Technical Report No. 3

Air Emissions Inventory for the Greater Metropolitan Region in New South Wales

2008 Calendar Year

Commercial Emissions: Results

ACKNOWLEDGMENTS

This study was performed with the help of organisations and individuals who should be recognised for their efforts.

Data provided by other government departments and service providers, including the Australian Bureau of Agricultural and Research Economics and Sciences, Australian Bureau of Statistics, Australian Paint Manufacturers Federation, Bureau of Transport Statistics, Department of Resources, Energy and Tourism, NSW Department of Health and Ageing, NSW Registry of Births, Deaths & Marriages, and Winetitles, were essential for the completion of this study.

The work of a number of individuals is acknowledged, including Mr Nick Agapides, Manager Major Air Projects and Mr Kelsey Bawden, Senior Technical Policy Advisor, for their efforts in project scoping or management, developing emission estimation methodologies, collecting activity data, developing databases, estimating emissions and/or preparing this report.

© Copyright State of NSW and the Environment Protection Authority

The Environment Protection Authority and the State of NSW are pleased to allow this material to be reproduced in whole or in part for educational and non-commercial use, provided the meaning is unchanged and its source, publisher and authorship are acknowledged.

Published by: Environment Protection Authority 59 Goulburn Street PO Box A290 Sydney South 1232 Phone: (02) 9995 5000 (switchboard) Phone: 131 555 (environment information and publications requests) Fax: (02) 9995 5999 TTY: (02) 9211 4723

Email: <u>info@environment.nsw.gov.au</u> Website: <u>www.epa.nsw.gov.au</u>

ISBN 978-1-74293-464-8

EPA 2012/0047

August 2012

EXECUTIVE SUMMARY

An air emissions inventory project for commercial sources has taken over 2 years to complete. The base year of the commercial inventory represents activities that took place during the 2008 calendar year and is accompanied by emission projections in yearly increments up to the 2036 calendar year. The area included in the inventory covers the greater Sydney, Newcastle and Wollongong regions, known collectively as the Greater Metropolitan Region (GMR).

The inventory region defined as the GMR measures 210 km (east-west) by 273 km (north-south). The inventory region is defined in Table ES-1 and shown in Figure ES-1.

		·····		000	
Region	South-west corne	r MGA1 coordinates	North-east corner MGA1 coordinates		
Negion	Easting (km)	Northing (km)	Easting (km)	Northing (km)	
Greater Metropolitan	210	6159	420	6432	
Sydney	261	6201	360	6300	
Newcastle	360	6348	408	6372	
Wollongong	279	6174	318	6201	

Table ES-1: Definition of Greater Metropolitan, Sydney, Newcastle and Wollongong regions

¹Map Grid of Australia based on the Geocentric Datum of Australia 1994 (GDA94) (ICSM, 2006).

The commercial emissions inventory includes emissions from 5153 businesses. A total of 23,228 emission sources have been included in the commercial emissions inventory, consisting of 459 point sources and 22,769 fugitive sources. Table ES-2 presents the number and type of emission sources included in the commercial emissions inventory for each area considered.

		5	
Area	Point sources	Fugitive sources	Total sources
Sydney	330	16,089	16,419
Newcastle	32	1,436	1,468
Wollongong	15	867	882
Non Urban	82	4,377	4,459
GMR	459	22,769	23,228

Table ES-2: Emission source summary

The pollutants inventoried include criteria pollutants specified in the Ambient Air Quality NEPM (NEPC, 2003), air toxics associated with the National Pollutant Inventory NEPM (NEPC, 2008) and the Air Toxics NEPM (NEPC, 2004), and any other pollutants associated with state-specific programs, i.e. Load Based Licensing (Protection of the Environment Operations (General) Regulation 2009 (PCO, 2010)) and the Protection of the Environment Operations (Clean Air) Regulation 2010 (PCO, 2011).

