61 0.09 12.94 Kiama 6.02 2.63 5.43 1.14 1523 Kogarah 4.59 2.01 4.14 0.08 11.61 Ku-ring-gai 6.610 2.66 5.43 1.13 16.34 Lake Macquarie 6.646 2.82 5.83 1.23 16.34 Lake Macquarie 6.646 2.82 5.83 1.23 16.34 Lake Macquarie 6.646 2.92 6.02 1.07 16.90 Lichpardt 4.91 2.15 4.42 0.93 12.11 Lithgow 6.643 2.91 6.62 1.33 15.02 Maritand 6.43 2.81 5.80 1.12 16.50 Maritokville 4.24 1.85 3.82 0.80 10.72 Maritokville 4.24 1.85 3.82 0.60 1.72 16.68 Morsonan 3.24 1.42 1.82 1.62 </td <td>•</td> <td></td> <td></td> <td></td> <td></td> <td></td>	•						
Kiama6.022.635.431.1415.23Kogarah4.592.014.140.8711.61Ku-ring-gai6.102.665.4911.6115.41Lake Macquarie6.642.825.831.2316.34Lane Cove3.981.743.590.7610.07Leichhardt4.912.154.420.9912.41Lithgow6.682.926.021.2716.90Liverpool5.942.605.361.1315.02Maitland6.6332.813.370.71945Marrickville4.241.633.370.71945Marrickville4.241.633.370.71945Mosman3.241.422.920.628.20Musellbrook6.6392.795.761.1114.79North Sydney2.160.941.950.4216.82Newcastle5.852.2565.271.1114.79North Sydney2.160.941.951.0216.91Paramatta6.452.803.331.463.031.12Port Stephens6.655.271.1114.79North Sydney2.662.893.231.1216.92Paramatta6.442.895.321.2216.91Partamatta6.452.855.821.1216.92North Sydney6.652.731.1216.							
Kogarah4.192.014.140.08711.61Ku-ring-gai6.102.665.491.1615.41Lake Macquarie6.442.825.831.2316.34Lane Cove3.981.743.590.7610.07Leichhardt4.4912.154.420.9312.41Lithgow6.682.926.021.1315.02Liverpol5.542.605.361.1315.02Maitland6.632.815.801.2216.66Manly3.741.633.370.719.45Marickville4.4241.853.820.6010.72Mid-western Regional6.672.875.921.62Nosman3.241.422.920.628.20Muswellbrook6.6392.795.761.2116.16N/A3.651.603.290.699.23Newcastle5.852.565.271.1114.79North Sydney2.162.946.651.2716.91Parramata4.6452.444.210.8911.82Penrith6.6452.825.821.1214.91Port Stephens6.6452.825.821.1216.91Radwick3.331.463.000.638.43Rockale4.4253.834.400.9312.3Stellharbour6.6572.785.741.2116.92 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							
Kuring-gai 6.10 2.66 5.49 1.16 15.41 Lake Macquarie 6.46 2.82 5.83 1.23 16.34 Lane Cove 3.98 1.74 3.59 0.76 10.07 Leichhardt 4.91 2.15 4.42 0.93 12.41 Lithgow 6.68 2.92 6.02 1.27 16.90 Maitland 6.63 2.81 5.80 1.22 16.26 Manly 3.74 1.63 3.37 0.71 9.45 Marrickville 4.424 1.85 3.82 0.80 10.72 Mid-western Regional 6.57 2.87 5.92 1.62 8.20 Muswellbrook 6.33 2.79 5.76 1.21 16.16 N/A 3.65 1.60 3.29 0.69 9.23 Newcastle 5.85 2.56 5.27 1.11 14.79 North Sydney 2.16 0.61 2.29 16.21							
Lake Macquarie 6.46 2.82 5.83 1.23 16.34 Lane Cove 3.98 1.74 3.59 0.76 10.07 Leichhardt 4.91 2.15 4.42 0.93 12.41 Lithgow 6.68 2.92 6.02 1.27 16.90 Liverpool 5.94 2.60 5.36 1.13 15.02 Maitland 6.43 2.81 5.80 1.22 16.26 Manly 3.74 1.63 3.37 0.71 9.45 Marrickville 4.24 1.85 3.82 0.80 10.72 Mid-western Regional 6.57 2.87 5.92 1.25 16.62 Mosman 3.24 1.42 2.92 0.62 8.20 Muswellbrook 6.39 2.79 5.76 1.21 16.16 N/A 3.65 1.60 3.29 0.69 9.23 Newastle 5.85 2.56 5.27 1.11 14.79	Ŷ						
Lane Cove 3.98 1.74 3.59 0.76 10.07 Leichhardt 4.91 2.15 4.42 0.93 12.41 Lithgow 6.68 2.92 6.02 1.12 16.90 Liverpool 5.94 2.60 5.36 1.13 15.02 Maitland 6.43 2.81 5.30 1.22 16.26 Maniy 3.74 1.63 3.37 0.71 9.45 Marrickville 4.24 1.85 3.82 0.80 10.72 Mid-western Regional 6.57 2.87 5.92 1.62 8.20 Muswellbrook 6.39 2.79 5.76 1.21 16.16 N/A 3.65 1.60 3.29 0.69 9.23 Newcastle 5.85 2.56 5.27 1.11 14.79 North Sydney 2.16 0.94 1.95 0.44 5.46 Oberon 6.72 2.94 6.05 1.22 16.21							
Leichhardt 4.91 2.15 4.42 0.93 12.41 Lithgow 6.68 2.92 6.02 1.12 16.90 Liverpool 5.94 2.60 5.36 1.13 15.02 Maitland 6.63 2.81 5.80 1.22 16.26 Manly 3.74 1.63 3.37 0.71 9.45 Marrickville 4.24 1.85 3.82 0.80 10.72 Mid-western Regional 6.57 2.87 5.92 1.62 820 Muswellbrook 6.39 2.79 5.76 1.21 16.16 N/A 3.65 1.60 3.29 0.69 923 Newcastle 5.85 2.56 5.27 1.11 14.79 North Sydney 2.16 0.94 1.95 0.41 5.46 Oberon 6.72 2.94 6.05 1.27 16.98 Paramatta 4.68 2.04 5.32 1.12 14.91	-						
Lithgow6.682.926.021.2716.90Liverpool5.942.605.361.1315.02Maitland6.6332.815.801.2216.62Manly3.741.633.370.71945Marrickville4.241.853.820.8010.72Mid-western Regional6.572.875.921.5216.62Mosman3.241.422.920.628.20Muswellbrook6.392.795.761.1114.79N/A3.651.603.290.69923Newcastle5.852.565.271.1114.79North Sydney2.160.941.950.415.46Oberon6.722.946.051.2716.98Parramatta4.682.044.210.8911.82Pittwater5.902.585.3211.2114.92Port Stephens6.452.825.821.2216.31Randwick3.331.463.000.638.43Rockale4.251.863.830.8110.75Ryde6.632.733.663.441.2316.92Singleton6.6342.775.761.2116.92Singleton6.6352.825.821.331.82Singleton6.6352.833.611.051.33Singleton6.6342.775.711.20 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td></td<>							
Liverpool 5.94 2.60 5.36 1.13 15.02 Maitland 6.63 2.81 5.80 1.22 16.26 Manly 3.74 1.63 3.37 0.71 945 Marrickville 4.24 1.85 3.82 0.80 10.72 Mid-western Regional 6.57 2.87 5.92 1.25 16.62 Mosman 3.24 1.42 2.92 0.62 8.20 Muswellbrook 6.39 2.79 5.76 1.21 16.16 N/A 3.65 1.60 3.29 0.69 9.23 Newcastle 5.85 2.56 5.27 1.11 14.79 North Sydney 2.16 0.94 1.95 0.41 5.49 Oberon 6.72 2.94 6.05 1.27 16.98 Parramata 4.68 2.04 4.21 0.89 11.82 Port Stephens 6.65 2.82 5.82 1.22 16.21							
Maitland 6.43 2.81 5.80 1.22 16.26 Manly 3.74 1.63 3.37 0.71 9.45 Marrickville 4.24 1.85 3.82 0.80 10.72 Mid-western Regional 6.57 2.87 5.92 1.25 1662 Mosman 3.24 1.42 2.92 0.62 820 Muswellbrook 6.39 2.79 5.76 1.21 1616 N/A 3.65 1.60 3.29 0.69 923 Newcastle 5.85 2.56 5.27 1.11 14.79 North Sydney 2.16 0.94 1.95 0.41 5.46 Oberon 6.72 2.94 6.05 1.27 16.98 Parramatta 4.68 2.04 4.21 0.89 11.82 Perrith 6.61 2.80 5.32 1.12 14.92 Port Stephens 6.63 2.82 5.82 1.22 16.31 <	-						
Manly	-						
Mid-western Regional6.6.572.8.675.9.21.1.281.6.62Mosman3.2441.4222.9.290.6.628.2.0Muswellbrook6.0.392.7.795.7.61.1.2116.1.6N/A6.6.392.7.575.7.621.1.1114.7.9Newcastle6.5.852.5.655.7.271.1.1114.7.9North Sydney0.6.670.9.441.9.550.4.135.4.6Oberon6.6.722.9.446.0.551.2.2716.6.8Parramatta6.6.672.9.446.0.551.2.2716.9.8Parramatta6.6.612.9.444.6.81.2.216.2.1Pittwater6.6.512.5.851.1.2216.2.114.9.9Port Stephens6.6.555.5.251.1.214.9.216.3.1Randwick3.3.331.4.643.0.038.4.310.7.5Ryde6.6.542.8.25.8.21.2.216.3.1Shellharbour6.6.752.7.331.6.81.3.31.6.7Singleton6.6.742.7.75.7.11.2.016.02Shathreid3.8.73.6.63.8.73.6.83.8.7Sutherland6.5.392.3.63.4.61.0.21.6.2Sydney2.0.63.8.73.6.83.8.73.6.8Sutherland3.8.73.6.83.8.61.0.21.6.2Sydney2.0.63.8.73.6.83.8.73.6.8Sydney2.0.63	Manly	3.74		3.37	0.71	9.45	
Mosman 3.24 1.42 2.92 0.62 8.20 Muswellbrook 6.39 2.79 5.76 1.21 16.16 N/A 3.65 1.60 3.29 0.69 9.23 Newcastle 5.85 2.56 5.27 1.11 14.79 North Sydney 0.616 0.94 1.95 0.41 5.46 Oberon 6.72 2.94 6.05 1.27 16.98 Parramatta 4.68 2.04 4.21 0.89 11.82 Penrith 6.41 2.80 5.78 1.22 16.21 Pittwater 5.90 2.58 5.32 1.12 14.92 Port Stephens 6.45 2.82 5.82 1.22 16.31 Randwick 3.33 1.46 3.00 0.63 8.43 Rockdale 4.25 1.86 3.83 0.81 10.75 Ryde 6.637 2.73 3.65 1.23 3.65	Marrickville	4.24	1.85	3.82	0.80	10.72	
Muswellbrook6.392.795.761.2116.16N/A3.651.603.290.699.23Newcastle5.852.565.271.1114.79North Sydney2.160.941.950.415.46Oberon6.722.946.051.2716.98Parramatta4.682.044.210.8911.82Penrith6.412.805.781.1216.91Pittwater5.902.585.321.1214.92Port Stephens6.452.825.821.2216.31Randwick3.331.463.000.638.43Rockdale4.251.863.830.8110.75Ryde6.651.231.621.2216.31Shellharbour6.651.2216.3116.9312.33Shellharbour6.651.3712.0316.93Singleton6.633.630.6318.2818.28Singleton6.542.775.711.0016.02Strathfield3.871.693.490.739.78Sutherland5.392.361.8213.6213.62Sydney0.633.681.621.3713.62Sydney0.633.681.621.3613.62Sydney0.633.651.332.750.587.72Upper Lachlan7.573.316.821.4419.14	Mid-western Regional	6.57	2.87	5.92	1.25	16.62	
N/A3.651.603.290.699.23Newcastle5.852.565.271.1114.79North Sydney2.160.941.950.415.46Oberon6.722.946.051.2716.98Parramatta4.682.044.210.8911.82Penrith6.412.805.781.1216.91Pittwater5.902.585.321.1214.92Port Stephens6.452.825.821.2216.31Randwick3.331.463.000.638.43Rockdale4.251.863.830.8110.75Ryde6.6372.785.741.2116.09Shellharbour6.372.785.741.2116.09Shugeton6.342.775.711.2016.02Strathfield3.872.763.480.739.78Sydney2.020.881.821.3213.62Sydney2.020.881.820.385.11Unincorporated3.051.332.750.587.72Upper Lachlan7.573.316.821.4419.14	Mosman	3.24	1.42	2.92	0.62	8.20	
Newcastle5.852.565.271.1114.79North Sydney2.160.941.950.415.46Oberon6.722.946.051.2716.98Parramatta4.682.044.210.8911.82Penrith6.612.805.781.2216.21Pittwater5.902.585.321.1214.92Port Stephens6.652.825.821.2216.31Randwick3.331.463.000.638.43Rockdale4.251.863.830.8110.75Ryde6.6342.785.741.2116.09Shellharbour6.6372.785.741.2116.09Shellharbour6.333.166.521.3718.28Singleton6.532.775.711.2016.02Strathfield3.871.693.490.739.78Sutherland6.5392.364.861.0213.62Sydney2.020.881.820.385.11Unincorporated3.051.332.750.587.72Upper Lachlan7.573.316.821.4419.14	Muswellbrook	6.39	2.79	5.76	1.21	16.16	
North Sydney 2.16 0.94 1.95 0.41 5.46 Oberon 6.72 2.94 6.05 1.27 16.98 Parramatta 4.68 2.04 4.21 0.89 11.82 Penrith 6.41 2.80 5.78 1.22 16.21 Pittwater 0.95 5.32 1.12 14.92 Port Stephens 6.45 2.82 5.82 1.22 16.31 Randwick 3.33 1.46 3.00 0.63 8.43 Rockdale 4.425 1.86 3.83 0.81 10.75 Ryde 4.88 2.13 4.40 0.93 12.33 Shellharbour 6.37 2.78 5.74 12.1 16.09 Shoalhaven 7.23 3.16 6.52 1.37 18.28 Singleton 6.343 2.77 5.71 1.20 16.02 Strathfield 3.87 1.69 3.48 1.02 1.60 Syd	N/A	3.65	1.60	3.29	0.69	9.23	
Oberon 6.72 2.94 6.05 1.27 16.98 Parramatta 4.68 2.04 4.21 0.89 11.82 Penrith 6.41 2.80 5.78 1.22 16.21 Pittwater 0.05 5.78 1.22 16.21 Pittwater 0.063 5.78 1.22 16.21 Port Stephens 6.45 2.82 5.82 1.22 16.31 Randwick 3.33 1.46 3.00 0.63 8.43 Rockdale 4.25 1.86 3.83 0.81 10.75 Ryde 4.88 2.13 4.40 0.93 12.33 Shellharbour 6.37 2.78 5.74 1.21 16.09 Shoalhaven 7.23 3.16 6.52 1.37 18.28 Singleton 6.34 2.77 5.71 1.20 16.02 Strathfield 3.87 1.69 3.49 0.73 9.78 Sutherland	Newcastle	5.85	2.56	5.27	1.11	14.79	
Parramatta4.682.044.210.8911.82Penrith6.412.805.781.2216.21Pittwater5.902.585.321.1214.92Port Stephens6.452.825.821.2216.31Randwick3.331.463.000.638.43Rockdale4.251.863.830.8110.75Ryde6.652.785.741.2116.09Shellharbour6.372.785.741.2116.09Shoalhaven7.233.166.521.3718.28Singleton6.342.775.711.2016.02Strathfield3.871.693.490.739.78Sutherland5.392.364.861.0213.62Sydney2.020.881.820.385.11Upper Lachlan7.573.316.821.4419.14	North Sydney	2.16	0.94	1.95	0.41	5.46	
Penrith6.412.805.781.2216.21Pittwater5.902.585.321.1214.92Port Stephens6.452.825.821.2216.31Randwick3.331.463.000.638.43Rockdale4.251.863.830.8110.75Ryde6.452.785.741.2116.09Shellharbour6.372.785.741.2116.09Shoalhaven7.233.166.521.3718.28Singleton6.342.775.711.2016.02Strathfield3.871.693.490.739.78Sutherland5.392.364.861.0213.62Sydney2.020.881.820.385.11Unincorporated3.051.332.750.587.72Upper Lachlan7.573.316.821.4419.14		6.72	2.94	6.05	1.27	16.98	
Pittwater5.902.585.321.1214.92Port Stephens6.452.825.821.2216.31Randwick3.331.463.000.638.43Rockdale4.251.863.830.8110.75Ryde4.882.134.400.9312.33Shellharbour6.372.785.741.2116.09Shoalhaven7.233.166.521.3718.28Singleton6.342.775.711.2016.02Strathfield3.871.693.490.739.78Sutherland5.392.364.861.0213.62Sydney2.020.881.820.385.11Unincorporated3.051.332.750.587.72Upper Lachlan7.573.316.821.4419.14		4.68	2.04		0.89	11.82	
Port Stephens6.452.825.821.2216.31Randwick3.331.463.000.638.43Rockdale4.251.863.830.8110.75Ryde4.882.134.400.9312.33Shellharbour6.372.785.741.2116.09Shoalhaven7.233.166.521.3718.28Singleton6.342.775.711.2016.02Strathfield3.871.693.490.739.78Sutherland5.392.364.861.0213.62Sydney2.020.881.820.385.11Unincorporated3.051.332.750.587.72Upper Lachlan7.573.316.821.4419.14							
Randwick3.331.463.000.638.43Rockdale4.251.863.830.8110.75Ryde4.882.134.400.9312.33Shellharbour6.372.785.741.2116.09Shoalhaven7.233.166.521.3718.28Singleton6.342.775.711.2016.02Strathfield3.871.693.490.739.78Sutherland5.392.364.861.0213.62Sydney2.020.881.820.385.11Unincorporated3.051.332.750.587.72Upper Lachlan7.573.316.821.4419.14							
Rockdale4.251.863.830.8110.75Ryde4.882.134.400.9312.33Shellharbour6.372.785.741.2116.09Shoalhaven7.233.166.521.3718.28Singleton6.342.775.711.2016.02Strathfield3.871.693.490.739.78Sutherland5.392.364.861.0213.62Sydney2.020.881.820.385.11Unincorporated3.051.332.750.587.72Upper Lachlan7.573.316.821.4419.14	-						
Ryde4.882.134.400.9312.33Shellharbour6.372.785.741.2116.09Shoalhaven7.233.166.521.3718.28Singleton6.342.775.711.2016.02Strathfield3.871.693.490.739.78Sutherland5.392.364.861.0213.62Sydney2.020.881.820.385.11Unincorporated3.051.332.750.587.72Upper Lachlan7.573.316.821.4419.14							
Shellharbour6.372.785.741.2116.09Shoalhaven7.233.166.521.3718.28Singleton6.342.775.711.2016.02Strathfield3.871.693.490.739.78Sutherland5.392.364.861.0213.62Sydney2.020.881.820.385.11Unincorporated3.051.332.750.587.72Upper Lachlan7.573.316.821.4419.14							
Shoalhaven7.233.166.521.3718.28Singleton6.342.775.711.2016.02Strathfield3.871.693.490.739.78Sutherland5.392.364.861.0213.62Sydney2.020.881.820.385.11Unincorporated3.051.332.750.587.72Upper Lachlan7.573.316.821.4419.14	•						
Singleton 6.34 2.77 5.71 1.20 16.02 Strathfield 3.87 1.69 3.49 0.73 9.78 Sutherland 5.39 2.36 4.86 1.02 13.62 Sydney 2.02 0.88 1.82 0.38 5.11 Unincorporated 3.05 1.33 2.75 0.58 7.72 Upper Lachlan 7.57 3.31 6.82 1.44 19.14							
Strathfield3.871.693.490.739.78Sutherland5.392.364.861.0213.62Sydney2.020.881.820.385.11Unincorporated3.051.332.750.587.72Upper Lachlan7.573.316.821.4419.14							
Sutherland5.392.364.861.0213.62Sydney2.020.881.820.385.11Unincorporated3.051.332.750.587.72Upper Lachlan7.573.316.821.4419.14	-						
Sydney2.020.881.820.385.11Unincorporated3.051.332.750.587.72Upper Lachlan7.573.316.821.4419.14							
Unincorporated 3.05 1.33 2.75 0.58 7.72 Upper Lachlan 7.57 3.31 6.82 1.44 19.14							
Upper Lachlan 7.57 3.31 6.82 1.44 19.14							
	-						
vyarringan 1 4.63 2.02 4.17 0.88 1.11 70	Warringah	4.63	2.02	4.17	0.88	11.70	

Air Emissions Inventory for the Greater Metropolitan Region of New South Wales 3. *Data Sources and Results*

	2008 proportion of total dwellings (%)							
LGA	Slow combustion heater with compliance plate	Slow combustion heater without compliance plate	Open fireplace	Potbelly stove	Grand Total			
Waverley	2.65	1.16	2.39	0.50	6.70			
Willoughby	3.77	1.65	3.40	0.72	9.54			
Wingecarribee	6.58	2.87	5.93	1.25	16.62			
Wollondilly	6.71	2.93	6.05	1.27	16.96			
Wollongong	5.68	2.48	5.12	1.08	14.37			
Woollahra	2.58	1.13	2.32	0.49	6.51			
Wyong	6.39	2.79	5.75	1.21	16.14			
Grand Total	5.29	2.31	4.77	1.00	13.38			

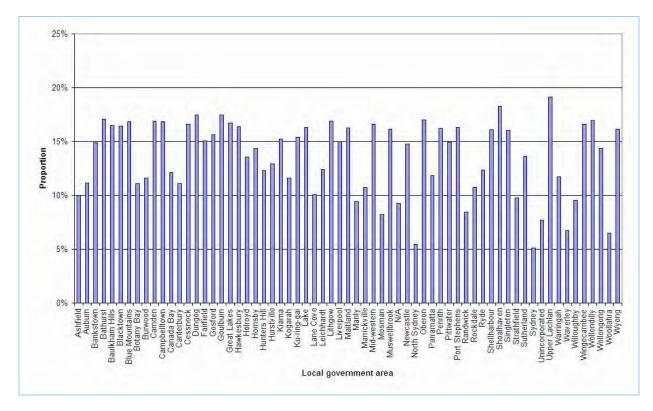


Figure 3-97: Wood fuel fired residential space heater ownership by LGA

The proportion of total dwellings with wood fuel fired residential space heaters by region is presented in Table 3-227 and shown in Figure 3-98.