2008 Calendar Year Commercial Emissions: Results Executive Summary

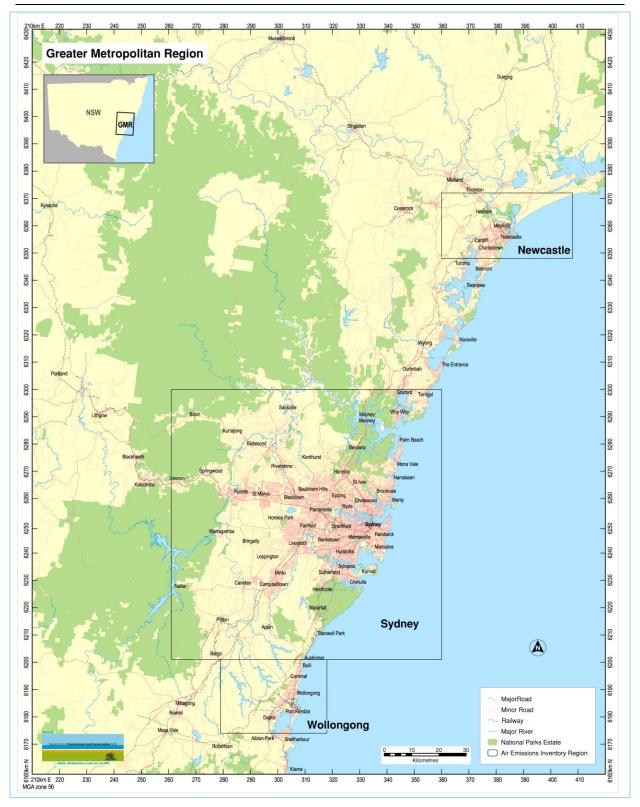


Figure ES-1: Definition of Greater Metropolitan, Sydney, Newcastle and Wollongong regions

The location of each emission source included in the commercial air emissions inventory is shown in Figure ES-2.

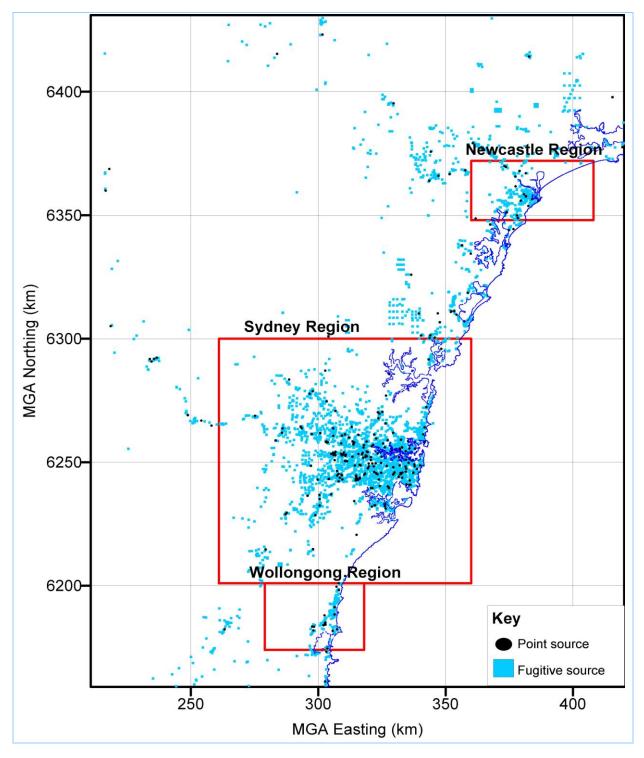


Figure ES-2: Commercial emission sources in the GMR

Table ES-3 shows the total estimated annual emissions (for selected substances) from all commercial sources in the GMR and in the Sydney, Newcastle, Wollongong and Non Urban regions.