	2008 proportion of total dwellings (%)						
Region	Slow combustion heater with compliance plate	Slow combustion heater without compliance plate	Open fireplace	Potbelly stove	Grand Total		
Newcastle	6.10	2.66	5.50	1.16	15.42		
Non Urban	6.44	2.81	5.80	1.22	16.28		
Sydney	5.04	2.20	4.54	0.96	12.73		
Wollongong	5.57	2.44	5.02	1.06	14.09		
Grand Total	5.29	2.31	4.77	1.00	13.38		

Table 3-227: Wood fuel fired residential space heater ownership by region

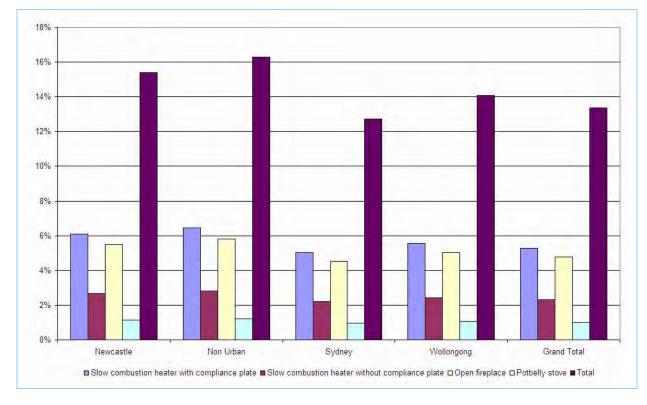


Figure 3-99 shows the spatial distribution of solid fuel combustion emissions.

Air Emissions Inventory for the Greater Metropolitan Region of New South Wales 3. Data Sources and Results

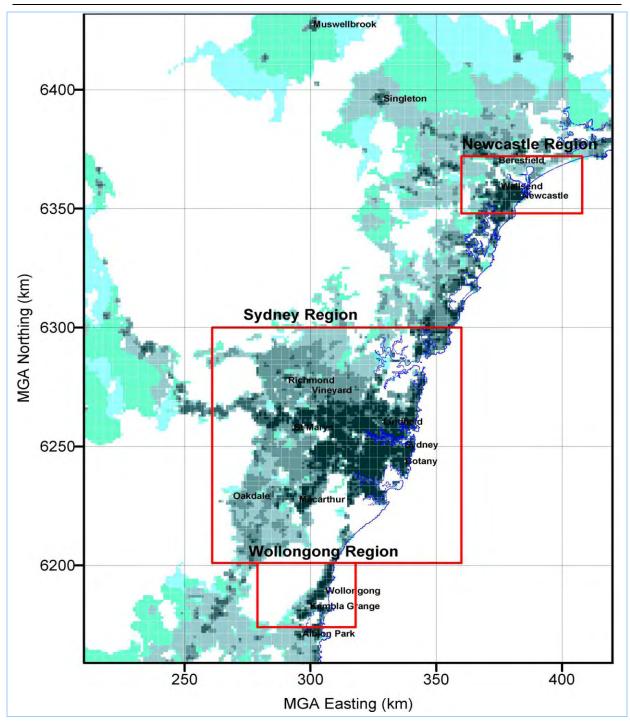
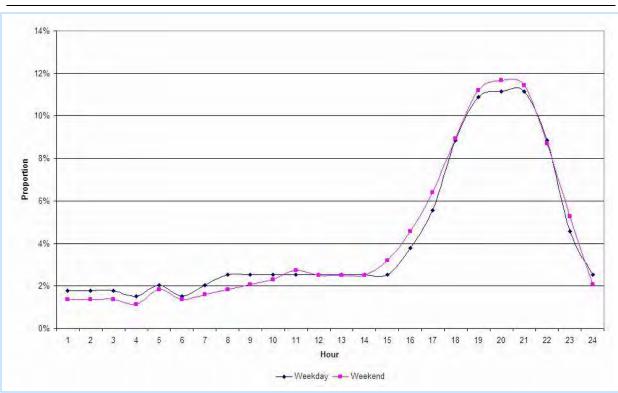


Figure 3-99: Solid fuel combustion spatial distribution of emissions

3.12.6 Temporal Variation of Emissions

Table 3-228 summarises the data used to estimate the temporal variation in emissions from solid fuel combustion.

Emission source	Temporal data	Temporal data source
Exhaust emissions from wood fuel combustion in space heaters	Monthly, daily and hourly: Derived from domestic survey	- Domestic Barbecue Pollution Survey (TR, 2009)


Table 3-228: Solid fuel combustion temporal data

The temporal variation in emissions from solid fuel combustion have been estimated from heater type, number and age; amount, type and source of wood used; and frequency and duration of heater use by hour, day and month data (TR, 2009).

Hourly temporal variation profiles are presented in Table 3-229 and shown in Figure 3-100.

Hour	Week day proportion (%)	Weekend proportion (%)	Hour	Week day proportion (%)	Weekend proportion (%)
1	1.77	1.37	13	2.53	2.52
2	1.77	1.37	14	2.53	2.52
3	1.77	1.37	15	2.53	3.20
4	1.52	1.14	16	3.80	4.58
5	2.03	1.83	17	5.57	6.41
6	1.52	1.37	18	8.86	8.92
7	2.03	1.60	19	10.89	11.21
8	2.53	1.83	20	11.14	11.67
9	2.53	2.06	21	11.14	11.44
10	2.53	2.29	22	8.86	8.70
11	2.53	2.75	23	4.56	5.26
12	2.53	2.52	24	2.53	2.06

Table 3-229: Solid fuel combustion hourly temporal profile

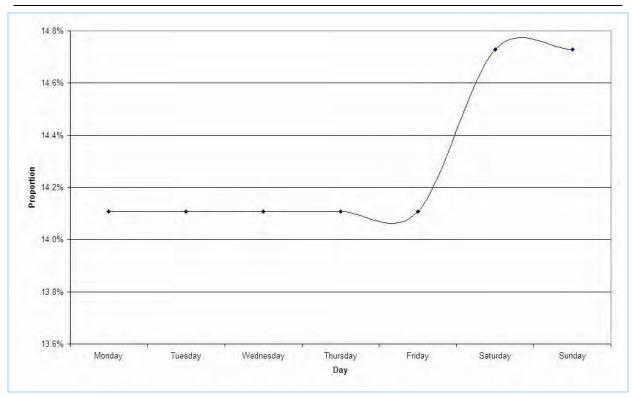
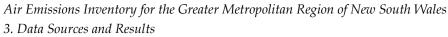

Air Emissions Inventory for the Greater Metropolitan Region of New South Wales 3. Data Sources and Results

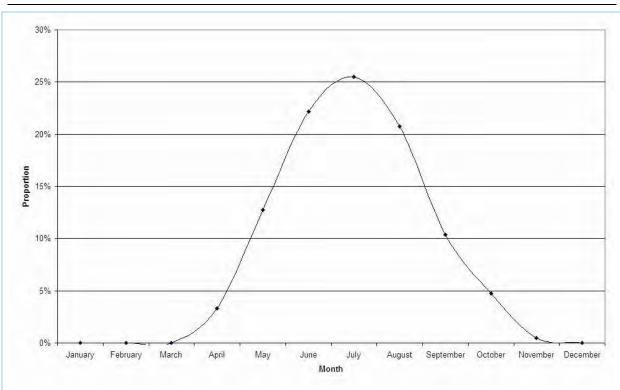
Figure 3-100: Solid fuel combustion hourly temporal profile

Daily temporal variation profiles are presented in Table 3-230 and shown in Figure 3-101.

Day	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday	Sunday
Proportion (%)	14.11	14.11	14.11	14.11	14.11	14.73	14.73

Table 3-230: Solid fuel combustion daily temporal profile




Figure 3-101: Solid fuel combustion daily temporal profile

Monthly temporal variation profiles are presented in Table 3-231 and shown in Figure 3-102.

Month	Proportion (%)	Month	Proportion (%)
January	-	July	25.47
February	-	August	20.75
March	-	September	10.38
April	3.30	October	4.72
May	12.74	November	0.47
June	22.17	December	-

Table 3-231: Solid fuel combustion monthly temporal profile

Figure 3-102: Solid fuel combustion monthly temporal profile

3.12.7 Emission Estimates

Table 3-232 presents annual emissions of selected substances from solid fuel combustion by activity.

Activity	Substance	Emissions (kg/year)					
Auvity	Substance	Newcastle	Non Urban	Sydney	Wollongong	GMR	
	1,3-BUTADIENE	4,547	11,412	54,414	3,003	73,376	
	ACETALDEHYDE	15,051	37,777	180,119	9,940	242,887	
	BENZENE	22,873	57,407	273,716	15,105	369,101	
	CARBON MONOXIDE	3,345,408	8,396,465	40,034,232	2,209,253	53,985,358	
	FORMALDEHYDE	37,945	95,237	454,091	25,059	612,332	
	ISOMERS OF XYLENE	3,529	8,856	42,227	2,330	56,942	
	LEAD & COMPOUNDS	48	120	573	32	773	
Solid Fuel	OXIDES OF NITROGEN	50,247	126,112	601,301	33,182	810,843	
Combustion	PARTICULATE MATTER ≤10 μm	473,730	1,188,991	5,669,095	312,844	7,644,661	
	PARTICULATE MATTER ≤ 2.5 μm	456,048	1,144,611	5,457,489	301,167	7,359,314	
	POLYCYCLIC AROMATIC HYDROCARBONS	8,378	21,028	100,261	5,533	135,200	
	SULFUR DIOXIDE	8,013	20,111	95,888	5,292	129,303	
	TOLUENE	6,359	15,961	76,100	4,199	102,619	

Activity	Substance	Emissions (kg/year)					
receivity	Substance	Newcastle	Non Urban	Sydney	Wollongong	GMR	
	TOTAL SUSPENDED PARTICULATE	506,714	1,271,776	6,063,809	334,626	8,176,925	
	TOTAL VOLATILE ORGANIC COMPOUNDS	497,401	1,248,401	5,952,358	328,476	8,026,635	

Table 3-233 presents annual emissions of selected substances from solid fuel combustion by source type.

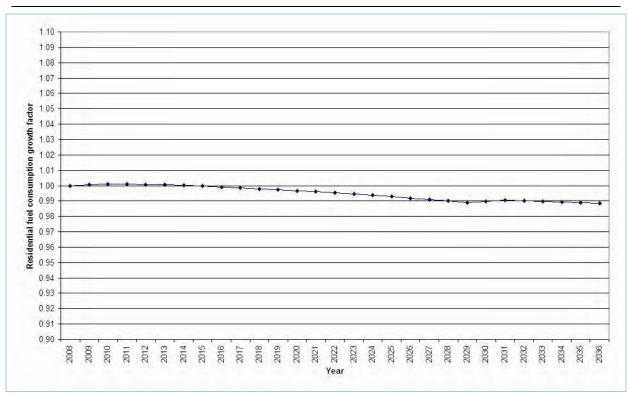
Source type	Substance	Emissions (kg/year)					
Source type	Substance	Newcastle	Non Urban	Sydney	Wollongong	GMR	
	1,3-BUTADIENE	1,586	3,980	18,976	1,047	25,588	
	ACETALDEHYDE	5,727	14,373	68,529	3,782	92,410	
	BENZENE	8,689	21,809	103,986	5,738	140,223	
	CARBON MONOXIDE	1,275,779	3,202,012	15,267,149	842,504	20,587,444	
	FORMALDEHYDE	20,115	50,486	240,718	13,284	324,603	
	ISOMERS OF XYLENE	618	1,550	7,392	408	9,967	
	LEAD & COMPOUNDS	18	45	215	12	290	
	OXIDES OF NITROGEN	20,659	51,851	247,224	13,643	333,376	
Slow	PARTICULATE MATTER ≤ 10 µm	177,594	445,735	2,125,257	117,280	2,865,866	
Combustion Heater with AS ⁷⁰	PARTICULATE MATTER ≤ 2.5 μm	170,965	429,097	2,045,929	112,903	2,758,894	
	POLYCYCLIC AROMATIC HYDROCARBONS	1,838	4,614	21,999	1,214	29,666	
	SULFUR DIOXIDE	3,624	9,097	43,373	2,393	58,487	
	TOLUENE	1,250	3,136	14,953	825	20,164	
	TOTAL SUSPENDED PARTICULATE	189,959	476,769	2,273,229	125,446	3,065,404	
	TOTAL VOLATILE ORGANIC COMPOUNDS	108,731	272,899	1,301,177	71,804	1,754,612	
	1,3-BUTADIENE	1,538	3,861	18,411	1,016	24,826	
Slow Combustion	ACETALDEHYDE	2,430	6,099	29,079	1,605	39,213	
Heater without	BENZENE	7,645	19,188	91,486	5,049	123,367	
AS	CARBON MONOXIDE	910,447	2,285,083	10,895,243	601,244	14,692,017	
	FORMALDEHYDE	5,720	14,356	68,449	3,777	92,303	

Table 3-233: Solid fuel combustion emissions by source type

⁷⁰ Appliances certified in accordance with Standards Australia, 1992a and Standards Australia, 1992b or Standards Australia, 1999a and Standards Australia 1999b).

Air Emissions Inventory for the Greater Metropolitan Region of New South Wales 3. *Data Sources and Results*

Source turne	type Substance		Emissions (kg/year)					
Source type	Substance	Newcastle	Non Urban	Sydney	Wollongong	GMR		
	ISOMERS OF XYLENE	1,709	4,290	20,455	1,129	27,583		
	LEAD & COMPOUNDS	12	31	146	8.06	197		
	OXIDES OF NITROGEN	11,045	27,722	132,178	7,294	178,239		
	PARTICULATE	120,709	302,962	1,444,517	79,714	1,947,902		
	MATTER $\leq 10 \ \mu m$	120,709	302,902	1,444,017	/9,/14	1,947,902		
	PARTICULATE	116,204	291,653	1,390,598	76,739	1,875,194		
	MATTER ≤ 2.5 µm	110,201	_,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	1,000,000	,	1,0,0,1,1		
	POLYCYCLIC							
	AROMATIC	1,790	4,492	21,419	1,182	28,883		
	HYDROCARBONS	1 550	2.0(0	10.000	1.042	25.460		
	SULFUR DIOXIDE	1,578	3,960	18,883	1,042	25,463		
	TOLUENE	2,880	7,228	34,461	1,902	46,470		
	TOTAL SUSPENDED PARTICULATE	129,114	324,055	1,545,092	85,265	2,083,526		
	TOTAL VOLATILE							
	ORGANIC	209,071	524,737	2,501,941	138,067	3,373,817		
	COMPOUNDS	2007071	021,707	2,001,911	100,007	0,0,0,0,01		
	1,3-BUTADIENE	888	2,228	10,622	586	14,324		
	ACETALDEHYDE	6,050	15,183	72,394	3,995	97,622		
	BENZENE	3,878	9,734	46,413	2,561	62,588		
	CARBON MONOXIDE	842,409	2,114,319	10,081,045	556,313	13,594,087		
	FORMALDEHYDE	10,120	25,400	121,108	6,683	163,312		
	ISOMERS OF XYLENE	607	1,524	7,264	401	9,795		
	LEAD & COMPOUNDS	13	34	161	8.91	218		
	OXIDES OF NITROGEN	14,700	36,894	175,911	9,707	237,212		
	PARTICULATE	100.400	004.005		00.111			
	MATTER ≤ 10 µm	133,429	334,885	1,596,729	88,114	2,153,157		
Open Fire Place	PARTICULATE	128,448	322,385	1,537,130	84,825	2,072,788		
1	MATTER ≤ 2.5 μm	120,440	322,383	1,557,150	84,823	2,072,788		
	POLYCYCLIC							
	AROMATIC	4,127	10,359	49,390	2,726	66,602		
	HYDROCARBONS	2.2.(2)			1.102	26.404		
	SULFUR DIOXIDE	2,262	5,676	27,063	1,493	36,494		
	TOLUENE	1,228	3,082	14,696	811	19,817		
	TOTAL SUSPENDED PARTICULATE	142,719	358,202	1,707,903	94,249	2,303,072		
	TAKICOLATE TOTAL VOLATILE							
	ORGANIC	106,856	268,192	1,278,737	70,566	1,724,351		
	COMPOUNDS		,	_, =,_ = = =	,	_,:,: = _,: = _		
	1,3-BUTADIENE	535	1,343	6,406	353	8,638		
	ACETALDEHYDE	845	2,122	10,118	558	13,643		
	BENZENE	2,660	6,676	31,831	1,757	42,923		
Pot Belly Stove	CARBON MONOXIDE	316,773	795,051	3,790,794	209,192	5,111,810		
-	FORMALDEHYDE	1,990	4,995	23,816	1,314	32,115		
	ISOMERS OF XYLENE	595	1,493	7,117	393	9,597		
	LEAD & COMPOUNDS	4.25	11	51	2.80	69		


Source type	Substance	Emissions (kg/year)					
Source type	Substance	Newcastle	Non Urban	Sydney	Wollongong	GMR	
	OXIDES OF NITROGEN	3,843	9,645	45,989	2,538	62,015	
	PARTICULATE MATTER ≤ 10 μm	41,998	105,410	502,592	27,735	677,736	
	PARTICULATE MATTER ≤ 2.5 μm	40,431	101,475	483,832	26,700	652,438	
	POLYCYCLIC AROMATIC HYDROCARBONS	623	1,563	7,452	411	10,049	
	SULFUR DIOXIDE	549	1,378	6,570	363	8,859	
	TOLUENE	1,002	2,515	11,990	662	16,168	
	TOTAL SUSPENDED PARTICULATE	44,923	112,749	537,586	29,666	724,923	
	TOTAL VOLATILE ORGANIC COMPOUNDS	72,742	182,572	870,503	48,038	1,173,856	

3.12.8 Emission Projection Methodology

Table 3-234 summarises the data used to estimate the emission projection factors for solid fuel combustion, while Figure 3-103 shows the emission projection factors for calendar years 2009 to 2036.

Emission source	Projection factor surrogate	Projection factor source					
Exhaust emissions from wood	Final analysis consumption	- Australian Energy, National and State					
fuel combustion in space	Final energy consumption	Projections to 2029-30, ABARE Research					
heaters	for residential using biomass	Report 06.26 (ABARE, 2006)					

Table 3-234: Solid fuel combustion emission projection factors

Air Emissions Inventory for the Greater Metropolitan Region of New South Wales 3. Data Sources and Results

Figure 3-103: Solid fuel combustion emission projection factors

3.13 Surface Coatings

3.13.1 Emission Source Description

The domestic-commercial air emissions inventory includes emissions of evaporative VOC from the application of architectural and decorative (i.e. paints, enamels, clears and woodcare products) and industrial (i.e. protective, marine, road and runway, can and coil, flatboard and woodcare products) surface coatings and thinners.

To estimate emissions from these sources, the following have been considered:

> Informark Architectural & Decorative Paints & Enamels Industry Aggregate Sales Quantity

The consumption of water and solvent based architectural and decorative paints, enamels and clears in retail and trade applications in NSW and ACT during 2008 (Informark, 2009a to Informark, 2009d) have been used in combination with NSW, ACT and GMR demographic statistics (ABS, 2009; and TDC, 2009) to estimate total surface coating consumption in the GMR.

The proportion of water and solvent based surface coatings have been derived from an *Assessment of the Categorisation, VOC Content and Sales Volumes of Coating Products Sold in Australia* (Environ, 2009).

Since the consumption of architectural and decorative thinners is not readily available, the techniques presented in the *Study on the Potential for Reducing Emissions of Volatile Organic Compounds (VOC) Due To The Use Of Decorative Paints and Varnishes for Professional and Non-professional Use* (EC, 2000) have been used to estimate total thinner consumption in the GMR.

> Informark Architectural & Decorative Woodcare Product Industry Aggregate Sales Quantity

The consumption of water and solvent based architectural and decorative woodcare products in retail and trade applications in NSW and ACT during 2008 (Informark, 2009e to Informark, 2009h) have been used in combination with NSW, ACT and GMR demographic statistics (ABS, 2009; and TDC, 2009) to estimate total surface coating consumption in the GMR.

The proportion of water and solvent based surface coatings have been derived from an *Assessment of the Categorisation, VOC Content and Sales Volumes of Coating Products Sold in Australia* (Environ, 2009).

Since the consumption of architectural and decorative thinners is not readily available, the techniques presented in the *Study on the Potential for Reducing Emissions of Volatile Organic Compounds (VOC) Due To The Use Of Decorative Paints and Varnishes for Professional and Non-professional Use* (EC, 2000) have been used to estimate total thinner consumption in the GMR.

> APMF Quarterly Industrial Sales Statistics Survey and Automotive Refinish Statistics

The consumption of solvent based industrial paints, enamels, clears, woodcare products and thinners in NSW and ACT during 2008 (APMF, 2009a to APMF, 2009d) have been used to estimate total surface coating and thinner consumption in the GMR.

The consumption of automotive surface coatings and thinners in NSW and ACT during 2008 (APMF, 2009a to APMF, 2009d; and APMF, 2009e to 2009h) have been used in combination with NSW, ACT and GMR demographic statistics (ABS, 2009; and TDC, 2009) to estimate total surface coating and thinner consumption in the GMR.

Automotive surface coating and thinner consumption in the GMR have been subtracted from the total industrial surface coating and thinner consumption.

Emissions of evaporative VOC from commercial businesses within the Smash repairing Australian and New Zealand Standard Industrial Classification (ANZSIC) class (ABS, 1993) are included in the commercial air emissions inventory.

Environ VOCs from Surface Coatings – Assessment of the Categorisation, VOC Content and Sales Volumes of Coating Products Sold in Australia Report

The VOCs from Surface Coatings – Assessment of the Categorisation, VOC Content and Sales Volumes of Coating Products Sold in Australia Report (Environ, 2009) presents surface coating consumption based emission factors by surface coating type (i.e. architectural and decorative (i.e. paints, enamels, clears and woodcare products) and industrial (i.e. protective, marine, road and runway, can and coil, flatboard and woodcare products)) which have been adopted for the GMR.

Surface coating type

The inventory includes emissions of evaporative VOC from the application of architectural and decorative and industrial surface coatings and thinners as follows:

Architectural & decorative – water based

- Paving paint;
- *Roof paint;*
- *Fence paint;*
- Specialty finishes;
- Texture coatings;
- *Prepcoats;*
- *Ceiling paint / Flat topcoats ;*
- Door, window, trim topcoats;
- Waterbased interior topcoat;
- Waterbased exterior topcoat; and
- Other.

Architectural & decorative – solvent based

- *Paving paint;*
- *Roof paint;*
- *Metal finishes;*

- Prepcoats;
- o Door, Window and Trim topcoats; and
- \circ Other.

Architectural & decorative - water and solvent based timber finishes

- o Decking;
- o Flooring;
- Interior stains;
- Exterior stains;
- *Prepcoats;*
- o Interior clears; and
- Exterior clears.

Architectural & decorative thinners

Industrial surface coatings

- Protective coatings;
- *Marine coatings;*
- Road and runway marking paint;
- *Can and coil;*
- Flat board coatings; and
- Other.

Industrial timber finishes

- Stains;
- *Clears; and*
- Solid colours.

Industrial thinners

3.13.2 Emission Estimation Methodology

Table 3-235 summarises the emission estimation methodologies used for surface coatings.

Emission source	Emission estimation methodology source
Evaporative VOC from the application of surface coatings and thinners	 Area-Wide Source Methodologies, Section 3.5, Coatings and Related Process Solvents Industrial Coatings (CARB, 1997a) Area-Wide Source Methodologies, Section 3.6, Coatings and Related Process Solvents Thinning and Cleaning Solvents (CARB, 1997b) Area-Wide Source Methodologies, Section 6.3, Architectural Coatings (CARB, 2003) Study on the Potential for Reducing Emissions of Volatile Organic Compounds (VOC) Due To The Use Of Decorative Paints and Varnishes for Professional and Non-professional Use (EC, 2000)

Table 3-235: Surface coatings emission estimation methodologies

Evaporative VOC emissions from surface coatings and thinners have been estimated using consumption based emission factors combined with activity rates. Activity rates include surface coating and thinner consumption in NSW and ACT (Informark, 2009a to Informark, 2009h; and APMF, 2009a to APMF, 2009h). Architectural and decorative surface coating and thinner consumption in the GMR has been estimated by assuming consumption is proportional to population using NSW, ACT and GMR demographic statistics (ABS, 2009; and TDC, 2009). Industrial surface coating and thinner consumption in NSW and ACT has been used to estimate consumption in the GMR. Automotive surface coating and thinner consumption in the GMR has been subtracted from the total industrial surface coating and thinner consumption. Emissions have been determined using Equation 34 (CARB, 1997a; CARB, 1997b; CARB, 2003; and EC, 2000):

$E_{VOC,i} = SC_i \times EF_{VOC,i} / 1000$

where:			
E _{VOC,i}	=	Emissions of VOC from surface coating and thinner type i	(kg/year)
SC	=	Consumption of surface coating and thinner type i	(L/year)
EF _{VOC,i}	=	Emission factor for VOC from surface coating and thinner type i	(g/L)
i	=	Surface coating and thinner type (either "architectural and decorative (i.e.	
		paints, enamels, clears, woodcare products and thinners)" or "industrial	
		(i.e. protective, marine, road and runway, can and coil, flatboard, woodcare	
		products and thinners)"	
1000	=	Conversion factor	(g/kg)

3.13.3 Activity Data

Table 3-236 summarises the activity data used for surface coatings.

	0 5
Activity data	Activity data source
	- Quarterly Industrial Sales Statistics Survey 2008 (APMF, 2009a to 2009d)
Surface coating consumption	- Quarterly Automotive Refinish Statistics 2008 (APMF, 2009e to 2009h)
	- Quarterly Architectural & Decorative Paints &

Table 3-236: Surface coatings activity data

Equation 34

Activity data	Activity data source
	Enamels Sales Quantity 2008 (Informark, 2009a
	to 2009d)
	- Quarterly Woodcare Products Sales Quantity 2008
	(Informark, 2009e to 2009h)
	NSW:
NSW total and gridded 1 km x 1 km population estimates	- 83101.0 - Australian Demographic Statistics, Dec
required to scale surface coating consumption from NSW to GMR	2008 (ABS, 2009)
	GMR:
	- Forecasts for Population from 2006 to 2036 (TDC,
	2009)

Table 3-237 presents the consumption of architectural and decorative (i.e. paints, enamels, clears and woodcare products) and industrial (i.e. protective, marine, road and runway, can and coil, flatboard and woodcare products) surface coatings and thinners in the GMR by surface coating category and surface coating type (Informark, 2009a to Informark, 2009h; and APMF, 2009a to APMF, 2009h). Architectural and decorative surface coating and thinner consumption in the GMR has been estimated by assuming consumption is proportional to population using NSW, ACT and GMR demographic statistics (ABS, 2009; and TDC, 2009). Industrial surface coating and thinner consumption in NSW and ACT has been used to estimate consumption in the GMR. Automotive surface coating and thinner consumption in the GMR has been subtracted from the total industrial surface coating and thinner consumption.

Surface		20	2008 surface coating consumption (L/year)						
	Surface coating type	January to March	April to June	July to September	October to December	Grand Total			
	Paving Paint	47,545	38,238	40,932	53,166	179,881			
	Roof Paint	11,753	13,277	11,876	14,790	51,695			
	Fence Paint	35,196	25,577	33,692	40,838	135,304			
	Specialty Finishes	126,444	117,048	121,846	132,776	498,114			
Architectural	Texture Coatings	1,004,026	1,058,222	1,120,413	1,005,252	4,187,912			
& decorative -	Prepcoats	629,895	665,415	704,948	685,130	2,685,388			
water based	Ceiling Paint / Flat Topcoats	954,468	1,023,074	1,035,389	967,369	3,980,301			
	Door, Window, Trim Topcoats	86,516	82,095	77,884	93,745	340,240			
	Waterbased - Interior Topcoat	2,012,976	1,988,455	2,060,687	2,150,559	8,212,678			
	Waterbased - Exterior Topcoat	1,162,008	964,096	1,145,318	1,295,073	4,566,495			
	Other	9,747	7,043	5,095	7,171	29,056			
Architectural & decorative - water based Grand Total		6,080,574	5,982,540	6,358,080	6,445,868	24,867,062			
A sub-traction 1	Paving Paint	54,274	43,650	46,725	60,691	205,340			
Architectural & decorative -	Roof Paint	3,623	4,093	3,661	4,560	15,938			
solvent based	Metal Finishes	84,695	81,502	91,131	91,265	348,593			
solven based	Prepcoats	134,968	142,579	151,049	146,803	575,398			

Table 3-237: Surface coatings and thinner consumption in the GMR by surface coating category and surface coating type

Air Emissions Inventory for the Greater Metropolitan Region of New South Wales 3. *Data Sources and Results*

Surface		2(008 surface c	oating consun	nption (L/yea	r)
coating category	Surface coating type	January to March	April to June	July to September	October to December	Grand Total
	Door, Window, Trim Topcoats	268,911	255,170	242,081	291,379	1,057,542
	Other	877	634	458	645	2,614
Architectural & Grand Total	decorative – solvent based	547,348	527,628	535,106	595,343	2,205,425
	Decking	15,359	10,359	19,126	23,700	68,544
A	Flooring	5,239	5,898	4,739	5,398	21,274
Architectural&	Interior Stains	3,882	3,648	3,956	3,694	15,180
decorative -	Exterior Stains	17,702	12,341	15,693	21,678	67,415
water based timber finishes	Prepcoats	17,335	11,749	18,673	23,949	71,706
timber misnes	Interior Clears	9,138	8,384	9,303	8,497	35,321
	Exterior Clears	10,990	8,620	11,894	18,804	50,309
Architectural & finishes Grand T	decorative – water based timber 'otal	79,645	61,001	83,384	105,720	329,750
	Decking	145,539	98,163	181,230	224,570	649,502
	Flooring	31,513	35,482	28,507	32,472	127,973
Architectural	Interior Stains	18,960	17,820	19,322	18,044	74,146
& decorative -	Exterior Stains	17,900	12,479	15,868	21,920	68,166
solvent based	Prepcoats	4,403	2,984	4,743	6,083	18,213
timber finishes	Interior Clears	32,289	29,623	32,871	30,022	124,804
	Exterior Clears	1,181	926	1,278	2,021	5,406
Architectural & timber finishes C	decorative – solvent based	251,785	197,477	283,818	335,131	1,068,211
Architectural & decorative - thinners	Thinners	186,518	155,517	199,556	225,896	767,487
Architectural & Total	decorative – thinners Grand	186,518	155,517	199,556	225,896	767,487
	Protective Coatings	536,222	554,738	607,111	554,352	2,252,423
	Marine Coatings	154,942	72,988	83,223	103,593	414,746
Industrial	Road & Runway Marking Paint	534,932	631,572	645,304	621,614	2,433,422
surface	Can and Coil	2,231,552	2,347,138	2,403,355	1,920,270	8,902,315
coatings	Flat Board Coatings	242,377	281,897	235,344	245,684	1,005,302
	Other	913,353	1,046,693	1,025,076	896,520	3,881,642
Industrial surfac	e coatings Grand Total	4,613,378	4,935,026	4,999,413	4,342,033	18,889,850
	Stains	18,148	19,292	13,503	19,523	70,466
Industrial	Clears	88,853	98,491	99,228	98,843	385,415
timber finishes	Solid Colours	39,517	44,413	41,332	42,283	167,545
Industrial timber finishes Grand Total		146,518	162,196	154,063	160,649	623,426
Industrial thinners	Thinners	426,702	468,419	474,507	431,179	1,800,807
	ers Grand Total	426,702	468,419	474,507	431,179	1,800,807
Industrial thinners Grand Total Grand Total		12,332,468	12,489,803	13,087,927	12,641,820	50,552,018

Table 3-238 presents the consumption of architectural and decorative (i.e. paints, enamels, clears and woodcare products) and industrial (i.e. protective, marine, road and runway, can and coil, flatboard and woodcare products) surface coatings and thinners in the GMR by surface coating category (Informark, 2009a to Informark, 2009h; and APMF, 2009a to APMF, 2009h).

	2008 surface coating consumption (L/year)						
Surface coating category	January to March	April to June	July to September	October to December	Grand Total		
Architectural & decorative - water based	6,080,574	5,982,540	6,358,080	6,445,868	24,867,062		
Architectural & decorative - solvent based	547,348	527,628	535,106	595,343	2,205,425		
Architectural & decorative – water and solvent based timber finishes	331,430	258,477	367,202	440,852	1,397,961		
Architectural & decorative - thinners	186,518	155,517	199,556	225,896	767,487		
Industrial surface coatings	4,613,378	4,935,026	4,999,413	4,342,033	18,889,850		
Industrial timber finishes	146,518	162,196	154,063	160,649	623,426		
Industrial thinners	426,702	468,419	474,507	431,179	1,800,807		
Grand Total	12,332,468	12,489,803	13,087,927	12,641,820	50,552,018		

Table 3-238: Surface coatings and thinner consumption in the GMR by surface coating category

Figure 3-104 shows surface coating and thinner consumption and VOC content by surface coating category.

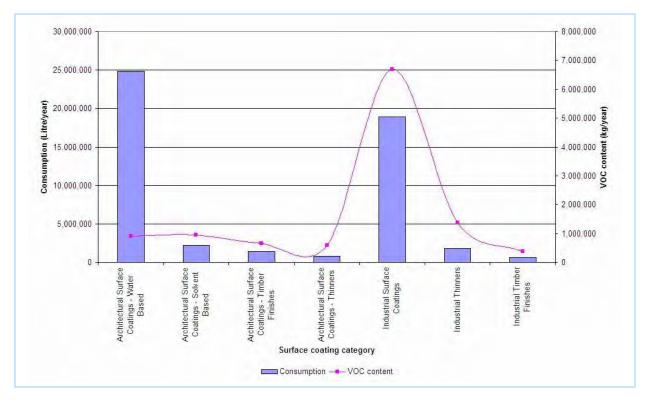


Table 3-239 presents the proportion of architectural and decorative surface coatings (i.e. paints, enamels, clears and woodcare products) consumed in retail applications by surface coating category and surface coating type (Informark, 2009a to Informark, 2009h).

		2008 surface coating proportion retail (%)					
Surface coating category	Surface coating type	January to March	April to June	July to September	October to December	Grand Total	
	Paving Paint	68.66	69.04	70.92	73.94	70.81	
	Roof Paint	47.97	48.82	58.53	56.79	53.14	
	Fence Paint	98.51	97.90	98.33	98.73	98.42	
	Specialty Finishes	79.10	81.17	80.83	80.44	80.37	
Architectural&	Texture Coatings	3.41	1.68	4.53	4.86	3.62	
decorative -	Metal Finishes	82.94	82.52	84.96	84.65	83.82	
water and	Prepcoats	37.32	31.09	36.77	35.85	35.26	
solvent based	Ceiling Paint / Flat Topcoats	36.19	30.79	36.29	33.24	34.11	
	Door, Window, Trim Topcoats	53.00	47.15	56.55	46.66	50.66	
	Waterbased - Interior Topcoat	50.77	42.63	49.06	47.55	47.53	
	Waterbased - Exterior Topcoat	50.98	39.93	46.87	49.93	47.32	
	Other	4.73	3.88	4.30	3.47	4.13	
Architectural & d based Grand Tota	ecorative - water and solvent al	41.50	34.23	39.90	40.30	39.03	
	Decking	90.71	88.71	92.31	92.67	91.53	
Architectural &	Flooring	84.66	84.73	81.15	84.00	83.73	
decorative -	Interior Stains	93.30	92.66	92.41	92.45	92.71	
water and solvent based timber finishes	Exterior Stains	89.48	86.43	85.19	91.33	88.52	
	Prepcoats	89.27	86.95	89.42	92.18	89.90	
	Interior Clears	79.12	76.84	79.61	79.91	78.90	
	Exterior Clears	77.58	75.89	81.12	84.95	80.88	
Architectural & d based timber finis	88.06	85.86	88.65	90.27	88.51		
Grand Total		43.72	36.20	42.37	43.24	41.46	

Table 3-239: Architectural and decorative surface coatings retail proportion

Table 3-240 presents the proportion of architectural and decorative surface coatings (i.e. paints, enamels, clears and woodcare products) consumed in trade applications by surface coating category and surface coating type (Informark, 2009a to Informark, 2009h).

		2	008 surface	coating propo	ortion trade (%	/0)
Surface coating category	Surface coating type	January to March	April to June	July to September	October to December	Grand Total
	Paving Paint	31.34	30.96	29.08	26.06	29.19
	Roof Paint	52.03	51.18	41.47	43.21	46.86
	Fence Paint	1.49	2.10	1.67	1.27	1.58
	Specialty Finishes	20.90	18.83	19.17	19.56	19.63
Architectural&	Texture Coatings	96.59	98.32	95.47	95.14	96.38
decorative -	Metal Finishes	17.06	17.48	15.04	15.35	16.18
water and	Prepcoats	62.68	68.91	63.23	64.15	64.74
solvent based	Ceiling Paint / Flat Topcoats	63.81	69.21	63.71	66.76	65.89
	Door, Window, Trim Topcoats	47.00	52.85	43.45	53.34	49.34
	Waterbased - Interior Topcoat	49.23	57.37	50.94	52.45	52.47
	Waterbased - Exterior Topcoat	49.02	60.07	53.13	50.07	52.68
	Other	95.27	96.12	95.70	96.53	95.87
Architectural & d based Grand Tota	lecorative - water and solvent al	58.50	65.77	60.10	59.70	60.97
	Decking	9.29	11.29	7.69	7.33	8.47
Architectural &	Flooring	15.34	15.27	18.85	16.00	16.27
decorative -	Interior Stains	6.70	7.34	7.59	7.55	7.29
water and	Exterior Stains	10.52	13.57	14.81	8.67	11.48
solvent based timber finishes	Prepcoats	10.73	13.05	10.58	7.82	10.10
	Interior Clears	20.88	23.16	20.39	20.09	21.10
	Exterior Clears	22.42	24.11	18.88	15.05	19.12
Architectural & d based timber finit	11.94	14.14	11.35	9.73	11.49	
Grand Total		56.28	63.80	57.63	56.76	58.54

Table 3-240: Architectural and decorative surface coatings trade proportion

Since the consumption of architectural and decorative thinners is not readily available, the techniques presented in the *Study on the Potential for Reducing Emissions of Volatile Organic Compounds (VOC) Due To The Use Of Decorative Paints and Varnishes for Professional and Non-professional Use* (EC, 2000) have been used to estimate total thinner consumption in the GMR. Table 3-241 presents the thinner consumption factors by surface coating category (CARB, 2003; EC, 2000; and Environ, 2009).

Surface coating category	VO	C thinner k coating	g/VOC surface g kg ⁷¹	thinner L/surface coating L ⁷²		
	Retail	Trade	Grand Total	Retail	Trade	Grand Total
Architectural & decorative – solvent based thinners	0.50	0.10	0.32	0.28	0.06	0.18
Architectural & decorative – solvent based timber finishes thinners	0.50	0.10	0.46	0.39	0.07	0.35
Grand Total	0.50	0.10	0.37	0.33	0.06	0.23

Table 3-241: Architectural and decorative thinner consumption factors

3.13.4 Emission and Speciation Factors

Table 3-242 summarises the emission and speciation factors used for surface coatings.

Substance	Emission source	Emission and speciation factor source
	Architectural & decorative - water based	 VOCs from Surface Coatings – Assessment of the Categorisation, VOC Content and Sales Volumes of Coating Products Sold in Australia (Environ, 2009)
	Architectural & decorative - solvent based	 VOCs from Surface Coatings – Assessment of the Categorisation, VOC Content and Sales Volumes of Coating Products Sold in Australia (Environ, 2009)
	Architectural & decorative –	- VOCs from Surface Coatings – Assessment of the Categorisation,
	water and solvent based	VOC Content and Sales Volumes of Coating Products Sold in
	timber finishes	Australia (Environ, 2009)
Criteria pollutants: VOC	Architectural & decorative - thinners	 Study on the Potential for Reducing Emissions of Volatile Organic Compounds (VOC) Due To The Use Of Decorative Paints and Varnishes for Professional and Non-professional Use (EC, 2000) Area-Wide Source Methodologies, Section 6.3, Architectural Coatings (CARB, 2003)
	Industrial surface coatings	 VOCs from Surface Coatings – Assessment of the Categorisation, VOC Content and Sales Volumes of Coating Products Sold in Australia (Environ, 2009) Area-Wide Source Methodologies, Section 3.5, Coatings and Related Process Solvents Industrial Coatings (CARB, 1997a)
	Industrial timber finishes	 VOCs from Surface Coatings – Assessment of the Categorisation, VOC Content and Sales Volumes of Coating Products Sold in Australia (Environ, 2009) Area-Wide Source Methodologies, Section 3.5, Coatings and

Table 3-242: Surface coatings emission and speciation factors

⁷² Derived thinners and cleaning agents consumption factors expressed as thinner L/surface coating L (CARB, 2003; and Environ, 2009). The Grand Total is the surface coating type consumption weighted average.

⁷¹ Additional VOC from thinners and cleaning agents expressed as VOC thinner kg/VOC surface coating kg (EC, 2000). The Grand Total is the surface coating type consumption weighted average.

2008 Calendar Year Domestic-Commercial Emissions: Results 3. Data Sources and Results

Substance	Emission source	Emission and speciation factor source
		Related Process Solvents Industrial Coatings (CARB, 1997a)
	Industrial thinners	 Area-Wide Source Methodologies, Section 3.6, Coatings and Related Process Solvents Thinning and Cleaning Solvents (CARB, 1997b)
	Architectural & decorative - water based	 Profile number 3140 Architectural Coatings: Water Borne - Speciate 4.2 Database Development Documentation (Pechan, 2009a)
	Architectural & decorative - solvent based	 Profile number 3139 Architectural Coatings: Solvent Borne - Speciate 4.2 Database Development Documentation (Pechan, 2009a)
	Architectural & decorative – water and solvent based timber finishes	- Profile number 2405 Wood Furniture Coating - Speciate 4.2 Database Development Documentation (Pechan, 2009a)
	Architectural & decorative - thinners	- Profile number 3141 Thinning Solvent/Mineral Spirits - Speciate 4.2 Database Development Documentation (Pechan, 2009a)
Speciated VOC	Industrial surface coatings Industrial timber finishes Industrial thinners	 Profile number 2403 Traffic Markings - Speciate 4.2 Database Development Documentation (Pechan, 2009a) Profile number 2404 Flat Wood Coating - Speciate 4.2 Database Development Documentation (Pechan, 2009a) Profile number 2408 Can Coating - Speciate 4.2 Database Development Documentation (Pechan, 2009a) Profile number 2409 Coil Coating - Speciate 4.2 Database Development Documentation (Pechan, 2009a) Profile number 2409 Coil Coating - Speciate 4.2 Database Development Documentation (Pechan, 2009a) Profile number 2415 Marine Paints - Speciate 4.2 Database Development Documentation (Pechan, 2009a) Profile number 2418 Industrial Maintenance Coatings - Speciate 4.2 Database Development Documentation (Pechan, 2009a) Profile number 2405 Wood Furniture Coating - Speciate 4.2 Database Development Documentation (Pechan, 2009a) Profile number 3141 Thinning Solvent/Mineral Spirits - Speciate 4.2 Database Development Documentation (Pechan, 2009a)
	Architectural & decorative - water based	 Profile number 3140 Architectural Coatings: Water Borne - Speciate 4.2 Database Development Documentation (Pechan, 2009a)
	Architectural & decorative - solvent based	 Profile number 3139 Architectural Coatings: Solvent Borne - Speciate 4.2 Database Development Documentation (Pechan, 2009a)
Organic air	Architectural & decorative – water and solvent based timber finishes	- Profile number 2405 Wood Furniture Coating - Speciate 4.2 Database Development Documentation (Pechan, 2009a)
toxics	Architectural & decorative - thinners	 Profile number 3141 Thinning Solvent/Mineral Spirits - Speciate 4.2 Database Development Documentation (Pechan, 2009a)
	Industrial surface coatings	 Profile number 2403 Traffic Markings - Speciate 4.2 Database Development Documentation (Pechan, 2009a) Profile number 2404 Flat Wood Coating - Speciate 4.2 Database Development Documentation (Pechan, 2009a) Profile number 2408 Can Coating - Speciate 4.2 Database Development Documentation (Pechan, 2009a) Profile number 2409 Coil Coating - Speciate 4.2 Database Development Documentation (Pechan, 2009a) Profile number 2409 Coil Coating - Speciate 4.2 Database Development Documentation (Pechan, 2009a)

Air Emissions Inventory for the Greater Metropolitan Region of New South Wales 3. Data Sources and Results

Substance	Emission source	Emission and speciation factor source
		 Profile number 2415 Marine Paints - Speciate 4.2 Database Development Documentation (Pechan, 2009a) Profile number 2418 Industrial Maintenance Coatings - Speciate 4.2 Database Development Documentation (Pechan, 2009a)
	Industrial timber finishes	 Profile number 2405 Wood Furniture Coating - Speciate 4.2 Database Development Documentation (Pechan, 2009a)
	Industrial thinners	 Profile number 3141 Thinning Solvent/Mineral Spirits - Speciate 4.2 Database Development Documentation (Pechan, 2009a)

Table 3-243 presents VOC emission factors for architectural and decorative (i.e. paints, enamels, clears and woodcare products) and industrial (i.e. protective, marine, road and runway, can and coil, flatboard and woodcare products) surface coatings (CARB, 1997a; and Environ, 2009) and thinners (CARB, 1997b; and CARB, 2003).