	Emissions (tonne/year)									
Substance										
	Sydney	Newcastle	Wollongong	Non Urban	GMR					
1,3 BUTADIENE	1.52	0.210	0.0637	0.323	2.12					
ACETALDEHYDE	2.58	0.002	0.0007	0.0042	2.59					
BENZENE	38.2	3.23	2.54	11.1	55.1					
CARBON MONOXIDE	335	9.20	19.7	24.3	389					
FORMALDEHYDE	48.4	0.110	0.168	0.50	49.2					
ISOMERS OF XYLENE	87.9	4.70	2.77	47.7	143					
LEAD AND COMPOUNDS	0.394	0.0045	0.0013	0.0362	0.436					
OXIDES OF NITROGEN	344	38.5	12.1	106	501					
PARTICULATE MATTER ≤ 10 µm	1,111	129	47.7	732	2,020					
PARTICULATE MATTER ≤ 2.5 µm	485	30.0	13.9	167	695					
POLYCYCLIC AROMATIC HYDROCARBONS	0.012	0.0001	0.0002	0.0004	0.013					
SULFUR DIOXIDE	108	1.62	0.73	69.8	180					
TETRACHLOROETHYLENE	358	21.4	16.9	59.7	456					
TOLUENE	424	18.1	10.3	66.8	520					
TOTAL SUSPENDED PARTICULATE	3,332	327	121	2,416	6,195					
TOTAL VOLATILE ORGANIC COMPOUNDS	6,652	476	358	1,689	9,176					
TRICHLOROETHYLENE	58.7	0.00004	0.0001	0.016	58.7					

Table ES-3: Total estimated annual emissions from commercial sources in each region

Figure ES-3 shows the proportion of total estimated annual emissions (for selected substances) from all commercial sources in the GMR and in the Sydney, Newcastle, Wollongong and Non Urban regions.

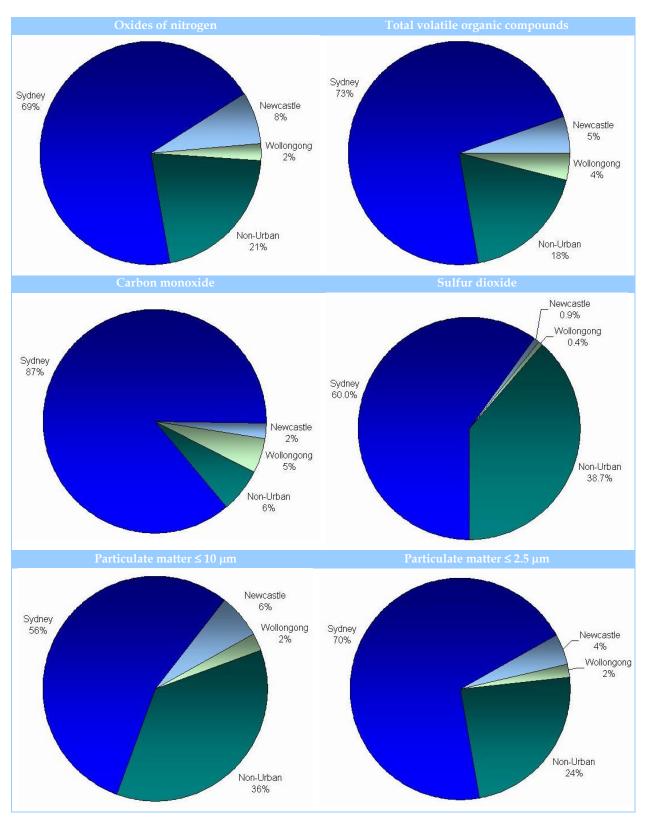


Figure ES-3: Proportion of total estimated annual emissions from commercial sources in each region

Table ES-4 shows total estimated annual emissions (for selected substances) from each commercial source type in the GMR.

	Emissions (tonne/year)						-
Activity	СО	NO _x	TSP	PM ₁₀	PM _{2.5}	SO ₂	VOC
Agricultural machinery							
manufacturing	0	0	0	0	0	0	0.00023
Aircraft manufacturing	2.35	2.8	0.213	0.213	0.213	0.0146	0.154
Aluminium rolling,							
drawing, extruding	0	0	0.0705	0.0705	0.0705	0	0
Automotive component							
manufacturing n.e.c.	0.21	0.251	1.21	0.25	0.0771	0.00131	14
Automotive fuel retailing	0	0	0	0	0	0	4,910
Basic iron and steel							
manufacturing	5.42	8.6	14.9	9.91	8.32	0.0337	12.3
Basic non-ferrous metal							
manufacturing n.e.c.	0.936	1.12	15.8	10	7.55	0.134	0.965
Beer and malt							
manufacturing	4.77	5.68	3.39	3.39	3.39	8.91	21.9
Biscuit manufacturing	6.94	8.26	0.628	0.628	0.628	0.0432	0.454
Bread manufacturing	13.3	15.8	2.25	1.53	1.39	0.0826	143
Cake and pastry							
manufacturing	1.34	1.59	0.121	0.121	0.121	0.00832	12.2
Ceramic product							
manufacturing	28.6	6.44	49.6	30.8	23.2	47.7	0.63
Ceramic product							
manufacturing n.e.c.	0.0048	0.0348	0.00111	0.00108	0.00107	0	0.00084
Chemical product							
manufacturing n.e.c.	4.54	5.54	30.8	9.52	1.92	29.6	520
Chemical wholesaling	0	0	7.9	1.52	0.367	0	81.4
Concrete slurry							
manufacturing	0	0	20.2	7.06	1.12	0	0.00006
Confectionery							
manufacturing	0.353	1.41	0.0746	0.0708	0.0702	0.00481	1.35
Construction material							
mining n.e.c.	0	0	106	50.3	10.3	0	0.00603
Corrugated paperboard							
container manufacturing	4.82	5.74	0.436	0.436	0.436	0.03	0.316
Electrical cable and wire							
manufacturing	0	0	3.33	1.22	0.722	0	84
Electrical and equipment							
manufacturing n.e.c.	0.0368	0.422	0.429	0.429	0.429	0.00023	4.18
Explosive manufacturing	0	0	0	0	0	0	0.0213
Fabricated metal product							
manufacturing n.e.c.	1.64	3.41	12.4	4.85	3.48	0.0101	105
Food manufacturing n.e.c.	13	29.2	2.37	1.65	1.37	17.8	6.21
Fruit and vegetable							
processing	2.49	1.48	0.225	0.225	0.225	0.0155	0.163
Funeral directors,	3.07	6.73	0.318	0.0955	0.0636	11.9	0.283

Table ES-4: Total estimated annual emissions by commercial source type in the GMR

Air Emissions Inventory for the Greater Metropolitan Region of New South Wales Executive Summary

			Emissi	ons (tonne/y	year)		
Activity	СО	NO _x	TSP	PM ₁₀	PM _{2.5}	SO ₂	VOC
crematoria and cemeteries							
Furniture manufacturing							
n.e.c.	1.59	1.9	0.15	0.145	0.144	0.00991	7.24
Gas supply	3.09	3.68	0.28	0.28	0.28	0.0192	0.202
Glass and glass product							
manufacturing	3.72	3.92	8.58	8.41	8.26	0.176	2.86
Gravel and sand							
quarrying	0	0	5,080	1,390	306	0	0.105
Hospitals	54.2	66.5	5.01	5	5	0.469	3.79
Ice-cream manufacturing	0.294	2.08	0.11	0.0964	0.0938	0.00639	0.438
Industrial gas							
manufacturing	0.00188	0.0136	2.77	0.75	0.0868	0	5.82
Ink manufacturing	0	0	0.688	0.619	0.611	0	10.6
Laundries and dry-							
cleaners	3.87	4.68	0.356	0.356	0.356	0.0245	474
Lifting and material							
handling equipment							
manufacturing	0	0.124	0.0245	0.0245	0.0245	0	0.745
Log sawmilling	3.29	64.8	45.2	18.4	7.42	49.5	90
Medicinal and							
pharmaceutical product							
manufacturing	2.96	3.61	0.27	0.27	0.27	0.0183	2.04
Metal coating and							
finishing	5.16	32.4	25	14.6	12.5	0.0321	21.5
Milk and cream							
processing	1.03	1.22	0.093	0.093	0.093	0.0064	0.0673
Mining and construction							
machinery manufacturing	0	0	0.00508	0.00114	0.00043	0	1.28
Non-building construction							
n.e.c.	0.0236	0.171	2.47	0.477	0.119	0	0.00412
Non-ferrous metal casting	0.0072	0.0288	0.384	0.244	0.183	0.0217	0.00064
Non-metallic mineral							
product manufacturing							
n.e.c.	0.485	0.577	0.0439	0.0439	0.0439	0.00302	106
Oil and fat manufacturing	5.32	11.4	0.482	0.482	0.482	0.0331	0.349
Organic industrial							
chemical manufacturing							
n.e.c.	0.0251	0.0299	0.00227	0.00227	0.00227	0.00016	4.54
Paint manufacturing	0	0	34.3	29.3	28.3	0	124
Paper product							
manufacturing n.e.c.	1.22	1.73	0.13	0.129	0.129	0.0319	0.498
Petroleum product							
wholesaling	0	0	2.35	0.504	0.0988	0	125
Plaster product							
manufacturing	138	37.3	16.1	13.6	7.81	3.4	3.41
Plastic bag and film							
manufacturing	0	0	0.899	0.899	0.832	0	17.7
Plastic injection-moulded							
product manufacturing	2.96	3.54	20.3	5.96	0.839	0.0218	0.441