Surface coating category	Surface coating type	Emission factor (g/L) VOC
	Dessin a Deint	69.78
	Paving Paint Roof Paint	
		84.16
	Fence Paint	5.33
	Specialty Finishes	91.38
	Texture Coatings	34.48
Architectural & decorative - water based	Prepcoats	43.84
	Ceiling Paint / Flat Topcoats	24.28
	Door, Window, Trim Topcoats	70.99
	Waterbased - Interior Topcoat	30.60
	Waterbased - Exterior Topcoat	45.70
	Other	36.48
Architectural & decorative - water based Grand Total		36.48
	Paving Paint	498.28
	Roof Paint	406.77
Architectural & decorative - solvent based	Metal Finishes	462.77
Architectural & decorative – solvent based	Prepcoats	461.79
	Door, Window, Trim Topcoats	392.85
	Other	431.85
Architectural & decorative - solvent based Grand Total	1	431.85
	Decking	42.99
	Flooring	116.19
	Interior Stains	135.57
Architectural& decorative – water based timber finishes	Exterior Stains	96.75
	Prepcoats	50.00
	Interior Clears	135.57
	Exterior Clears	85.16

Table 3-243: Surface coatings emission factors

Surface coating category	Surface coating type	Emission factor (g/L) VOC
Architectural & decorative - water based timber finish	es Grand Total	80.84
	Decking	634.55
	Flooring	561.79
	Interior Stains	447.51
Architectural & decorative – solvent based timber finishes	Exterior Stains	643.45
misnes	Prepcoats	485.18
	Interior Clears	450.00
	Exterior Clears	424.50
Architectural & decorative - solvent based timber finis	hes Grand Total	588.25
Architectural & decorative - thinners	Thinners	766.99
Architectural & decorative - thinners Grand Total		766.99
	Protective Coatings	298.69
	Marine Coatings	376.02
In dustrial conference times	Road & Runway Marking Paint	83.12
Industrial surface coatings	Can and Coil	452.40
	Flat Board Coatings	384.69
	Other	323.39
Industrial surface coatings Grand Total	I	354.71
	Stains	771.94
Industrial timber finishes	Clears	611.37
	Solid Colours	516.31
Industrial timber finishes Grand Total		603.97
Industrial thinners	Thinners	766.99
Industrial thinners Grand Total	,	766.99
Grand Total		228.70

3.13.5 Spatial Distribution of Emissions

Table 3-244 summarises the data used for spatially allocating emissions from surface coatings.

Emission source	Spatial data	Spatial data source
Evaporative VOC from the application of	Gridded 1 km x 1 km total	- Forecasts for Total Dwelling from
surface coatings and thinners	dwelling estimates	2006 to 2036 (TDC, 2009)

Emissions from surface coatings have been spatially distributed according to the proportion of total dwellings in each 1 km by 1 km grid cell (TDC, 2009). The proportion of total dwellings by LGA and region are presented in Table 3-245 and shown in Figure 3-105.

Table 3-245: Surface co	oatings spatial distribution of to	otal dwellings by LGA and region

NewcastleNewcastleNon UrbanSydneyWollongonyGrand TotalAshfield<		2008 proportion of total dwellings (%)					
Auburn $()$ <t< th=""><th>LGA</th><th>Newcastle</th><th>Non Urban</th><th>Sydney</th><th>Wollongong</th><th>Grand Total</th></t<>	LGA	Newcastle	Non Urban	Sydney	Wollongong	Grand Total	
Bankstown Image: start sta	Ashfield	-	-	0.97	-	0.97	
Bathurst Regional $(-)$ (2.18×10^3) $(-)$ (2.18×10^3) Baulkham Hills $(-)$ <td< td=""><td>Auburn</td><td>-</td><td>-</td><td>1.13</td><td>-</td><td>1.13</td></td<>	Auburn	-	-	1.13	-	1.13	
Baukham Hills $(- 2.39 \times 10^3)$ (2.84) $(- 2.84)$ Blacklown (0.56) $(- 1.00)$ $(- 4.82)$ Blue Mountains (0.56) $(- 0.06)$ $(- 1.57)$ Botany Bay (0.54) $(- 0.54)$ $(- 0.54)$ Burwood (0.54) $(- 0.54)$ $(- 0.54)$ Camden (0.54) $(- 0.54)$ $(- 0.54)$ Camda Bay (0.51) $(- 1.16)$ $(- 1.16)$ Cantarbury (0.114) (0.03) $(- 0.03)$ Desnock $3.84 \times 10^2 $ $0.89)$ (0.03) Dungog (0.114) (0.03) (0.03) Dungog (0.014) (0.014) (0.014) Fairfield (0.014) (0.014) (0.014) Goulurn Mulwaree (0.014) (0.02) (0.02) Great Lakes (0.014) (0.02) (0.02) Hawkesbury (3.01) (1.12) $(- 1.12)$ Holroyd (0.22) (0.22) $(- 0.124)$ Hunters Hill (0.22) (0.22) Kagarah (0.22) (0.22) (0.22) Kagarah (0.22) (0.23) Kaima (0.02) (0.02) (0.02) Kagarah (0.02) (0.02) $(- 0.02)$ Kaima (0.02) (0.02) $(- 0.02)$ <td< td=""><td>Bankstown</td><td>-</td><td>-</td><td>3.03</td><td>-</td><td>3.03</td></td<>	Bankstown	-	-	3.03	-	3.03	
BlacktownImage: state of the sta	Bathurst Regional	-	2.18 × 10 ⁻³	-	-	2.18×10^{-3}	
Blue MountainsImageImageImageImageImageBotany BayImageImageImageImageImageImageBurwoodImageImageImageImageImageImageBurwoodImageImageImageImageImageImageCanndenImageImageImageImageImageImageCanada BayImageImageImageImageImageImageCanada BayImageImageImageImageImageImageCanada BayImageImageImageImageImageImageCanada BayImageImageImageImageImageImageCanada BayImageImageImageImageImageImageCanada BayImageImageImageImageImageImageImageCanada BayImage	Baulkham Hills	-	2.39 × 10-3	2.84	-	2.84	
Botany Bay Image: mode in the symbol in the sy	Blacktown	-	-	4.82	-	4.82	
Burwood $(-)$ $(-)$ $(0.54$ $(-)$ $(0.54$ Camden $(-)$ $(-)$ 0.94 $(-)$ 0.94 Campbelltown $(-)$ $(-)$ $(-)$ $(-)$ $(-)$ Canada Bay $(-)$ $(-)$ $(-)$ $(-)$ $(-)$ Canterbury $(-)$ $(-)$ $(-)$ $(-)$ $(-)$ Dungog $(-)$ $(-)$ $(-)$ $(-)$ $(-)$ Purgog $(-)$ $(-)$ $(-)$ $(-)$ $(-)$ Fairfield $(-)$ $(-)$ $(-)$ $(-)$ $(-)$ Gosford $(-)$ $(-)$ $(-)$ $(-)$ $(-)$ Hawkesbury $(-)$ $(-)$ $(-)$ $(-)$ $(-)$ Horkyd $(-)$ $(-)$ $(-)$ $(-)$ $(-)$ Hunters Hill $(-)$ $(-)$ $(-)$ $(-)$ $(-)$ Hunters Hill $(-)$ $(-)$ $(-)$ $(-)$ $(-)$ Kiama $(-)$ $(-)$ $(-)$ $(-)$ $(-)$ Kiama $(-)$ $(-)$ $(-)$ $(-)$ $(-)$ Law Core $(-)$ $(-)$ $(-)$ $(-)$ $(-)$ Law Core $(-)$ $(-)$ $(-)$ $(-)$ $(-)$ Law Core $(-)$ $(-)$ $(-)$ $(-)$ Law Core $(-)$	Blue Mountains	-	0.56	1.00	-	1.57	
Camden $(-)$ <t< td=""><td>Botany Bay</td><td>-</td><td>-</td><td>0.64</td><td>-</td><td>0.64</td></t<>	Botany Bay	-	-	0.64	-	0.64	
Campbelltown2.602.60Canada Bay1.161.16Canterbury2.512.51Cesnock 3.84×10^2 0.090.03Dungog0.140.014Fairfield0.010.014Gosford0.012.45Goulburn Mulwaree4.14 $\times 10^3$ 4.14 $\times 10^3$ Grat Lakes6.80 $\times 10^2$ 4.14 $\times 10^3$ Hawkesbury2.30 $\times 10^2$ 1.01.12Horoyd1.741.14Hornsby3.62 $\times 10^3$ 2.862.87Hunters Hill1.151.55Kiama1.551.55Kama1.551.66Kuring-gai1.851.85Lake Macquarie0.573.82Lake Macquarie3.82Lake Cove3.82Lake MacquarieLithgowMaritAnd9.39 $\times 10^2$ 1.85Lak	Burwood	-	-	0.54	-	0.54	
Canada BayImage for the symbol s		-	-	0.94	-	0.94	
Canterbury <td>-</td> <td>-</td> <td>-</td> <td>2.60</td> <td>-</td> <td>2.60</td>	-	-	-	2.60	-	2.60	
Cessnock 3.84×10^2 0.89 0.93 Dungog 0.14 0.14 Fairfield 3.01 3.01 Gosford 0.91 2.45 3.33 Goulburn Mulwaree 4.14×10^3 4.14×10^3 Great Lakes 6.80×10^2 6.80×10^2 Hawkesbury 2.30×10^2 1.10 1.12 Holroyd 3.62×10^3 2.86 2.87 Hunters Hill 0.16 0.16 Hurstville 0.16 0.16 Hurstville 0.29 0.29 Kogarah 0.16 0.29 Kogarah 0.57 0.57 Lake Macquarie2.001.82 0.36 Line Cove 0.36 0.36 Line Mark 0.36 0.36 Line Mark 0.69 Mark 0.57 0.36 Line Mark 0.69 0.57 Mark 0.69 0.69 Mark <td>-</td> <td>-</td> <td>-</td> <td>1.16</td> <td>-</td> <td>1.16</td>	-	-	-	1.16	-	1.16	
Dungog 0.14 0.14 0.14 0.14 Fairfield $(-)$ 3.01 3.01 3.01 Gosford $(-)$ 0.91 2.45 3.36 Goulburn Mulwaree $(-)$ 4.14×10^3 $(-)$ 4.14×10^3 Great Lakes $(-)$ 6.80×10^2 $(-)$ $(-)$ 4.14×10^3 Hawkesbury $(-)$ 2.30×10^2 $(-)$ $(-)$ 6.80×10^2 Hawkesbury $(-)$ 2.30×10^2 $(-)$ $(-)$ $(-)$ Holroyd $(-)$ $(-)$ $(-)$ $(-)$ $(-)$ Horsby $(-)$ 3.62×10^3 2.86 $(-)$ 2.87 Hunters Hill $(-)$ $(-)$ $(-)$ $(-)$ $(-)$ Hurstville $(-)$ $(-)$ $(-)$ $(-)$ $(-)$ Kogarah $(-)$ $(-)$ $(-)$ $(-)$ $(-)$ Ku-ring-gai $(-)$ $(-)$ $(-)$ $(-)$ $(-)$ Lake Macquarie 2.00 1.82 $(-)$ $(-)$ $(-)$ Lake Macquarie $(-)$ $(-)$ $(-)$ $(-)$ $(-)$ Lithgow $(-)$ $(-)$ $(-)$ $(-)$ $(-)$ Maitland 9.39×10^2 $(-)$ $(-)$ $(-)$ $(-)$ Marickville $(-)$ $(-)$ $(-)$ $(-)$ $(-)$ Mortm Sequent $(-)$ $(-)$ $(-)$ $(-)$ $(-)$ Mortm Sequent $(-)$ $(-)$ $(-)$ $(-)$ $(-)$ Maridy $(-)$ $(-)$ </td <td>~</td> <td>-</td> <td>-</td> <td>2.51</td> <td>-</td> <td>2.51</td>	~	-	-	2.51	-	2.51	
Fairfield3.013.01Gosford0.912.453.36Goulburn Mulwaree 4.14×10^3 4.14×10^3 Great Lakes 6.80×10^2 6.80×10^2 Hawkesbury 2.30×10^2 1.10 1.12 Holroyd 1.74 0.80×10^2 Hawkesbury 3.62×10^3 2.86 2.87 Hornsby 3.62×10^3 2.86 0.287 Hunters Hill0.160.16Hurstville1.551.55Kiama0.290.29Kogarah1.851.85Lake Macquarie2.001.823.82Lake Cove0.890.37Lithgow0.360.30Lithgow0.660.36Maitland9.39 \times 10^21.151.88Mid-western Regional1.881.88Mid-western Regional0.360.36N/A3.05 \times 10^20.397.60 \times 10^20.55Nerk-Sydney1.351.35Nerk-Sydney1.35 <td>Cessnock</td> <td>3.84 × 10⁻²</td> <td>0.89</td> <td>-</td> <td>-</td> <td>0.93</td>	Cessnock	3.84 × 10 ⁻²	0.89	-	-	0.93	
Cosford 0.91 0.45 0.4 3.36 Goulburn Mulwaree $$ 4.14×10^3 $$ 4.14×10^3 Great Lakes $$ 6.80×10^2 $$ 6.80×10^2 Hawkesbury $$ 2.30×10^2 1.10 $$ 1.12 Holroyd $$ 2.30×10^2 1.10 $$ 1.12 Holroyd $$ 2.30×10^2 1.10 $$ 1.12 Hornsby $$ 0.16 $$ 0.16 $$ Hurters Hill $$ $$ 0.16 $$ 0.29 Kogarah $$ 0.29 $$ 0.29 $$ Kogarah $$ $$ 1.85 $$ 0.29 Kogarah $$ $$ 0.57 $$ 0.57 Lake Macquarie 2.00 1.82 $$ $$ 3.82 Lare Cove $$ $$ 0.57 $$ 0.57 Leichhardt $$ 0.36 $$ 0.36 $$ Liverpool $$ 0.57 $$ 0.57 Maitland 9.39×10^2 1.15 $$ $$ Marickville $$ $$ 0.69 $$ Marickville $$ $$ 0.68 $$ Muswellbrook $$ 0.26 $$ 0.26 N/A 3.05×10^2 5.58×10^2 0.39 7.60×10^2 N/A 3.05×10^2 5.58×10^2 0.39 7.60×10^2 North Sydney $-$ <		-	0.14	-	-	0.14	
Goulburn Mulwaree 4.14×10^3 $$ 4.14×10^3 Great Lakes $$ 6.80×10^2 $$ 6.80×10^2 Hawkesbury $$ 2.30×10^2 1.10 $$ 1.12 Holroyd $$ 3.62×10^3 2.86 $$ 2.87 Hunters Hill $$ $$ 0.16 $$ 0.16 Hurstville $$ $$ 0.15 $$ 0.16 Hurstville $$ $$ 1.55 $$ 0.29 Kogarah $$ 0.29 $$ $$ 0.29 Kogarah $$ $$ 1.06 $$ 0.29 Kogarah $$ $$ 1.06 $$ -0.29 Kogarah $$ $$ 1.05 $$ -0.29 Kogarah $$ $$ 0.57 $$ -0.57 Lake Macquarie 2.00 1.82 $$ $$ Lare Cove $$ $$ 0.89 $$ Lithgow $$ $$ 0.89 $$ Lithgow $$ $$ 2.90 $$ Maitland 9.39×10^2 $$ $$ $$ Manly $$ $$ $$ $$ Mosman $$ $$ $$ $$ Mosman $$ $$ $$ $$ Muswellbrook $$ $$ $$ $$ N/A 3.05×10^2 $$ $$ $$ North Sydney $$ $$ $$ <t< td=""><td>Fairfield</td><td>-</td><td>-</td><td>3.01</td><td>-</td><td>3.01</td></t<>	Fairfield	-	-	3.01	-	3.01	
Great Lakes $()^{-2}$ $()^{-2}$ $()^{-2}$ $()^{-2}$ $()^{-2}$ Hawkesbury $()^{-2}$ $()^{-2}$ $()^{-2}$ $($	Gosford	-	0.91	2.45	-	3.36	
Hawkesbury (2.30×10^2) (1.10) (-1.12) Holroyd $()$ (74) (74) (74) Hornsby $()$ (3.62×10^3) (2.86) (74) Hunters Hill $()$ $()$ $()$ $()$ Hurters Hill $()$ $()$ $()$ $()$ Hurters Hill $()$ $()$ $()$ $()$ Kiama $()$ $()$ $()$ $()$ Kogarah $()$ $()$ $()$ $()$ Ku-ring-gai $()$ $()$ $()$ $()$ Lake Macquarie $()$ <	Goulburn Mulwaree	-	4.14×10^{-3}	-	-	4.14×10^{-3}	
Holroyd $((($	Great Lakes	-	6.80 × 10 ⁻²	-	-	6.80 × 10 ⁻²	
Hornsby 3.62×10^3 2.86 $ 2.87$ Hunters Hill $ 0.16$ $ 0.16$ Hurstville $ 1.55$ $ 1.55$ Kiama $ 0.29$ $ 0.29$ Kogarah $ 1.06$ $ 0.29$ Kogarah $ 1.06$ $ 0.29$ Kogarah $ 1.85$ $ 1.85$ Lake Macquarie 2.00 1.82 $ 3.82$ Lane Cove $ 0.57$ $ 0.57$ Leichhardt $ 0.36$ $ 0.89$ Lithgow $ 0.36$ $ 0.36$ Liverpool $ 0.36$ $ 0.36$ Maitland 9.39×10^2 1.15 $ 0.69$ Marickville $ 0.69$ $ 0.69$ Marickville $ 0.68$ $ 0.69$ Mid-western Regional $ 5.16 \times 10^2$ $ 0.68$ Muswellbrook $ 0.26$ $ 0.68$ Muswellbrook $ 0.26$ $ 0.55$ Newcastle 3.15 $ 3.15$ $-$ North Sydney $ 1.35$ $ -$ Oberon $ 2.26 \times 10^2$ $ 2.26 \times 10^2$ Paramatta $-$	Hawkesbury	-	2.30 × 10-2	1.10	-	1.12	
Hunters Hill $ 0.16$ $ 0.16$ Hurstville $ 1.55$ $ 1.55$ Kiama $ 0.29$ $ 0.29$ Kogarah $ 1.06$ $ 0.29$ Kogarah $ 1.06$ $ 0.29$ Kogarah $ 1.05$ $ 1.06$ Ku-ring-gai $ 1.85$ $ 1.85$ Lake Macquarie 2.00 1.82 $ 3.82$ Lane Cove $ 0.57$ $ 0.57$ Leichhardt $ 0.89$ $ 0.57$ Leichhardt $ 0.89$ $ 0.69$ Lithgow $ 0.36$ $ 0.36$ Liverpool $ 2.90$ $ 0.36$ Maitland 9.39×10^2 1.15 $ 0.29$ Marickville $ 1.88$ $ 1.88$ Mid-western Regional $ 0.68$ $ 0.68$ Muswellbrook $ 0.26$ $ 0.26$ $ 0.26$ N/A 3.05×10^2 5.58×10^2 0.39 7.60×10^2 0.55 Newcastle 3.15 $ 3.15$ North Sydney $ 1.35$ $ 2.26 \times 10^2$ Paramatta $ 2.83$ <t< td=""><td>Holroyd</td><td>-</td><td>-</td><td>1.74</td><td>-</td><td>1.74</td></t<>	Holroyd	-	-	1.74	-	1.74	
Hurstville $($	Hornsby	-	3.62×10^{-3}	2.86	-	2.87	
Kiama 0.29 0.29 0.29 Kogarah 1.6 1.06 1.06 Ku-ring-gai 1.6 1.85 1.85 Lake Macquarie 2.00 1.82 $ 3.82$ Lane Cove 1.6 0.57 0.57 Leichhardt 1.6 0.57 0.57 Leichhardt 1.6 0.89 0.67 Lithgow 1.6 0.36 1.6 Liverpool 1.6 2.90 0.36 Maitland 9.39×10^2 1.15 $ 0.69$ Marickville 1.6 1.68 0.69 Marickville 1.6 5.16×10^2 1.88 Mid-western Regional 1.6 0.26 1.88 Muswellbrook 0.6 0.26 0.68 Muswellbrook 0.516×10^2 0.39 7.60×10^2 North Sydney 3.05×10^2 5.58×10^2 0.39 7.60×10^2 North Sydney 1.5 1.35 1.35 1.35 Oberon 2.26×10^2 $ 2.83$ $ 2.26 \times 10^2$	Hunters Hill	-	-	0.16	-	0.16	
Kogarah $ 1.06$ $ 1.06$ Ku-ring-gai $ 1.85$ $ 1.85$ Lake Macquarie 2.00 1.82 $ 3.82$ Lane Cove $ 0.57$ $ 0.57$ Leichhardt $ 0.89$ $ 0.89$ Lithgow $ 0.36$ $ 0.36$ Liverpool $ 0.36$ $ 0.36$ Liverpool $ 2.90$ $ 2.90$ Maitland 9.39×10^2 1.15 $ 2.90$ Maitland 9.39×10^2 1.15 $ 0.69$ Marrickville $ 0.69$ $ 0.69$ Marrickville $ 0.68$ $ -$ Mid-western Regional $ 0.68$ $ 0.68$ Muswellbrook $ 0.26$ $ 0.68$ Muswellbrook $ 0.55$ Newcastle 3.15 $ -$ North Sydney $ 1.35$ $ 2.26 \times 10^2$ Parramatta $ 2.83$ $ 2.83$ $-$	Hurstville	-	-	1.55	-	1.55	
Ku-ring-gai 1.85 1.85 1.85 Lake Macquarie 2.00 1.82 $ 0.57$ Lane Cove $ 0.57$ 0.57 0.57 Leichhardt $ 0.36$ $ 0.89$ Lithgow $ 0.36$ $ 0.36$ Liverpool $ 0.36$ $ 0.36$ Liverpool $ 0.36$ $ 0.90$ Maitland 9.39×10^2 1.15 $ 0.69$ Marickville $ 0.69$ $ 0.69$ Marrickville $ 5.16 \times 10^2$ $ 5.16 \times 10^2$ Mosman $ 5.16 \times 10^2$ $ 0.68$ Muswellbrook $ 0.26$ $ 0.26$ N/A 3.05×10^2 5.58×10^2 0.39 7.60×10^2 North Sydney $ 1.35$ $ 1.35$ Oberon $ 2.26 \times 10^2$ $ 2.26 \times 10^2$ Parramatta $ 2.83$ $ 2.83$	Kiama	-	0.29	-	-	0.29	
Lake Macquarie2.001.82 3.82 Lane Cove $$ 0.57 0.57 0.57 Leichhardt $$ 0.89 $$ 0.89 Lithgow $$ 0.36 $$ 0.36 Liverpool $$ 2.90 $$ 2.90 Maitland 9.39×10^2 1.15 $$ $$ Manly $$ $$ 0.69 $$ Marrickville $$ $$ 0.69 $$ Mid-western Regional $$ 5.16×10^2 $$ $$ Mosman $$ 0.26 $$ 0.68 Muswellbrook $$ 0.26 $$ 0.26 N/A 3.05×10^2 5.58×10^2 0.39 7.60×10^2 North Sydney $$ 2.26×10^2 $ -$ Deron $$ 2.26×10^2 $ 2.26 \times 10^2$ Parramatta $$ $ 2.83$ $ 2.83$	Kogarah	-	-	1.06	-	1.06	
Lane Cove Image: Market M	Ku-ring-gai	-	-	1.85	-	1.85	
Leichhardt Image: Marcine Marc	Lake Macquarie	2.00	1.82	-	-	3.82	
Lithgow	Lane Cove	-	-	0.57	-	0.57	
Liverpool $1 - 2.90$ 2.90 2.90 Maitland 9.39×10^2 1.15 $ 1.25$ Manly $1 - 2$ 0.69 $ 0.69$ Marrickville $1 - 2$ 1.88 $ 1.88$ Mid-western Regional $ 5.16 \times 10^2$ $ 5.16 \times 10^2$ Mosman $ 0.26$ $ 0.68$ $-$ Muswellbrook $ 0.26$ $ 0.26$ N/A 3.05×10^2 5.58×10^2 0.39 7.60×10^2 Newcastle 3.15 $ 1.35$ $-$ North Sydney $ 2.26 \times 10^2$ $ 2.83$ $-$ Parramatta $ 2.83$ $ 2.83$	Leichhardt	-	-	0.89	-	0.89	
Maitland 9.39×10^2 1.15 $ 1.25$ Manly $ 0.69$ $ 0.69$ Marrickville $ 1.88$ $ 1.88$ Mid-western Regional $ 5.16 \times 10^2$ $ 5.16 \times 10^2$ Mosman $ 0.68$ $ 0.68$ Muswellbrook $ 0.26$ $ 0.26$ N/A 3.05×10^2 5.58×10^2 0.39 7.60×10^2 0.55 Newcastle 3.15 $ 1.35$ $ 3.15$ North Sydney $ 2.26 \times 10^2$ $ 2.26 \times 10^2$ Parramatta $ 2.83$ $ 2.83$	Lithgow	-	0.36	-	-	0.36	
Manly Image: Marrickville Im	_	-	-	2.90	-	2.90	
Marrickville Image: Marriekville Image: Marrickville Image: Marrickville	Maitland	9.39 × 10 ⁻²	1.15	-	-	1.25	
Mid-western Regional 5.16×10^2 $ 5.16 \times 10^2$ $ 5.16 \times 10^2$ Mosman $ 0.68$ $ 0.68$ Muswellbrook $ 0.26$ $ 0.26$ N/A 3.05×10^2 5.58×10^2 0.39 7.60×10^2 0.55 Newcastle 3.15 $ 3.15$ North Sydney $ 1.35$ $ -$ Oberon $ 2.26 \times 10^2$ $ 2.26 \times 10^2$ Parramatta $ 2.83$ $ -$	Manly	-	-	0.69	-	0.69	
Mosman Image: Mosman </td <td>Marrickville</td> <td>-</td> <td>-</td> <td>1.88</td> <td>-</td> <td>1.88</td>	Marrickville	-	-	1.88	-	1.88	
Muswellbrook 0.26 - 0.26 - 0.26 N/A 3.05 × 10 ² 5.58 × 10 ² 0.39 7.60 × 10 ² 0.55 Newcastle 3.15 - - - 3.15 North Sydney - - 1.35 - 1.35 Oberon 2.26 × 10 ² - 2.83 - 2.26 × 10 ²	Mid-western Regional	-	5.16×10^{-2}	-	-	5.16 × 10 ⁻²	
N/A 3.05×10 ⁻² 5.58×10 ⁻² 0.39 7.60×10 ⁻² 0.55 Newcastle 3.15 - - 3.15 North Sydney - 1.35 - 1.35 Oberon 2.26×10 ⁻² - 2.26×10 ⁻² 2.83 Parramatta - - 2.83 2.83	Mosman	-	-	0.68	-	0.68	
Newcastle 3.15 3.15 North Sydney 1.35 1.35 Oberon 2.26 × 10 ⁻² 2.26 × 10 ⁻² 2.26 × 10 ⁻² Parramatta 2.83 2.83	Muswellbrook	-	0.26	-	-	0.26	
North Sydney - 1.35 - 1.35 Oberon - 2.26 × 10 ⁻² - - 2.26 × 10 ⁻² Parramatta - - 2.83 - 2.83	-	3.05×10^{-2}	$5.58 imes 10^{-2}$	0.39	7.60×10^{-2}	0.55	
Oberon 2.26 × 10 ⁻² - 2.26 × 10 ⁻² Parramatta - - 2.83 - 2.83	Newcastle	3.15	-	-	-	3.15	
Parramatta 2.83 - 2.83	North Sydney	-	-	1.35	-	1.35	
	Oberon	-	2.26 × 10-2	-	-	2.26 × 10 ⁻²	
	Parramatta	-	-	2.83	-	2.83	
Penrith 3.15 - 3.15	Penrith	-	-	3.15	-	3.15	
Pittwater 1.04 - 1.04	Pittwater	-	-	1.04	-	1.04	

2008 Calendar Year Domestic-Commercial Emissions: Results 3. Data Sources and Results

LGA	2008 proportion of total dwellings (%)					
DON	Newcastle	Non Urban	Sydney	Wollongong	Grand Total	
Port Stephens	6.97×10^{-2}	1.07	-	-	1.14	
Randwick	-	-	2.68	-	2.68	
Rockdale	-	-	1.73	-	1.73	
Ryde	-	-	2.07	-	2.07	
Shellharbour	-	0.89	-	0.31	1.20	
Shoalhaven	-	1.50×10^{-3}	-	-	1.50×10^{-3}	
Singleton	-	0.37	-	-	0.37	
Strathfield	-	-	0.68	-	0.68	
Sutherland	-	-	4.08	-	4.08	
Sydney	-	-	4.01	-	4.01	
Unincorporated	-	-	0.93	-	0.93	
Upper Lachlan	-	$6.05 imes 10^{-4}$	-	-	$6.05 imes 10^{-4}$	
Warringah	-	-	2.73	-	2.73	
Waverley	-	-	1.29	-	1.29	
Willoughby	-	-	1.39	-	1.39	
Wingecarribee	-	0.88	4.72×10^{-3}	1.50×10^{-3}	0.89	
Wollondilly	-	1.16×10^{-2}	0.74	$3.91 imes 10^{-4}$	0.75	
Wollongong	-	-	0.27	3.50	3.77	
Woollahra	-	-	1.03	-	1.03	
Wyong	-	2.96	-	-	2.96	
Grand Total	5.38	12.78	77.95	3.89	100.00	

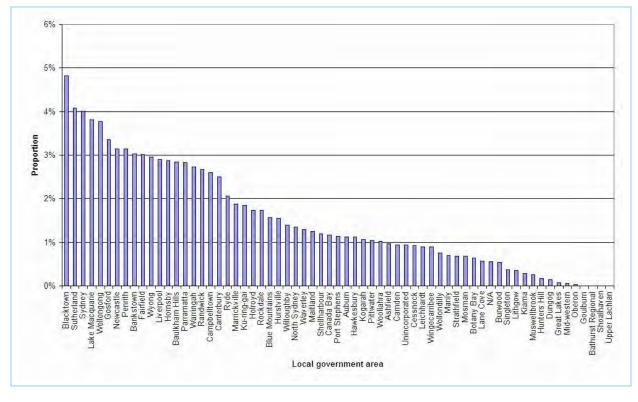
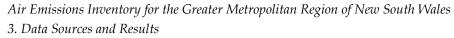



Figure 3-106 shows the spatial distribution of surface coating emissions.

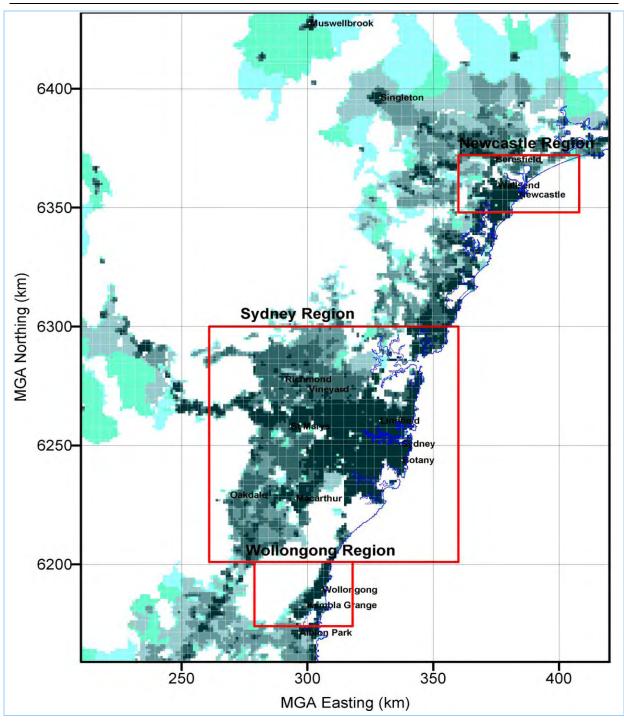


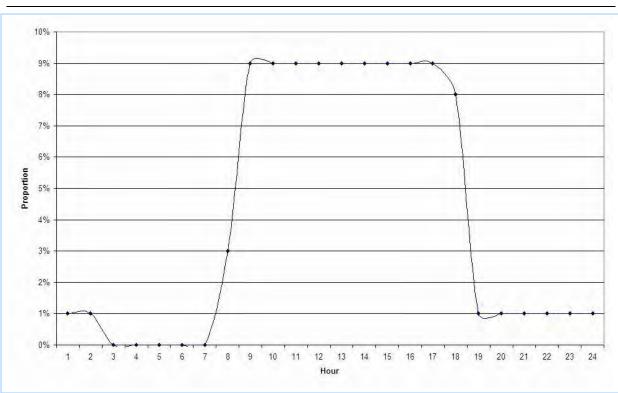
Figure 3-106: Surface coatings spatial distribution of emissions

3.13.6 Temporal Variation of Emissions

Table 3-246 summarises the data used to estimate the temporal variation in emissions from surface coatings.

Emission source	Temporal data	Temporal data source
Evaporative VOC from the application of surface	Monthly: Surface coating consumption	 Quarterly Industrial Sales Statistics Survey 2008 (APMF, 2009a to 2009d) Quarterly Automotive Refinish Statistics 2008 (APMF, 2009e to 2009h) Quarterly Architectural & Decorative Paints & Enamels Sales Quantity 2008 (Informark, 2009a to 2009d) Quarterly Woodcare Products Sales Quantity 2008 (Informark, 2009e to 2009h)
coatings and thinners	Daily: Source type specific temporal allocation factors	 Surface Coating /All Surface Coating Categories /Total: All Solvent Types – Weekly profile number 105 - CAIR Platform Temporal Allocation (USEPA, 2005)
	Hourly: Source type specific temporal allocation factors	 Surface Coating /All Surface Coating Categories /Total: All Solvent Types – Weekday diurnal profile number 108 and Weekend diurnal profile number 108 - CAIR Platform Temporal Allocation (USEPA, 2005)

Table 3-246: Surface coatings temporal data


The hourly and daily temporal variation in emissions from surface coatings have been estimated from generic temporal profiles (USEPA, 2005).

The monthly temporal variation emissions from surface coatings have been estimated from architectural and decorative (i.e. paints, enamels, clears and woodcare products) and industrial (i.e. protective, marine, road and runway, can and coil, flatboard and woodcare products) surface coating and thinner consumption (Informark, 2009a to Informark, 2009h; and APMF, 2009a to APMF, 2009h).

Hourly temporal variation profiles are presented in Table 3-247 and shown in Figure 3-107.

Hour	Week day and weekend proportion (%)	Hour	Week day and weekend proportion (%)
1	1.00	13	9.00
2	1.00	14	9.00
3	-	15	9.00
4	-	16	9.00
5	-	17	9.00
6	-	18	8.00
7	-	19	1.00
8	3.00	20	1.00
9	9.00	21	1.00
10	9.00	22	1.00
11	9.00	23	1.00
12	9.00	24	1.00

Table 3-247: Surface coatings hourly temporal profile

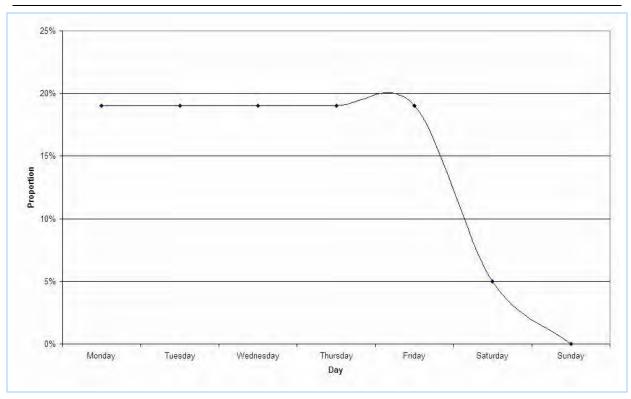

Air Emissions Inventory for the Greater Metropolitan Region of New South Wales 3. Data Sources and Results

Figure 3-107: Surface coatings hourly temporal profile

Daily temporal variation profiles are presented in Table 3-248 and shown in Figure 3-108.

Day	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday	Sunday
Proportion (%)	19.00	19.00	19.00	19.00	19.00	5.00	0.00

 Table 3-248: Surface coatings daily temporal profile

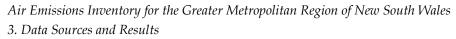


Figure 3-108: Surface coatings daily temporal profile

Monthly temporal variation profiles are presented in Table 3-249 and shown in Figure 3-109.

Month	Proportion (%)	Month	Proportion (%)
January	8.72	July	8.05
February	8.21	August	8.65
March	7.57	September	9.44
April	8.91	October	7.65
May	8.23	November	8.20
June	7.88	December	8.49

Table 3-249: Surface coatings monthly temporal profile

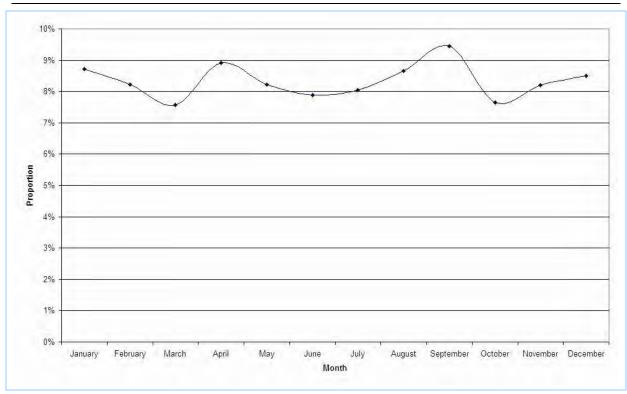


Figure 3-109: Surface coatings monthly temporal profile

3.13.7 *Emission Estimates*

Table 3-250 presents annual emissions of selected substances from surface coatings by activity.

Activity	Substance	Emissions (kg/year)								
Activity	Substance	Newcastle	Non Urban	Sydney	Wollongong	GMR				
	ACETALDEHYDE	15	35	212	11	272				
	FORMALDEHYDE	4.88	12	71	3.53	91				
	ISOMERS OF XYLENE	75,938	180,499	1,100,548	54,872	1,411,856				
Surface	PERCHLOROETHYLENE	5.12	12	74	3.70	95				
Coatings	POLYCYCLIC AROMATIC HYDROCARBONS	317	755	4,601	229	5,903				
TOI	TOLUENE	66,555	158,197	964,570	48,092	1,237,415				
	TOTAL VOLATILE ORGANIC COMPOUNDS	621,838	1,478,065	9,012,147	449,334	11,561,384				

Table 3-250: Surface coatings emissions by activity	Table 3-250:	Surface	coatings	emissions	by activity
---	--------------	---------	----------	-----------	-------------

Table 3-251 presents annual emissions of selected substances from surface coatings by source type.

			Emi	ssions (kg/y	vear)	
Source type	Substance	Newcastle	Non Urban	Sydney	Wollongong	GMR
	ISOMERS OF XYLENE	2,525	6,003	36,601	1,825	46,954
	PERCHLOROETHYLENE	5.12	12	74	3.70	95
Architectural and Decorative	POLYCYCLIC AROMATIC HYDROCARBONS	10	24	148	7.40	190
- Solvent Based	TOLUENE	1,629	3,872	23,609	1,177	30,287
	TOTAL VOLATILE ORGANIC COMPOUNDS	51,226	121,762	742,412	37,016	952,415
	ISOMERS OF XYLENE	567	1,347	8,214	410	10,537
Architectural and Decorative	POLYCYCLIC AROMATIC HYDROCARBONS	92	218	1,331	66	1,707
- Thinners	TOLUENE	1,314	3,123	19,043	949	24,429
- 1111111115	TOTAL VOLATILE ORGANIC COMPOUNDS	31,661	75,256	458,856	22,878	588,651
Architectural	ISOMERS OF XYLENE	5,253	12,486	76,130	3,796	97,665
and Decorative	TOLUENE	9,259	22,007	134,185	6,690	172,141
- Timber Finishes	TOTAL VOLATILE ORGANIC COMPOUNDS	35,231	83,742	510,597	25,458	655,028
	ACETALDEHYDE	15	35	212	11	272
A	FORMALDEHYDE	4.88	12	71	3.53	91
Architectural and Decorative	ISOMERS OF XYLENE	68	162	990	49	1,270
- Water Based	TOLUENE	54	128	778	39	998
- Water Dased	TOTAL VOLATILE ORGANIC COMPOUNDS	48,790	115,971	707,104	35,255	907,121
Industrial	ISOMERS OF XYLENE	63,175	150,162	915,579	45,650	1,174,566
Industrial Surface	TOLUENE	45,895	109,088	665,141	33,163	853,287
Coatings	TOTAL VOLATILE ORGANIC COMPOUNDS	360,389	856,618	5,223,023	260,413	6,700,443
	ISOMERS OF XYLENE	1,330	3,161	19,272	961	24,723
Industrial	POLYCYCLIC AROMATIC HYDROCARBONS	215	512	3,122	156	4,005
Thinners	TOLUENE	3,083	7,328	44,681	2,228	57,320
	TOTAL VOLATILE ORGANIC COMPOUNDS	74,289	176,579	1,076,646	53,680	1,381,193
	ISOMERS OF XYLENE	3,020	7,177	43,762	2,182	56,141
Industrial	TOLUENE	5,322	12,651	77,134	3,846	98,953
Timber Finishes	TOTAL VOLATILE ORGANIC COMPOUNDS	20,252	48,138	293,509	14,634	376,533

Table 3-251: Surface coatings emissions by source type

3.13.8 Emission Projection Methodology

Table 3-252 summarises the data used to estimate the emission projection factors for surface coatings, while Figure 3-110 shows the emission projection factors for calendar years 2009 to 2036.

Emission source	Projection factor surrogate	Projection factor source
Evaporative VOC from the application of surface	Total dwelling	- Forecasts for Total Dwelling
coatings and thinners	growth	from 2006 to 2036 (TDC, 2009)

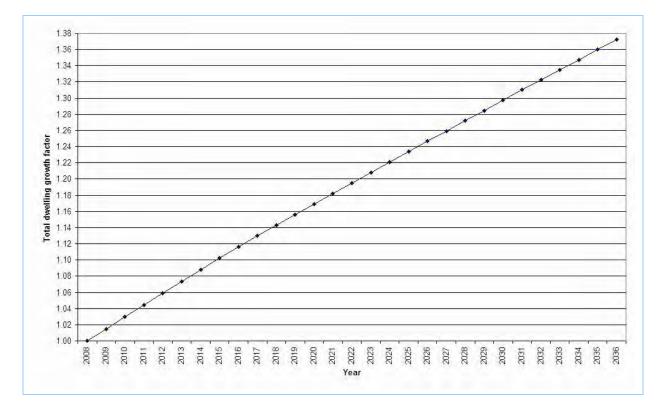


Figure 3-110: Surface coatings emission projection factors

4 EMISSIONS SUMMARY

The domestic-commercial air emissions inventory has been developed for the 2008 calendar year, which incorporates an area covering the greater Sydney, Newcastle and Wollongong regions, known collectively as the Greater Metropolitan Region (GMR).

The domestic-commercial air emissions inventory includes emissions from the following sources:

- > Aerosols and solvents (domestic and commercial);
- Barbecues (domestic);
- Cutback bitumen;
- > Gaseous fuel combustion (domestic and unaccounted);
- Graphic arts (domestic and commercial);
- > Lawn mowing and garden equipment (domestic and public open space);
- Liquid fuel combustion (domestic);
- Natural gas leakage;
- > Portable fuel containers (domestic and public open space);
- > Solid fuel combustion (domestic); and
- > Surface coatings (domestic, commercial and industrial).

The pollutants inventoried include criteria pollutants specified in the Ambient Air Quality NEPM (NEPC, 2003), air toxics associated with the National Pollutant Inventory NEPM (NEPC, 2008) and the Air Toxics NEPM (NEPC, 2004) and any other pollutants associated with state specific programs, i.e. Load Based Licensing (i.e. Protection of the Environment Operations (General) Regulation 2009 (PCO, 2010b)) and Protection of the Environment Operations (Clean Air) Regulation 2010 (PCO, 2011).

Table 4-1 presents total estimated annual emissions (for selected substances) from all domesticcommercial sources in the whole GMR and the Sydney, Newcastle, Wollongong and Non Urban regions.

Figure 4-1 shows the proportions of total estimated annual emissions (for selected substances) from all domestic-commercial sources in the whole GMR and the Sydney, Newcastle, Wollongong and Non Urban regions.

Substance	Emissions (tonne/year)									
Substance	Newcastle	Non Urban	Sydney	Wollongong	GMR					
1,3-BUTADIENE	7.19	18	89	4.81	119					
ACETALDEHYDE	18	44	215	12	289					
BENZENE	47	116	585	31	779					
CARBON MONOXIDE	6,554	16,226	82,186	4,412	109,377					
FORMALDEHYDE	43	109	528	29	709					
ISOMERS OF XYLENE	187	453	2,657	133	3,430					
LEAD & COMPOUNDS	6.79 × 10 ⁻²	0.17	0.83	4.53×10^{-2}	1.12					
OXIDES OF NITROGEN	184	445	2,531	130	3,290					
PARTICULATE MATTER ≤ 10 µm	504	1,262	6,088	334	8,189					
PARTICULATE MATTER ≤ 2.5 µm	485	1,214	5,853	321	7,873					
PERCHLOROETHYLENE	4.67	12	73	3.44	92					
POLYCYCLIC AROMATIC HYDROCARBONS	14	35	186	9.59	244					
SULFUR DIOXIDE	11	26	131	7.07	175					
TOLUENE	185	449	2,619	131	3,384					
TOTAL SUSPENDED PARTICULATE	539	1,348	6,501	357	8,745					
TOTAL VOLATILE ORGANIC COMPOUNDS	3,757	9,213	53,178	2,660	68,809					
TRICHLOROETHYLENE	0.28	0.69	4.38	0.21	5.56					

Table 4-1: Total estimated annual emissions from domestic-commercial sources in each region

2008 Calendar Year Domestic-Commercial Emissions: Results 4. Emissions Summary

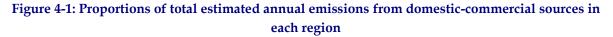


Table 4-2, Table 4-3, Table 4-4, Table 4-5 and Table 4-6 present total estimated annual emissions (for selected substances) from each domestic-commercial source type in the whole GMR and the Sydney, Newcastle, Wollongong and Non Urban regions, respectively.

Figure 4-2, Figure 4-3, Figure 4-4, Figure 4-5 and Figure 4-6 show the proportions of total estimated annual emissions (for selected substances) from each domestic-commercial source type in the whole GMR and the Sydney, Newcastle, Wollongong and Non Urban regions, respectively.

	Tabl	le 4-2: 10ta	l estimate	d annual em	issions by	y domesti	c-commercia	I source	type in the G	JMK		
							ons (tonne/yea	ar)				
Substance	Aerosols and solvents	Barbecues	Cutback bitumen	Gaseous fuel combustion	Graphic arts	Lawn mowing	Liquid fuel combustion	Natural gas leakage	Portable fuel containers	Solid fuel combustion	Surface coatings	Domestic- Commercial Total
1,3-BUTADIENE	-	1.25	-	-	-	44	-	-	-	73	-	119
ACETALDEHYDE	-	18	-	$2.78\times10^{\text{-}4}$	-	27	$7.54 imes10^{-3}$	-	-	243	0.27	289
BENZENE	1.13×10^{-2}	4.10	-	$4.40\times10^{\text{-2}}$	-	389	$3.23 imes 10^{-4}$	-	17	369	-	779
CARBON MONOXIDE	-	520	-	861	-	54,003	7.70	-	-	53,985	-	109,377
FORMALDEHYDE	12	13	-	1.57	-	70	$5.17 imes 10^{-2}$	-	-	612	9.07 × 10-2	709
ISOMERS OF XYLENE	681	0.84	21	-	80	1,167	$1.57 imes 10^{-4}$	-	12	57	1,412	3,430
LEAD & COMPOUNDS	-	3.04×10^{-3}	-	$1.05 imes 10^{-2}$	-	0.33	1.94×10^{-3}	-	-	0.77	-	1.12
OXIDES OF NITROGEN	-	100	-	1,996	-	356	28	-	-	811	-	3,290
PARTICULATE MATTER ≤ 10 µm	-	34	-	159	-	347	3.66	-	-	7,645	-	8,189
PARTICULATE MATTER ≤ 2.5 μm	-	31	-	159	-	320	3.28	-	-	7,359	-	7,873
PERCHLOROETHYLENE	92	$4.83\times10^{\text{-5}}$	-	-	-	-	-	-	-	-	9.52 × 10 ⁻²	92
POLYCYCLIC AROMATIC HYDROCARBONS	91	0.47	-	1.46×10^{-2}	7.30	3.53	1.84×10^{-3}	-	-	135	5.90	244
SULFUR DIOXIDE	-	11	-	13	-	10	11	-	-	129	-	175
TOLUENE	846	1.69	11	7.12 × 10-2	10	1,134	8.91 × 10 ⁻³	-	41	103	1,237	3,384
TOTAL SUSPENDED PARTICULATE	-	46	-	159	-	358	5.08	-	-	8,177	-	8,745
TOTAL VOLATILE ORGANIC COMPOUNDS	25,274	162	169	115	3,475	14,916	1.10	2,973	2,136	8,027	11,561	68,809
TRICHLOROETHYLENE	5.56	-	-	-	-	-	-	-	-	-	-	5.56

Table 4-2: Total estimated annual emissions b	y domestic-commercial source type in the GMR
rubie i 2. rotar commutea annuar emissions b	y domestic commercial source type in the Givin

Air Emissions Inventory for the Greater Metropolitan Region of New South Wales

4. Emissions Summary

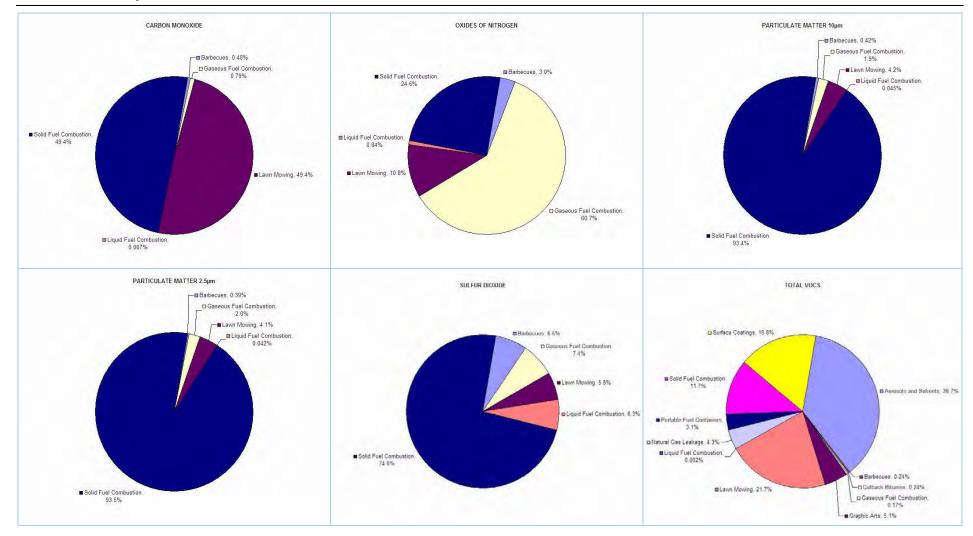


Figure 4-2: Proportions of total estimated annual emissions by domestic-commercial source type in the GMR

	Table 4-3	: Total esti	mated an	nual emissio	ns by doi	nestic-co	mmercial sou	irce type	in the Sydn	ey region		
		Emissions (tonne/year)										
Substance	Aerosols and solvents	Barbecues	Cutback bitumen	Gaseous fuel combustion	Graphic arts	Lawn mowing	Liquid fuel combustion	Natural gas leakage	Portable fuel containers	Solid fuel combustion	Surface coatings	Domestic- Commercial Total
1,3-BUTADIENE	-	0.98	-	-	-	33	-	-	-	54	-	89
ACETALDEHYDE	-	14	-	2.17×10^{-4}	-	21	5.88×10^{-3}	-	-	180	0.21	215
BENZENE	8.91×10^{-3}	3.20	-	3.43×10^{-2}	-	295	$2.52\times10^{\text{-}4}$	-	12	274	-	585
CARBON MONOXIDE	-	406	-	671	-	41,069	6.00	-	-	40,034	-	82,186
FORMALDEHYDE	9.08	9.76	-	1.22	-	53	4.03 × 10-2	-	-	454	7.07×10^{-2}	528
ISOMERS OF XYLENE	536	0.65	16	-	63	890	1.22×10^{-4}	-	8.74	42	1,101	2,657
LEAD & COMPOUNDS	-	$2.37\times10^{\text{-}3}$	-	8.16 × 10 ⁻³	-	0.25	1.51 × 10 ⁻³	-	-	0.57	-	0.83
OXIDES OF NITROGEN	-	78	-	1,556	-	275	22	-	-	601	-	2,531
PARTICULATE MATTER ≤10 µm	-	27	-	124	-	265	2.86	-	-	5,669	-	6,088
PARTICULATE MATTER ≤ 2.5 μm	-	24	-	124	-	245	2.56	-	-	5,457	-	5,853
PERCHLOROETHYLENE	73	$3.77 imes 10^{-5}$	-	-	-	-	-	-	-	-	$7.42\times10^{\text{-}2}$	73
POLYCYCLIC AROMATIC HYDROCARBONS	72	0.37	-	1.14 × 10 ⁻²	5.75	2.68	1.43×10^{-3}	-	-	100	4.60	186
SULFUR DIOXIDE	-	8.91	-	10	-	7.71	8.52	-	-	96	-	131
TOLUENE	666	1.32	8.48	$5.55 imes 10^{-2}$	8.21	863	6.95 × 10 ⁻³	-	30	76	965	2,619
TOTAL SUSPENDED PARTICULATE	-	36	-	124	-	273	3.96	-	-	6,064	-	6,501
TOTAL VOLATILE ORGANIC COMPOUNDS	19,905	126	132	90	2,737	11,317	0.86	2,318	1,589	5,952	9,012	53,178
TRICHLOROETHYLENE	4.38	-	-	-	-	-	-	-	-	-	-	4.38

Table 4-3: Total estimated annual emissions by domestic-commercial source type in the Sydney region

Air Emissions Inventory for the Greater Metropolitan Region of New South Wales

4. Emissions Summary

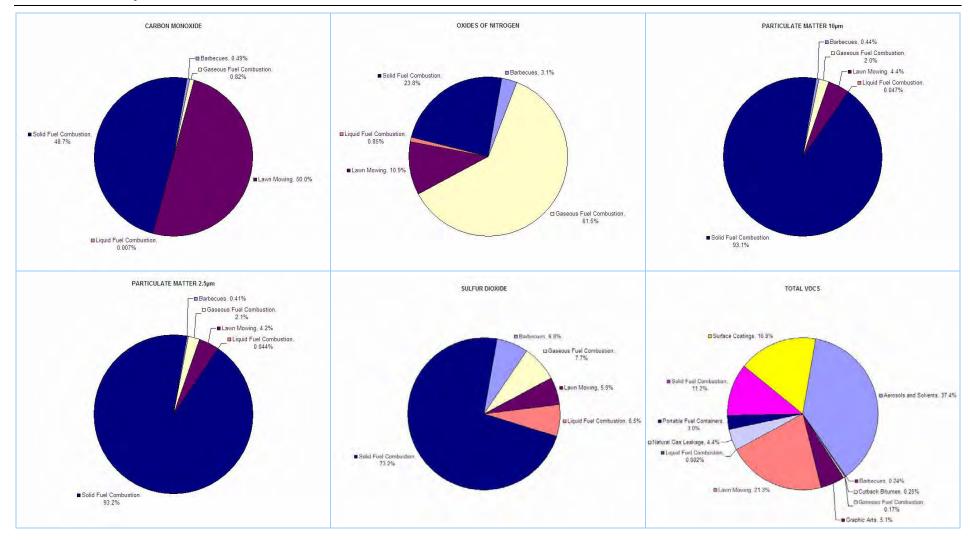


Figure 4-3: Proportions of total estimated annual emissions by domestic-commercial source type in the Sydney region

	14010 4 4.	Total Cotili		ual emission	s by uom	cstic-com	ficicial source	c type m	the reweas	Stie region		
		Emissions (tonne/year)										
Substance	Aerosols and solvents	Barbecues	Cutback bitumen	Gaseous fuel combustion	Graphic arts	Lawn mowing	Liquid fuel combustion	Natural gas leakage	Portable fuel containers	Solid fuel combustion	Surface coatings	Domestic- Commercial Total
1,3-BUTADIENE	-	$6.74\times10^{\text{-}2}$	-	-	-	2.57	-	-	-	4.55	-	7.19
ACETALDEHYDE	-	0.98	-	$1.50\times10^{\text{-5}}$	-	1.57	4.06×10^{-4}	-	-	15	$1.46 imes 10^{-2}$	18
BENZENE	$5.71\times10^{\text{-}4}$	0.22	-	2.36 × 10 ⁻³	-	23	$1.74 imes 10^{-5}$	-	1.02	23	-	47
CARBON MONOXIDE	-	28	-	46	-	3,134	0.41	-	-	3,345	-	6,554
FORMALDEHYDE	0.58	0.67	-	$8.45\times10^{\text{-2}}$	-	4.10	2.78 × 10 ⁻³	-	-	38	$4.88\times10^{\text{-}3}$	43
ISOMERS OF XYLENE	34	$4.50\times10^{\text{-2}}$	1.16	-	4.04	67	8.42×10^{-6}	-	0.72	3.53	76	187
LEAD & COMPOUNDS	-	$1.63 imes 10^{-4}$	-	$5.63 imes 10^{-4}$	-	$1.92\times10^{\text{-}2}$	$1.04 imes 10^{-4}$	-	-	$4.79 imes 10^{-2}$	-	6.79 × 10 ⁻²
OXIDES OF NITROGEN	-	5.35	-	107	-	20	1.49	-	-	50	-	184
PARTICULATE MATTER ≤ 10 µm	-	1.84	-	8.57	-	20	0.20	-	-	474	-	504
PARTICULATE MATTER ≤ 2.5 μm	-	1.65	-	8.57	-	18	0.18	-	-	456	-	485
PERCHLOROETHYLENE	4.66	2.60 × 10-6	-	-	-	-	-	-	-	-	5.12×10^{-3}	4.67
POLYCYCLIC AROMATIC HYDROCARBONS	4.61	2.53 × 10 ⁻²	-	$7.86 imes 10^{-4}$	0.37	0.21	9.89 × 10 ⁻⁵	-	-	8.38	0.32	14
SULFUR DIOXIDE	-	0.61	-	0.69	-	0.60	0.59	-	-	8.01	-	11
TOLUENE	43	9.11 × 10-2	0.61	3.83 × 10-3	0.53	66	$4.79\times10^{\text{-}4}$	-	2.50	6.36	67	185
TOTAL SUSPENDED PARTICULATE	-	2.46	-	8.57	-	21	0.27	-	-	507	-	539
TOTAL VOLATILE ORGANIC COMPOUNDS	1,276	8.71	9.42	6.19	175	871	5.90 × 10-2	160	131	497	622	3,757
TRICHLOROETHYLENE	0.28	-	-	-	-	-	-	-	-	-	-	0.28

Table 4-4: Total estimated annual emissions by domestic-commercial s	source type in the Newcastle region

Air Emissions Inventory for the Greater Metropolitan Region of New South Wales

4. Emissions Summary

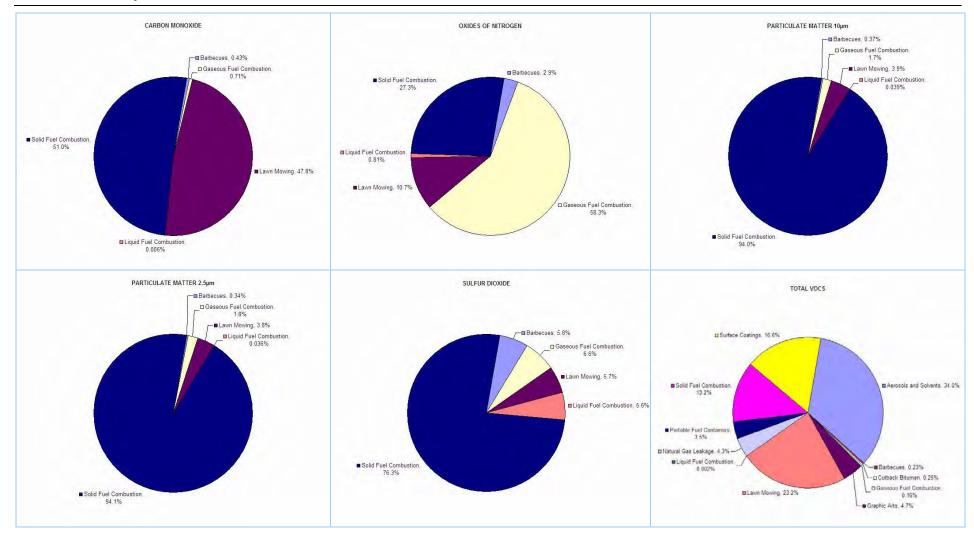


Figure 4-4: Proportions of total estimated annual emissions by domestic-commercial source type in the Newcastle region

		otal estilla	ateu annu	al emissions	by utille	Suc-contin	leiciai soulce	type III i		joing region		
						Emissio	ns (tonne/yea	r)				
Substance	Aerosols and solvents	Barbecues	Cutback bitumen	Gaseous fuel combustion	Graphic arts	Lawn mowing	Liquid fuel combustion	Natural gas leakage	Portable fuel containers	Solid fuel combustion	Surface coatings	Domestic- Commercial Total
1,3-BUTADIENE	-	$4.87\times10^{\text{-2}}$	-	-	-	1.76	-	-	-	3.00	-	4.81
ACETALDEHYDE	-	0.71	-	$1.08 imes 10^{-5}$	-	1.08	$2.93 imes 10^{-4}$	-	-	9.94	1.06×10^{-2}	12
BENZENE	$4.21\times10^{\text{-}4}$	0.16	-	1.71×10^{-3}	-	16	$1.26 imes 10^{-5}$	-	0.68	15	-	31
CARBON MONOXIDE	-	20	-	33	-	2,148	0.30	-	-	2,209	-	4,412
FORMALDEHYDE	0.43	0.49	-	6.10 × 10-2	-	2.81	2.01 × 10 ⁻³	-	-	25	$3.53\times10^{\text{-}3}$	29
ISOMERS OF XYLENE	25	$3.25 imes 10^{-2}$	0.66	-	2.97	46	6.09 × 10-6	-	0.48	2.33	55	133
LEAD & COMPOUNDS	-	$1.18\times10^{\text{-}4}$	-	4.07×10^{-4}	-	$1.31\times10^{\text{-}2}$	$7.54 imes10^{-5}$	-	-	3.16×10^{-2}	-	4.53×10^{-2}
OXIDES OF NITROGEN	-	3.87	-	78	-	14	1.08	-	-	33	-	130
PARTICULATE MATTER ≤10 µm	-	1.33	-	6.19	-	14	0.14	-	-	313	-	334
PARTICULATE MATTER ≤ 2.5 μm	-	1.19	-	6.19	-	13	0.13	-	-	301	-	321
PERCHLOROETHYLENE	3.43	$1.88 imes 10^{-6}$	-	-	-	-	-	-	-	-	$3.70\times10^{\text{-}3}$	3.44
POLYCYCLIC AROMATIC HYDROCARBONS	3.39	1.83×10^{-2}	-	5.68×10^{-4}	0.27	0.14	7.15 × 10 ⁻⁵	-	-	5.53	0.23	9.59
SULFUR DIOXIDE	-	0.44	-	0.50	-	0.41	0.42	-	-	5.29	-	7.07
TOLUENE	31	$6.58 imes 10^{-2}$	0.34	2.77 × 10 ⁻³	0.39	45	$3.46 imes 10^{-4}$	-	1.66	4.20	48	131
TOTAL SUSPENDED PARTICULATE	-	1.77	-	6.19	-	14	0.20	-	-	335	-	357
TOTAL VOLATILE ORGANIC COMPOUNDS	940	6.29	5.35	4.48	129	595	4.27×10^{-2}	116	87	328	449	2,660
TRICHLOROETHYLENE	0.21	-	-	-	-	-	-	-	-	-	-	0.21

Table 4-5: Total estimated annual emissions by domestic-commercial source type in the Wollongong region

Air Emissions Inventory for the Greater Metropolitan Region of New South Wales

4. Emissions Summary

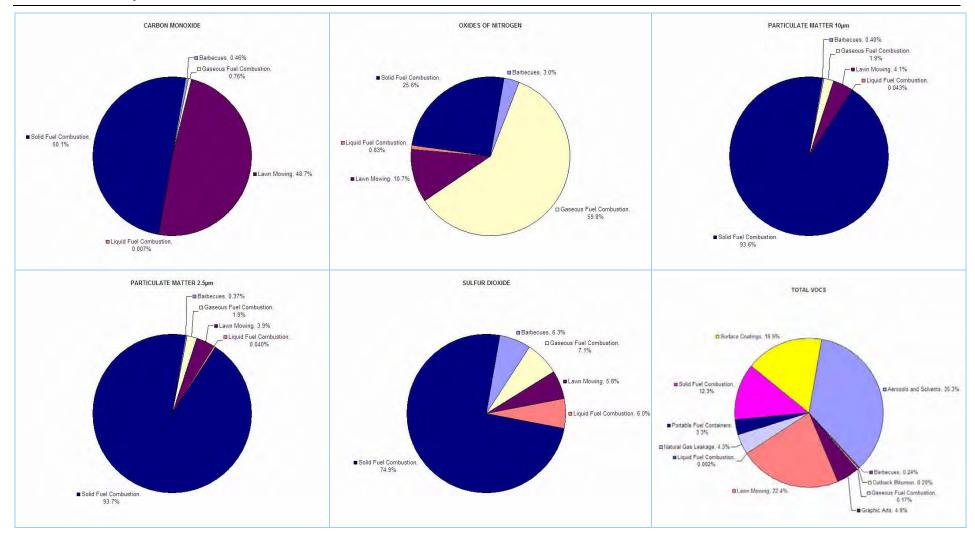


Figure 4-5: Proportions of total estimated annual emissions by domestic-commercial source type in the Wollongong region

	Table 4-6:	Fotal estim	ated annu	al emissions	by dom	estic-com	nercial sourc	e type in	the Non Ur	ban region		
		Emissions (tonne/year)										
Substance	Aerosols and solvents	Barbecues	Cutback bitumen	Gaseous fuel combustion	Graphic arts	Lawn mowing	Liquid fuel combustion	Natural gas leakage	Portable fuel containers	Solid fuel combustion	Surface coatings	Domestic- Commercial Total
1,3-BUTADIENE	-	0.16	-	-	-	6.30	-	-	-	11	-	18
ACETALDEHYDE	-	2.33	-	3.56×10^{-5}	-	3.81	$9.65 imes 10^{-4}$	-	-	38	$3.48\times10^{\text{-2}}$	44
BENZENE	1.41×10^{-3}	0.52	-	5.62×10^{-3}	-	55	4.13 × 10 ⁻⁵	-	2.56	57	-	116
CARBON MONOXIDE	-	67	-	110	-	7,652	0.98	-	-	8,396	-	16,226
FORMALDEHYDE	1.44	1.60	-	0.20	-	10	6.61 × 10 ⁻³	-	-	95	1.16 × 10-2	109
ISOMERS OF XYLENE	85	0.11	2.73	-	9.98	164	2.0 × 10-5	-	1.81	8.86	180	453
LEAD & COMPOUNDS	-	$3.88\times10^{\text{-}4}$	-	$1.34\times10^{\text{-}3}$	-	$4.72\times10^{\text{-}2}$	$2.48 imes 10^{-4}$	-	-	0.12	-	0.17
OXIDES OF NITROGEN	-	13	-	255	-	47	3.54	-	-	126	-	445
PARTICULATE MATTER ≤ 10 µm	-	4.38	-	20	-	48	0.47	-	-	1,189	-	1,262
PARTICULATE MATTER ≤ 2.5 μm	-	3.93	-	20	-	45	0.42	-	-	1,145	-	1,214
PERCHLOROETHYLENE	12	$6.18 imes 10^{-6}$	-	-	-	-	-	-	-	-	1.22×10^{-2}	12
POLYCYCLIC AROMATIC HYDROCARBONS	11	6.0 × 10 ⁻²	-	1.87×10^{-3}	0.91	0.51	2.35×10^{-4}	-	-	21	0.75	35
SULFUR DIOXIDE	-	1.46	-	1.65	-	1.47	1.40	-	-	20	-	26
TOLUENE	106	0.22	1.43	9.10 × 10-3	1.30	160	1.14×10^{-3}	-	6.24	16	158	449
TOTAL SUSPENDED PARTICULATE	-	5.84	-	20	-	50	0.65	-	-	1,272	-	1,348
TOTAL VOLATILE ORGANIC COMPOUNDS	3,154	21	22	15	434	2,133	0.14	380	329	1,248	1,478	9,213
TRICHLOROETHYLENE	0.69	-	-	-	-	-	-	-	-	-	-	0.69

Fable 4-6: Total estimated	annual emissions by c	iomestic-commercial	source type in the N	on Urban region
able i of i otal coulinated	unitual chilostono by c	connective commercial	source type in the r	ton ersun region

Air Emissions Inventory for the Greater Metropolitan Region of New South Wales

4. Emissions Summary

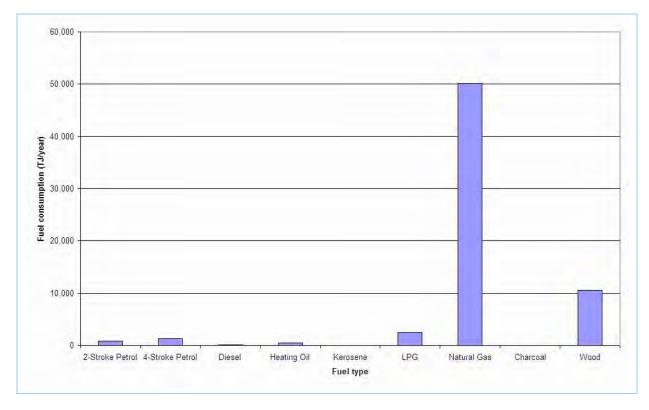

Figure 4-6: Proportions of total estimated annual emissions by domestic-commercial source type in the Non Urban region

Table 4-7 presents total estimated fuel consumption from all domestic-commercial sources in the GMR by volume and energy content.

Table 4-7: Total estimated annual fuel consumption from domestic-commercial sources by volume and energy content in the GMR

Fuel	Annual fuel consumption							
T uci	Volume	Volume units	Energy content (TJ/year)					
2-Stroke petrol	25,680		878					
4-Stroke petrol	39,736		1,359					
Diesel	3,336	kL/year	129					
Heating oil	12,848	KL/ year	483					
Kerosene	305		11					
LPG	99,870		2,547					
Natural gas	1,309	Mm ³ /year	50,126					
Charcoal	2,247	tonne/year	56					
Wood	647,802	torine/ year	10,494					

Figure 4-7 shows total estimated fuel consumption from all domestic-commercial sources in the GMR by energy content.

Figure 4-7: Total estimated annual fuel consumption from domestic-commercial sources by energy content in the GMR

Table 4-8 and Table 4-9 present total estimated fuel consumption by domestic-commercial source type in the GMR by volume and energy content, respectively. Figure 4-8 shows total estimated fuel consumption by domestic-commercial source type in the GMR by energy content.

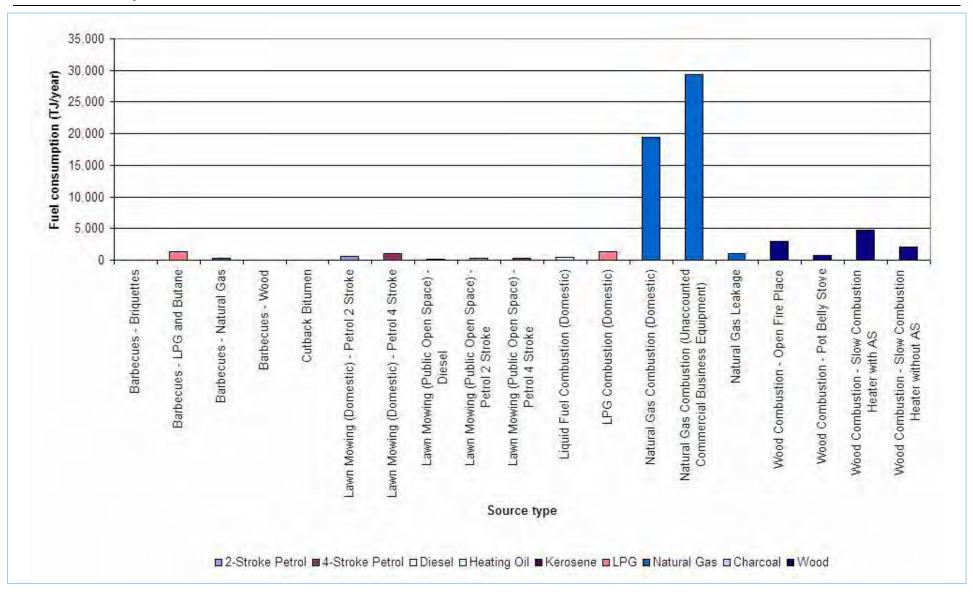

Table 4-0. Total estimated annual fue									
Course tone	2-Stroke petrol	4-Stroke petrol	Diesel	Heating oil	Kerosene	LPG	Natural gas	Charcoal	Wood
Source type		kL/year							'year
Barbecues – briquettes	-	-	-	-	-	-	-	2,247	-
Barbecues – LPG and butane	-	-	-	-	-	49,885	-	-	-
Barbecues – natural gas	-	-	-	-	-	-	7	-	-
Barbecues – wood	-	-	-	-	-	-	-	-	1,285
Cutback bitumen	-	-	-	-	305	-	-	-	-
Lawn mowing (domestic) - petrol 2 stroke	15,665	-	-	-	-	-	-	-	-
Lawn mowing (domestic) - petrol 4 stroke	-	30,525	-	-	-	-	-	-	-
Lawn mowing (public open space) – diesel	-	-	3,336	-	-	-	-	-	-
Lawn mowing (public open space) – petrol 2 stroke	10,014	-	-	-	-	-	-	-	-
Lawn mowing (public open space) – petrol 4 stroke	-	9,212	-	-	-	-	-	-	-
Liquid fuel combustion (domestic)	-	-	-	12,848	-	-	-	-	-
LPG combustion (domestic)	-	-	-	-	-	49,984	-	-	-
Natural gas combustion (domestic)	-	-	-	-	-	-	508	-	-
Natural gas combustion (unaccounted commercial business							766		
equipment)		_	-	_	_	_	700	-	_
Natural gas leakage	-	-	-	-	-	-	28	-	-
Wood combustion - open fireplace	-	-	-	-	-	-	-	-	182,471
Wood combustion – pot belly stove	-	-	-	-	-	-	-	-	44,296
Wood combustion – slow combustion heater with AS ⁷³	-	-	-	-	-	-	-	-	292,435
Wood combustion – slow combustion heater without AS	-	-	-	-	-	-	-	-	127,314
Grand Total	25,680	39,736	3,336	12,848	305	99,870	1,309	2,247	647,802

Table 4-8: Total estimated annual fuel c	consumption by d	omestic-commercial sou	rce tvp	e and volume in the GMR
Tuble I of I oftal commuted annual rule c	concerning thom by a	onicotic commercial sou		e and voranie in the Omit

⁷³ Appliances certified in accordance with Standards Australia, 1992a and Standards Australia, 1992b or Standards Australia, 1999a and Standards Australia 1999b).

Table 4-9: Total estimated annual fuel consumption by domestic-commercial source type and energy content in the GMR										
	Energy content (TJ/year)									
Source type	2-Stroke petrol	4-Stroke petrol	Diesel	Heating oil	Kerosene	LPG	Natural gas	Charcoal	Wood	Grand Total
Barbecues – briquettes	-	-	-	-	-	-	-	56	-	56
Barbecues – LPG and butane	-	-	-	-	-	1,272	-	-	-	1,272
Barbecues - natural gas	-	-	-	-	-	-	252	-	-	252
Barbecues – wood	-	-	-	-	-	-	-	-	21	21
Cutback bitumen	-	-	-	-	11	-	-	-	-	11
Lawn mowing (domestic) - petrol 2 stroke	536	-	-	-	-	-	-	-	-	536
Lawn mowing (domestic) - petrol 4 stroke	-	1,044	-	-	-	-	-	-	-	1,044
Lawn mowing (public open space) – diesel	-	-	129	-	-	-	-	-	-	129
Lawn mowing (public open space) - petrol 2 stroke	342	-	-	-	-	-	-	-	-	342
Lawn mowing (public open space) - petrol 4 stroke	-	315	-	-	-	-	-	-	-	315
Liquid fuel combustion (domestic)	-	-	-	483	-	-	-	-	-	483
LPG combustion (domestic)	-	-	-	-	-	1,275	-	-	-	1,275
Natural gas combustion (domestic)	-	-	-	-	-	-	19,455	-	-	19,455
Natural gas combustion (unaccounted commercial business equipment)	-	-	-	-	-	-	29,332	-	-	29,332
Natural gas leakage	-	-	-	-	-	-	1,087	-	-	1,087
Wood combustion - open fire place	-	-	-	-	-	-	-	-	2,956	2,956
Wood combustion - pot belly stove	-	-	-	-	-	-	-	-	718	718
Wood combustion – slow combustion heater with AS74	-	-	-	-	-	-	-	-	4,737	4,737
Wood combustion – slow combustion heater without AS	-	-	-	-	-	-	-	-	2,062	2,062
Grand Total	878	1,359	129	483	11	2,547	50,126	56	10,494	66,084

⁷⁴ Appliances certified in accordance with Standards Australia, 1992a and Standards Australia, 1992b or Standards Australia, 1999a and Standards Australia 1999b).

Air Emissions Inventory for the Greater Metropolitan Region of New South Wales

4. Emissions Summary

Figure 4-8: Total estimated annual fuel consumption by domestic-commercial source type and energy content in the GMR

5 **REFERENCES**

AAPA (2009), Pers. Comm. 22/06/2009, Dougall Broadfoot - NSW & Victorian Executive Officer, 2008 Cutback Bitumen and Cutter Consumption in the NSW GMR, Australian Asphalt Pavement Association, Level 2, 5 Wellington Street, Kew, Victoria 3101, Australia.

ABARE (2006), Australian Energy, National and State Projections to 2029-30, ABARE Research Report 06.26, Australian Bureau of Agricultural and Resource Economics, GPO Box 1563, Canberra 2601, Australia. http://www.abare.gov.au/publications_html/energy_energy_06/nrg_projections06.pdf http://www.abareconomics.com/interactive/energy_dec06/excel/TFEC_06.xls http://www.abareconomics.com/interactive/energy_dec06/excel/TFEC_06.xls

ABARE (2009a), *Energy Update 2009*, Australian Bureau of Agricultural and Resource Economics, GPO Box 1563, Canberra, ACT 2601, Australia.

http://www.abare.gov.au/publications_html/energy/energy_09/energyUPDATE09.pdf http://www.abare.gov.au/publications_html/energy/energy_09/F_09.xls

ABARE (2009b), *Energy in Australia* 2009, Australian Bureau of Agricultural and Resource Economics, GPO Box 1563, Canberra, ACT 2601, Australia.

http://www.abare.gov.au/publications_html/energy/energy_09/auEnergy09.pdf

ABS (1993), 1292.0 - Australian and New Zealand Standard Industrial Classification (ANZSIC), 1993, Australian Bureau of Statistics, Locked Bag 10, Belconnen, ACT 2616, Australia.

http://www.abs.gov.au/ausstats/abs@.nsf/2f762f95845417aeca25706c00834efa/7cd8aebba7225c4eca 25697e0018faf3!OpenDocument

ABS (2009), 83101.0 - Australian Demographic Statistics, Dec 2008, Australian Bureau of Statistics, Locked Bag 10, Belconnen, ACT 2616, Australia.

http://www.abs.gov.au/AUSSTATS/abs@.nsf/allprimarymainfeatures/BE64F1A0EB0D645ECA2576 38001BBF56?opendocument

AEMOL (2009), National Gas Market Bulletin Board, Daily Natural Gas Flow, 1 August 2008 to 31 July 2009, Australian Energy Market Operator Limited, GPO Box 2008, MELBOURNE, VIC 3001, Australia. http://www.gasbb.com.au/default.aspx

AGL (2008), AGL Natural Gas, Chemwatch Material Safety Data Sheet Issue Date: 11-Apr-2008, AGL Energy Limited, Locked Bag 1837, St Leonards, NSW 2065, Australia.

http://www.agl.com.au/Downloads/0712_Safety-Data-Sheet-Natural-Gas_Retail_Safety-Page-NEW.pdf

AIA (2005), Pers. Comm. 12/07/2005, Keith Billing - Managing Director, NSW Lawn Mowing and Garden Equipment Sales, Unit Cost and Operating Life Data for 2000 to 2004, Allpower Industries Australia Pty Ltd, Box Hill, Victoria 3128, Australia.

APMF (2009a), *Quarterly Industrial Sales Statistics Survey, March Quarter 2008,* Australian Paint Manufacturers' Federation Inc., Suite 1201, Level 12, 275 Alfred Street, North Sydney, NSW 2060, Australia.

APMF (2009b), *Quarterly Industrial Sales Statistics Survey*, *June Quarter 2008*, Australian Paint Manufacturers' Federation Inc., Suite 1201, Level 12, 275 Alfred Street, North Sydney, NSW 2060, Australia.

APMF (2009c), *Quarterly Industrial Sales Statistics Survey, September Quarter 2008,* Australian Paint Manufacturers' Federation Inc., Suite 1201, Level 12, 275 Alfred Street, North Sydney, NSW 2060, Australia.

APMF (2009d), *Quarterly Industrial Sales Statistics Survey, December Quarter 2008,* Australian Paint Manufacturers' Federation Inc., Suite 1201, Level 12, 275 Alfred Street, North Sydney, NSW 2060, Australia.

APMF (2009e), *Automotive Refinish Statistics, March Quarter 2008,* Australian Paint Manufacturers' Federation Inc., Suite 1201, Level 12, 275 Alfred Street, North Sydney, NSW 2060, Australia.

APMF (2009f), *Automotive Refinish Statistics, June Quarter 2008,* Australian Paint Manufacturers' Federation Inc., Suite 1201, Level 12, 275 Alfred Street, North Sydney, NSW 2060, Australia.

APMF (2009g), *Automotive Refinish Statistics, September Quarter 2008,* Australian Paint Manufacturers' Federation Inc., Suite 1201, Level 12, 275 Alfred Street, North Sydney, NSW 2060, Australia.

APMF (2009h), *Automotive Refinish Statistics, December Quarter 2008,* Australian Paint Manufacturers' Federation Inc., Suite 1201, Level 12, 275 Alfred Street, North Sydney, NSW 2060, Australia.

Attorney-General's Department (2008), *Fuel Standard (Petrol) Determination 2001, Fuel Standard (Petrol) Amendment Determination 2008 (No. 1)*, Attorney-General's Department, Central Office, 3-5 National Circuit, BARTON, ACT 2600, Australia.

http://www.comlaw.gov.au/Details/F2008C00344

Attorney-General's Department (2009), Fuel Standard (Automotive Diesel) Determination 2001, Fuel Standard (Automotive Diesel) Amendment Determination 2008 (No. 1), Attorney-General's Department, Central Office, 3-5 National Circuit, BARTON, ACT 2600, Australia. http://www.comlaw.gov.au/Details/F2009C00145

Auschar (2009), Pers. Comm. 8/12/2009, Sharon Leake, Heat Beads - Heating Value, Ash Content and Sulfur Content, Australian Char Pty Ltd, PO Box 4334, Dandenong South, Victoria 3164, Australia.

Bawden, K., Ormerod, R., Starke, G. and Zeise, K (2004), *Australian Inventory of Dioxin Emissions 2004, National Dioxins Program Technical Report No. 3*, Prepared by: Pacific Air and Environment, Level 1, 59 Melbourne Street, South Brisbane, QLD, 4101, Prepared for: Australian Government Department of the Environment and Heritage, GPO Box 787, Canberra, ACT 2601, Australia. <u>http://www.environment.gov.au/settlements/publications/chemicals/dioxins/report-</u>

3/index.html#downloadpubs/report-3.pdf

Caltex (2011), *Domestic Heating Oil Key Properties*, Caltex Australia Limited, GPO Box 3916, Sydney, NSW 2001, Australia.

http://www.caltex.com.au/ProductsAndServices/Pages/ProductDescription.aspx?ID=1701

CARB (1997a), Area-Wide Source Methodologies, Section 3.5, Coatings and Related Process Solvents Industrial Coatings, California Air Resources Board, 1001 "I" Street, P.O. Box 2815, Sacramento, CA 95812, USA.

http://www.arb.ca.gov/ei/areasrc/fullpdf/full3-5.pdf

CARB (1997b), Area-Wide Source Methodologies, Section 3.6, Coatings and Related Process Solvents Thinning and Cleaning Solvents, California Air Resources Board (CARB), 1001 "I" Street, P.O. Box 2815, Sacramento, CA 95812, USA.

http://www.arb.ca.gov/ei/areasrc/fullpdf/full3-6.pdf

CARB (1999), Public Meeting to Consider Approval of California's Portable Gasoline Container Emissions Inventory, Californian Air Resources Board (CARB) Mobile Source Control Division, 1001 "I" Street P.O. Box 2815, Sacramento, CA 95812, USA.

http://www.arb.ca.gov/msei/offroad/pubs/msc9925.pdf

CARB (2003), *Area-Wide Source Methodologies, Section 6.3, Architectural Coatings,* California Air Resources Board, 1001 "I" Street, P.O. Box 2815, Sacramento, CA 95812, USA. http://www.arb.ca.gov/ei/areasrc/fullpdf/FULL6-3.pdf

CARB (2005), *California Emission Inventory and Reporting System (CEIDARS), Organic Gas Speciation Profiles,* Californian Air Resources Board, 1001 "I" Street P.O. Box 2815 Sacramento, CA 95812, USA. http://www.arb.ca.gov/ei/speciate/orgprof_10_03_05.xls

CARB (2007), California Emission Inventory and Reporting System (CEIDARS), Particulate Matter (PM) Speciation Profiles, Californian Air Resources Board, 1001 "I" Street P.O. Box 2815 Sacramento, CA 95812, USA.

http://www.arb.ca.gov/ei/speciate/pmprof_07_19_07.xls

CARB (2008a), ARB's Emissions Inventory, Area-Wide Source Methodologies, Index of Methodologies by Major Category, California Air Resources Board, 1001 "I" Street, P.O. Box 2815 Sacramento, CA 95812, USA.

http://www.arb.ca.gov/ei/areasrc/index0.htm

CARB (2008b), California Emission Inventory and Reporting System (CEIDARS), Particulate Matter (PM) Speciation Profiles, Californian Air Resources Board, 1001 "I" Street P.O. Box 2815 Sacramento, CA 95812, USA.

http://www.arb.ca.gov/ei/speciate/pmsize_07242008.xls

CARB (2011), *Consolidated Table of OEHHA / ARB Approved Risk Assessment Health Values*, California Air Resources Board, 1001 "I" Street, P.O. Box 2815 Sacramento, CA 95812, USA. http://www.arb.ca.gov/toxics/healthval/contable.pdf *Air Emissions Inventory for the Greater Metropolitan Region of New South Wales 5. References*

Carter, W (2010), Development of the SAPRC-07 Chemical Mechanism and Updated Ozone Reactivity Scales, Report to the California Air Resources Board Contracts No. 03-318, 06-408, and 07-730, College of Engineering, Center for Environmental Research and Technology (CE-CERT), University of California, Riverside, CA 92521, USA.

http://www.engr.ucr.edu/~carter/SAPRC/saprc07.pdf

DCC (2009a), *National Greenhouse Accounts (NGA) Factors*, Department of Climate Change, GPO Box 854, Canberra, ACT 2601, Australia.

http://www.climatechange.gov.au/en/government/initiatives/national-greenhouse-energyreporting/~/media/publications/greenhouse-gas/national-greenhouse-factors-june-2009-pdf.ashx

DCC (2009b), National Greenhouse and Energy Reporting System Measurement, Technical Guidelines for the Estimation of Greenhouse Gas Emissions by Facilities in Australia, Department of Climate Change, GPO Box 854, Canberra, ACT 2601, Australia.

http://www.climatechange.gov.au/en/government/initiatives/national-greenhouse-energyreporting/~/media/publications/greenhouse-report/nger-measurement-technical-2009.ashx

DCCEE (2010), *National Greenhouse Accounts (NGA) Factors*, Department of Climate Change and Energy Efficiency, GPO Box 854, Canberra, ACT 2601, Australia.

http://www.climatechange.gov.au/~/media/publications/greenhouse-acctg/national-greenhouse-factors-july-2010-pdf.pdf

DEC (2005), Approved Methods For the Modelling and Assessment of Air Pollutants in New South Wales, Department of Environment and Conservation, PO Box A290, Sydney South, NSW 1232, Australia. http://www.environment.nsw.gov.au/resources/air/ammodelling05361.pdf

DECC (2007a), Air Emissions Inventory for the Greater Metropolitan Region in NSW, Commercial Emissions Module: Results, Department of Environment and Climate Change, PO Box A290, Sydney South, NSW 1232, Australia.

http://www.environment.nsw.gov.au/resources/air/tr4aei078.pdf

DECC (2007b), Air Emissions Inventory for the Greater Metropolitan Region in NSW, Domestic-Commercial Emissions Module: Results, Department of Environment and Climate Change, PO Box A290, Sydney South, NSW 1232, Australia.

http://www.environment.nsw.gov.au/resources/air/tr5aei079.pdf

DECC (2007c), Air Emissions Inventory for the Greater Metropolitan Region in NSW, On-Road Mobile Emissions Module: Results, Department of Environment and Climate Change, PO Box A290, Sydney South, NSW 1232, Australia.

http://www.environment.nsw.gov.au/resources/air/tr8aei0713.pdf

DECCW (2009), Air Emissions Inventory for the Greater Metropolitan Region in NSW, 2008 Survey of EPA-Licensed Premises, Department of Environment, Climate Change and Water, Sydney, PO Box A290, Sydney South, NSW 1232, Australia. 2008 Calendar Year Domestic-Commercial Emissions: Results 5. References

DPI (2007), *Properties of Firewood, Note number: AG1150,* Department of Primary Industries, GPO Box 4440, Melbourne, VIC 3001, Australia.

http://new.dpi.vic.gov.au/forestry/forest-management/forest-products-and-processing/propertiesof-firewood

DRET (2009), *Australian Petroleum Statistics 2008*, Department of Resources, Energy and Tourism, GPO Box 9839, Canberra, ACT 2601, Australia.

http://www.ret.gov.au/resources/fuels/aps/aps-08/Pages/default.aspx

DTRS (2003), 2002-2003 Report on the Operation of the Local Government (Financial Assistance) Act 1995, Appendix F - Australian Classification of Local Governments, Department of Transport and Regional Services, GPO Box 594, Canberra, ACT 2601, Australia.

http://www.regional.gov.au/local/publications/reports/2002_2003/

DWE (2009), *NSW gas networks Performance report 2007-08*, NSW Department of Water and Energy, GPO Box 3889, Sydney, NSW 2001, Australia.

http://www.industry.nsw.gov.au/energy/gas/networks/performance/gas_networks_perform_repo rt.pdf

EA (2001), State of Knowledge Report: Air Toxics and Indoor Air Quality in Australia, Environment Australia, GPO Box 787, Canberra, ACT 2601, Australia.

http://www.environment.gov.au/atmosphere/airquality/publications/sok/index.html

EC (2000), Study on the Potential for Reducing Emissions of Volatile Organic Compounds (VOC) Due To The Use Of Decorative Paints and Varnishes for Professional and Non-professional Use, European Commission Environment DG, B - 1049 Brussels, Belgium.

http://ec.europa.eu/environment/air/pdf/paint_solvents/decopaint.pdf

EEA (2009), *EMEP/EEA Air Pollutant Emission Inventory Guidebook 2009*, European Environment Agency, Kongens Nytorv 6, DK - 1050 Copenhagen K, Denmark. http://www.eea.europa.eu/publications/emep-eea-emission-inventory-guidebook-2009/#

EEA (2010), EMEP/EEA Air Pollutant Emission Inventory Guidebook 2009, Distribution of oil products, European Environment Agency, Kongens Nytorv 6, DK - 1050 Copenhagen K, Denmark. http://www.eea.europa.eu/publications/emep-eea-emission-inventory-guidebook-2009/part-bsectoral-guidance-chapters/1-energy/1-b-fugitives/1-b-2-a-v-distribution-of-oil-products.pdf

Environ (1997), Guidance for Estimating Lawn and Garden Equipment Activity Levels, EIIP Technical Report Series Volume IV: Chapter 3, Emission Inventory Improvement Program, Contract Number: 68-D30035, Work Assignment Number: III-98, ENVIRON Corporation, 101 Rowland Way, Novato, CA 94945, USA. http://www.epa.gov/ttn/chief/eiip/techreport/volume04/iv03.pdf

Environ (2009), VOCs from Surface Coatings – Assessment of the Categorisation, VOC Content and Sales Volumes of Coating Products Sold in Australia, Environ Australia Pty Ltd, P.O. Box 560, North Sydney, NSW 2060, Australia.

http://www.ephc.gov.au/sites/default/files/AAQ_Rpt__VOCs_from_Surface_Coatings_Final_2009 0930.pdf Environ (2010), *Investigation into the Feasibility of Alternatives to Cutback Bitumen in the NSW Greater Metropolitan Region,* Environ Australia Pty Ltd, P.O. Box 560, North Sydney, NSW 2060, Australia.

EPAV (1999), *Hazardous Air Pollutants - A Review of Studies Performed in Australia and New Zealand*, Environment Protection Authority of Victoria, GPO Box 4395QQ, Melbourne, Victoria 3001 Australia.

ERG (1996a), Consumer and Commercial Solvent Use, EIIP Technical Report Series Volume III: Chapter 5, Emission Inventory Improvement Program, Eastern Research Group Inc., Post Office Box 2010, Morrisville, North Carolina 27560, USA.

http://www.epa.gov/ttn/chief/eiip/techreport/volume03/iii05.pdf

ERG (1996b), Graphic Arts, EIIP Technical Report Series Volume III: Chapter 7, Emission Inventory Improvement Program, Eastern Research Group Inc., Post Office Box 2010, Morrisville, North Carolina 27560, USA.

http://www.epa.gov/ttn/chief/eiip/techreport/volume03/iii07.pdf

ERG (2001), Asphalt Paving, EIIP Technical Report Series Volume III: Chapter 17, Emission Inventory Improvement Program, Eastern Research Group, Inc., Morrisville, NC 27560, USA. http://www.epa.gov/ttn/chief/eiip/techreport/volume03/iii17_apr2001.pdf

Hurley, P.J (2005), *The Air Pollution Model (TAPM) Version 3, User Manual, Internal Paper No. 31*, CSIRO Atmospheric Research, PB 1, Aspendale, Victoria 3195, Australia.

IBISWorld (2008), *Ink Manufacturing in Australia:* C2547, *IBISWorld Industry Report, 19 December 2008*, IBISWorld, Level 3, 1 Collins St, Melbourne, VIC 3000, AUSTRALIA. http://www.ibisworld.com.au/industry/default.aspx?indid=192

ICSM (2006), *Geocentric Datum of Australia Technical Manual Version* 2.3, Intergovernmental Committee on Surveying and Mapping, GPO Box 378, Canberra, ACT 2601, Australia. http://www.icsm.gov.au/icsm/gda/gdatm/gdav2.3.pdf

II (2009), *NSW Gas Networks Performance Report 2008-09*, Industry and Investment, GPO Box 3889, Sydney, NSW 2001, Australia.

http://www.industry.nsw.gov.au/__data/assets/pdf_file/0004/317263/NSW-gas-networks-2008-09-performance-report.pdf

Informark (2009a), Architectural & Decorative Paints & Enamels, Industry Aggregate Sales Quantity, March Quarter 2008, Informark, GPO Box 1998, Canberra, ACT 2601, Australia.

Informark (2009b), Architectural & Decorative Paints & Enamels, Industry Aggregate Sales Quantity, June Quarter 2008, Informark, GPO Box 1998, Canberra, ACT 2601, Australia.

Informark (2009c), Architectural & Decorative Paints & Enamels, Industry Aggregate Sales Quantity, September Quarter 2008, Informark, GPO Box 1998, Canberra, ACT 2601, Australia.

Informark (2009d), Architectural & Decorative Paints & Enamels, Industry Aggregate Sales Quantity, December Quarter 2008, Informark, GPO Box 1998, Canberra, ACT 2601, Australia.

Informark (2009e), *Woodcare Products, Industry Aggregate Sales Quantity, March Quarter 2008, Informark,* GPO Box 1998, Canberra, ACT 2601, Australia.

Informark (2009f), Woodcare Products, Industry Aggregate Sales Quantity, June Quarter 2008, Informark, GPO Box 1998, Canberra, ACT 2601, Australia.

Informark (2009g), Woodcare Products, Industry Aggregate Sales Quantity, September Quarter 2008, Informark, GPO Box 1998, Canberra, ACT 2601, Australia.

Informark (2009h), Woodcare Products, Industry Aggregate Sales Quantity, December Quarter 2008, Informark, GPO Box 1998, Canberra, ACT 2601, Australia.

Iseekgolf.com (2011), *Australian Course Directory*, 17 Guthrie St, Paddington, QLD 4064, Australia. <u>http://www.iseekgolf.com/courses/</u>

JEMENA (2009a), Jemena Gas Networks (NSW) Ltd Access Arrangement August 2009, Jemena Gas Networks (NSW) Ltd, 321 Ferntree Gully Road, Mount Waverley, VIC 3149, Australia. http://www.aer.gov.au/content/item.phtml?itemId=730686&nodeId=c9a01d58996dc0823ddb3e7ea7 b11191&fn=Access%20arrangement%20proposal.pdf

JEMENA (2009b), *Jemena Gas Networks (NSW) Ltd Access Arrangement Information August 2009*, Jemena Gas Networks (NSW) Ltd, 321 Ferntree Gully Road, Mount Waverley, VIC 3149, Australia. http://www.aer.gov.au/content/item.phtml?itemId=730688&nodeId=232743cd6b5b00531bd17b9e01 c761cc&fn=Access%20arrangement%20information.pdf

JEMENA (2009c), *Eastern Gas Pipeline Measurement Manual, Doc. No. PO-500-TM-GM-001*, Jemena Gas Networks (NSW) Ltd, 321 Ferntree Gully Road, Mount Waverley, VIC 3149, Australia. http://www.jemena.com.au/operations/transmission/egp/assetDetails/opInformation/download/ EGPMeasurementManual.pdf

JEMENA (2009d), *Eastern Gas Pipeline Operations Manual Doc. No. OP2000-GE-MN-GE-00002*, Jemena Gas Networks (NSW) Ltd, 321 Ferntree Gully Road, Mount Waverley, VIC 3149, Australia. http://www.jemena.com.au/operations/transmission/egp/assetDetails/opInformation/download/ EGPOperationsManual.pdf

Keith, L.H. and Telliard, W.A (1979), *Priority Pollutants Part 1. A Perspective View*. Environmental Science and Technology, Volume 13, Number 4, April 1979, pp 416–424, American Chemical Society, 1155 Sixteenth Street N.W., Washington, DC 2003.

Kleenheat Gas (2008), *MSDS for Liquified Petroleum Gas*, Kleenheat Gas, Unit 11, 6 Grand Avenue, CAMELLIA, NSW 2142, Australia. <u>http://www.kleenheat.com.au/pdf/PROMS502%20LPG.pdf</u>

NEPC (2003), National Environment Protection (Ambient Air Quality) Measure – As varied 7 July 2003 Environment Protection & Heritage Council, Level 5, 81 Flinders Street, Adelaide, SA 5000, Australia. http://www.ephc.gov.au/sites/default/files/AAQ_NEPM_Ambient_Air_Quality_NEPM_Varied_s caleplus_Final_200305_1.pdf *Air Emissions Inventory for the Greater Metropolitan Region of New South Wales 5. References*

NEPC (2004), *National Environment Protection (Air Toxics) Measure* – As made 3 December 2004, Environment Protection & Heritage Council, Level 5, 81 Flinders Street, Adelaide, SA 5000, Australia. http://www.ephc.gov.au/sites/default/files/AT_NEPM_Air_Toxics_NEPM_20041203.pdf

NEPC (2006), National Environment Protection (Air Toxics) Measure, Air Toxics Tier 2 Prioritisation Methodology, Environment Protection & Heritage Council, Level 5, 81 Flinders Street, Adelaide, SA 5000, Australia.

http://www.ephc.gov.au/sites/default/files/AT_T2__Tier_2_Prioritisation_Methodology_200606.pd <u>f</u>

NEPC (2008), National Environment Protection (National Pollutant Inventory) Measure – As varied 13 November 2008, Environment Protection & Heritage Council, Level 5, 81 Flinders Street, Adelaide, SA 5000, Australia.

http://www.ephc.gov.au/sites/default/files/NPI_NEPM_NPI_NEPM_as_Varied_200811.pdf

Pechan (2004), *Estimating Ammonia Emissions from Anthropogenic Non-Agricultural Sources – Draft Final Report*, E.H. Pechan & Associates Inc., 5528-B Hempstead Way, Springfield, VA 22151, USA. http://www.epa.gov/ttn/chief/eiip/techreport/volume03/eiip_areasourcesnh3.pdf

Pechan (2005), Documentation for Aircraft, Commercial Marine Vessel, Locomotive, and other NonRoad Components of the National Emissions Inventory, Volume I – Methodology, EPA Contract No.: 68-D-02-063, Work Assignment No.: 3-01, Prepared for: Laurel Driver, Emission Factor and Inventory Group (D205-01), Emissions, Monitoring and Analysis Division, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina, 27711, Prepared by: E.H. Pechan & Associates, Inc., 3622 Lyckan Parkway, Suite 2002, Durham, North Carolina 27707, USA.

ftp://ftp.epa.gov/EmisInventory/2002finalnei/documentation/mobile/2002nei_mobile_nonroad_m
ethods.pdf

Pechan (2006), Documentation for the Final 2002 NonPoint Sector (FEB 06 version) National Emission Inventory for Criteria and Hazardous Air Pollutants, EPA Contract No. 68-D-02-063, Work Assignment Nos. 2-11, 3-02, and 4-01, Pechan Report No. 05.10.001/9014.401, Prepared for: Emissions Inventory and Analysis Group (C339-02), Air Quality Assessment Division, Office of Air Quality Planning and Standards, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711, Prepared by: E. H. Pechan & Associates Inc., E.H. Pechan & Associates, Inc., 3622 Lyckan Parkway, Suite 2002, Durham, NC 27707, USA.

ftp://ftp.epa.gov/EmisInventory/2002finalnei/documentation/nonpoint/2002nei_final_nonpoint_d
ocumentation0206version.pdf

ftp://ftp.epa.gov/EmisInventory/2002finalnei/documentation/nonpoint/appendix_c_final02npnei_ feb06_version.zip

Pechan (2009a), Speciate 4.2 Database Development Documentation, EPA/600-R-09/038, EPA Contract No. EP-D-07-097, WA 1-03/2-05, Pechan Report No. 08.09.001/9016.103, Prepared for: Mr. Lee Beck (E305-02), Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711, Prepared by: Drs. Ying Hsu and Frank Divita Jr., E.H. Pechan & Associates Inc., 5528-B Hempstead Way, Springfield, VA 22151, USA.

http://www.epa.gov/ttnchie1/software/speciate/index.html http://www.epa.gov/nrmrl/pubs/600r09038/600r09038.pdf Pechan (2009b), 2008 National Emissions Inventory, 2008 Nonpoint Emission Estimates, Solvent Usage – Other, 242500000, Graphic Arts, E.H. Pechan & Associates Inc., 5528-B Hempstead Way, Springfield, VA 22151, USA.

http://projects.pechan.com/EPA/Non-Point_Emission_Estimates/index.html#SolventUsageOther

Pechan (2009c), 2008 National Emissions Inventory, 2008 Nonpoint Emission Estimates, Residential Heating, 2104008nnn & 2104009000, Residential Wood Combustion and Wax Firelogs, E.H. Pechan & Associates Inc., 5528-B Hempstead Way, Springfield, VA 22151, USA.

http://projects.pechan.com/EPA/Non-Point_Emission_Estimates/index.html#ResidentialHeating

PCO (2010a), *Protection of the Environment Operations (Operations) Act* 1997, New South Wales Parliamentary Counsel's Office, GPO Box 4191, Sydney NSW 2001, Australia. http://www.legislation.nsw.gov.au/maintop/view/inforce/act+156+1997+cd+0+N

PCO (2010b), Protection of the Environment Operations (General) Regulation 2009, New South Wales Parliamentary Counsel's Office, GPO Box 4191, Sydney NSW 2001, Australia. http://www.legislation.nsw.gov.au/scanview/inforce/s/1/?SRTITLE=%22Protection%20of%20the% 20Environment%20Operations%20(General)%20Regulation%202009%22&nohits=y

PCO (2011), Protection of the Environment Operations (Clean Air) Regulation 2010, New South Wales Parliamentary Counsel's Office, GPO Box 4191, Sydney NSW 2001, Australia. http://www.legislation.nsw.gov.au/maintop/view/inforce/subordleg+428+2010+cd+0+N

SLR Consulting (2011), Desktop Literature Review of Aerosols and Solvents Emission Source Category: Final Report, A consultancy report prepared for Department of Environment, Climate Change and Water NSW, SLR Consulting Australia Pty Ltd, Suite 7, 240 Waterworks Road, Ashgrove, QLD 4060, Australia.

Standards Australia (1992a), AS 4012-1992: Domestic solid fuel burning appliances - Method for determination of power output and efficiency, Standards Australia Limited, 286 Sussex Street, Sydney, NSW, 2000.

http://www.saiglobal.com/shop/Script/Details.asp?docn=supr000006314

Standards Australia (1992b), *AS* 4013-1992: *Domestic solid fuel burning appliances - Method for determination of flue gas emission*, Standards Australia Limited, 286 Sussex Street, Sydney, NSW, 2000. http://www.saiglobal.com/shop/Script/Details.asp?docn=supr000006315

Standards Australia (1999a), *AS/NZS* 4012:1999: *Domestic solid fuel burning appliance - Method for determination of power output and efficiency*, Standards Australia Limited, 286 Sussex Street, Sydney, NSW, 2000.

http://www.saiglobal.com/shop/Script/Details.asp?DocN=stds000023907

Standards Australia (1999b), *AS/NZS* 4013:1999: *Domestic solid fuel burning appliances - Method for determination of flue gas emission*, Standards Australia Limited, 286 Sussex Street, Sydney, NSW, 2000. http://www.saiglobal.com/shop/Script/Details.asp?DocN=stds000023945

TDC (2009), *TDC Forecasts for Population and VKT 2006 to 2036 Ref: 09/088*, Transport Data Centre, GPO Box 1620, Sydney, NSW 2001, Australia.

TR (2009), *Domestic Pollution Survey, Project Reference: 3388*, Taverner Research, Level 2, 88 Foveaux St, Surry Hills, NSW, 2010, Australia.

USEPA (1979), AP-42, Fifth Edition, Volume I, Chapter 4: Evaporation Loss Sources, 4.5 Asphalt Paving Operations, Technology Transfer Network, Clearinghouse for Inventories & Emissions Factors, United States Environmental Protection Agency, Office of Air Quality Planning and Standards, Research Triangle Park, NC 27711, USA.

http://www.epa.gov/ttn/chief/ap42/ch04/final/c4s05.pdf

USEPA (1995a), AP 42, Fifth Edition, Compilation of Air Pollutant Emission Factors, Volume 1: Stationary Point and Area Sources, Technology Transfer Network, Clearinghouse for Inventories & Emissions Factors, United States Environmental Protection Agency, Office of Air Quality Planning and Standards, Research Triangle Park, NC 27711, USA.

http://www.epa.gov/ttn/chief/ap42/index.html

USEPA (1995b), Study of Volatile Organic Compound Emissions from Consumer and Commercial Products, Volume 1, Report to Congress, EPA-453/R-94-066-A, United States Environmental Protection Agency, Office of Air Quality Planning and Standards, Research Triangle Park, NC 27711, USA. http://www.epa.gov/nscep/2000WKP3.pdf

USEPA (1995c), Study of Volatile Organic Compound Emissions from Consumer and Commercial Products, Volume 2, Comprehensive Emissions Inventory, EPA-453/R-94-066-B, United States Environmental Protection Agency, Office of Air Quality Planning and Standards, Research Triangle Park, NC 27711, USA.

http://www.epa.gov/nscep/2000WKTI.pdf

USEPA (1996a), *AP 42, Fifth Edition, Volume I, Chapter 1: External Combustion Sources, 1.9 Residential Fireplaces,* Technology Transfer Network, Clearinghouse for Inventories & Emission Factors, United States Environmental Protection Agency, Office of Air Quality Planning and Standards, Research Triangle Park, NC 27711, USA.

http://www.epa.gov/ttn/chief/ap42/ch01/final/c01s09.pdf

USEPA (1996b), AP 42, Fifth Edition, Volume I, Chapter 1: External Combustion Sources, 1.10 Residential Wood Stoves, Technology Transfer Network, Clearinghouse for Inventories & Emission Factors, United States Environmental Protection Agency, Office of Air Quality Planning and Standards, Research Triangle Park, NC 27711, USA.

http://www.epa.gov/ttn/chief/ap42/ch01/final/c01s10.pdf

USEPA (1998a), AP 42, Fifth Edition, Volume I, Chapter 1: External Combustion Sources, 1.4 Natural Gas Combustion, Technology Transfer Network, Clearinghouse for Inventories & Emission Factors, United States Environmental Protection Agency, Office of Air Quality Planning and Standards, Research Triangle Park, NC 27711, USA.

http://www.epa.gov/ttn/chief/ap42/ch01/final/c01s04.pdf

2008 Calendar Year Domestic-Commercial Emissions: Results 5. References

USEPA (1998b), AP 42, Fifth Edition, Volume I, Chapter 1: External Combustion Sources, 1.1 Bituminous And Subbituminous Coal Combustion, Technology Transfer Network, Clearinghouse for Inventories & Emission Factors, United States Environmental Protection Agency, Office of Air Quality Planning and Standards, Research Triangle Park, NC 27711, USA.

http://www.epa.gov/ttn/chief/ap42/ch01/final/c01s01.pdf

USEPA (2000), Greenhouse Gases from Small-Scale Combustion Devices in Developing Countries: Phase IIA Household Stoves in India, EPA/600/R-00/052, United States Environmental Protection Agency, Office of Air and Radiation, 1200 Pennsylvania Avenue, NW Washington, DC 20760, USA. http://www.epa.gov/nrmrl/pubs/600r00052/600R00052.pdf

USEPA (2003), *Technology Transfer Network - Clearinghouse for Inventories & Emissions Factors*, United States Environmental Protection Agency, Office of Air Quality Planning and Standards, Research Triangle Park, NC 27711, USA.

http://www.epa.gov/ttn/chief/eidocs/eipreparationmodeling_april2003.pdf

USEPA (2005), *Emissions Modeling Clearinghouse, CAIR Platform Temporal Allocation,* Technology Transfer Network, Clearinghouse for Inventories & Emission Factors, United States Environmental Protection Agency, Office of Air Quality Planning and Standards, Research Triangle Park, NC 27711, USA.

http://www.epa.gov/ttn/chief/emch/temporal/

USEPA (2007a), *Emission Inventory Improvement Program, EIIP Technical Report Series, Volumes* 1-10, Technology Transfer Network, Clearinghouse for Inventories & Emissions Factors, United States Environmental Protection Agency, Office of Air Quality Planning and Standards, Research Triangle Park, NC 27711, USA.

http://www.epa.gov/ttn/chief/eiip/techreport/

USEPA (2007b), Estimating Emissions Associated with Portable Fuel Containers (PFCs), EPA420-R-07-001, United States Environmental Protection Agency, Office of Transportation and Air Quality, 1200 Pennsylvania Avenue, NW Washington, DC 20460, USA. http://www.epa.gov/otaq/regs/toxics/420r07001.pdf

USEPA (2008a), *AP* 42, *Fifth Edition, Volume I, Chapter 1: External Combustion Sources, 1.5 Liquified Petroleum Gas Combustion,* Technology Transfer Network, Clearinghouse for Inventories & Emission Factors, United States Environmental Protection Agency, Office of Air Quality Planning and Standards, Research Triangle Park, NC 27711, USA.

http://www.epa.gov/ttn/chief/ap42/ch01/final/c01s05.pdf

USEPA (2008b), *Climate Leaders Greenhouse Gas Inventory Protocol Core Module Guidance, Direct Emissions from Mobile Combustion Sources, EPA430-K-08-004,* United States Environmental Protection Agency, Office of Air and Radiation, 1200 Pennsylvania Avenue, NW Washington, DC 20760, USA. http://www.epa.gov/climateleaders/documents/resources/mobilesource_guidance.pdf USEPA (2009), *NONROAD2008a Model*, Transportation and Air Quality, United States Environmental Protection Agency, Office of Transportation and Air Quality, 1200 Pennsylvania Avenue, NW Washington, DC 20460, USA.

http://www.epa.gov/otaq/nonrdmdl.htm

USEPA (2010a), *The Clean Air Act Amendments of 1990 List of Hazardous Air Pollutants*, Technology Transfer Network, Air Toxics Website, United States Environmental Protection Agency, Office of Air Quality Planning and Standards, Research Triangle Park, NC 27711, USA. <u>http://www.epa.gov/ttnatw01/orig189.html</u>

USEPA (2010b), *AP* 42, *Fifth Edition, Volume I, Chapter 1: External Combustion Sources,* 1.3 *Fuel Oil Combustion,* Technology Transfer Network, Clearinghouse for Inventories & Emission Factors, United States Environmental Protection Agency, Office of Air Quality Planning and Standards, Research Triangle Park, NC 27711, USA.

http://www.epa.gov/ttn/chief/ap42/ch01/final/c01s03.pdf

USEPA (2011a), 2008 National Emissions Inventory Data, Technology Transfer Network, Clearinghouse for Inventories & Emissions Factors, United States Environmental Protection Agency, Office of Air Quality Planning and Standards, Research Triangle Park, NC 27711, USA. http://www.epa.gov/ttn/chief/net/2008inventory.html#inventorydoc

USEPA (2011b), *Nonroad Engines, Equipment, and Vehicles,* Transportation and Air Quality, United States Environmental Protection Agency, Office of Transportation and Air Quality, 1200 Pennsylvania Avenue, NW Washington, DC 20460, USA.

http://www.epa.gov/nonroad/

Van den Berg, M., Birnbaum, L., Bosveld, A., Brunström, B., Cook, P., Feeley, M., Giesy, J., Hanberg, A., Hasegawa, R., Kennedy, S., Kubiak, T., Larsen, J., van Leeuwen, F., Liem, A., Nolt, C., Peterson, R., Poellinger, L. Safe, S., Schrenk, D., Tillitt, D., Tysklind, M., Younes, M., Wærn, F. and Zacharewski, T (1998), *Toxic Equivalency Factors (TEFs) for PCBs, PCDDs, PCDFs for Humans and Wildlife,* Environmental Health Perspectives, Volume 106, Number 12, December 1998, pp 775 – 792, c/o Brogan & Partners, 14600 Weston Parkway, Cary, NC 27513, USA.