2008 Calendar Year Commercial Emissions: Results Executive Summary

A stratter			Emissi	ons (tonne/y	year)					
Activity	CO	NO _x	TSP	PM_{10}	PM _{2.5}	SO_2	VOC			
Plastic product (rigid fibre										
reinforced) manufacturing	1.4	1.66	0.433	0.194	0.139	0.00869	43.4			
Port operators	31.3	102	8.95	8.95	8.95	9.94	13.7			
Poultry farming (eggs)	0	0	116	50.5	11.6	0	0			
Poultry farming (meat)	1.16	1.38	303	132	30.3	0.00719	0.0757			
Prepared animal and bird										
feed manufacturing	1.3	1.55	0.118	0.118	0.118	0.0101	0.0853			
Printing	14.9	26	1.46	1.46	1.46	0.0933	1,320			
Rail transport	0	0	0	0	0	0	0.00126			
Railway equipment										
manufacturing	0	0	0	0	0	0	0.058			
Road and bridge										
construction	0	0	12.7	3.5	0.407	0	0.0149			
Rubber product										
Manufacturing n.e.c.	0.0072	0.0288	0.28	0.0769	0.0111	0.0102	0.00687			
Scientific research	0.927	0.552	0.0839	0.0839	0.0839	0.00577	0.0607			
Services to air transport	2.24	2.67	0.203	0.203	0.203	0.014	71.4			
Smash repairing	0	0	0	0	0	0	393			
Soap and other detergent										
manufacturing	0	0	2.35	0.665	0.0674	0	0.0289			
Soft drink, cordial and										
syrup manufacturing	3.46	4.12	0.313	0.313	0.313	0.0215	2.24			
Solid paperboard										
container manufacturing	0	0	0	0	0	0	15.3			
Spirit manufacturing	0	0	0	0	0	0	66.8			
Spring and wire product										
manufacturing	0.00512	0.781	5.48	1.16	0.383	0.00003	0.381			
Steel pipe and tube										
manufacturing	0	0.744	5.81	4.78	4.56	0	0.00123			
Structural metal product										
manufacturing n.e.c.	0	0	0.007	0.007	0.007	0	2.49			
Structural steel fabricating	0	0	2.04	0.4	0.104	0	0			
Synthetic resin										
manufacturing	1.46	1.73	212	191	189	0.00905	270			
Waste disposal services	9.22	13	1.77	1.7	1.67	0.353	33.2			
Wine manufacturing	0.00024	0.00175	0.00006	0.00005	0.00005	0	24.1			
Wood product										
manufacturing n.e.c.	0.0005	0.0006	1.21	0.232	0.0561	0	5.42			
Wooden furniture and										
upholstered seat										
manufacturing	0	0	0	0	0	0	1.77			
Grand total	389	501	6,190	2,020	695	180	9,180			

n.e.c., not elsewhere classified; $PM_{2.5}$, particulate matter $\leq 2.5 \ \mu$ m; PM_{10} , particulate matter $\leq 10 \ \mu$ m; TSP, total suspended particulate; VOC, volatile organic compounds

Figure ES-4 shows the proportion of total estimated annual emissions (for selected substances) from each commercial source type in the GMR.

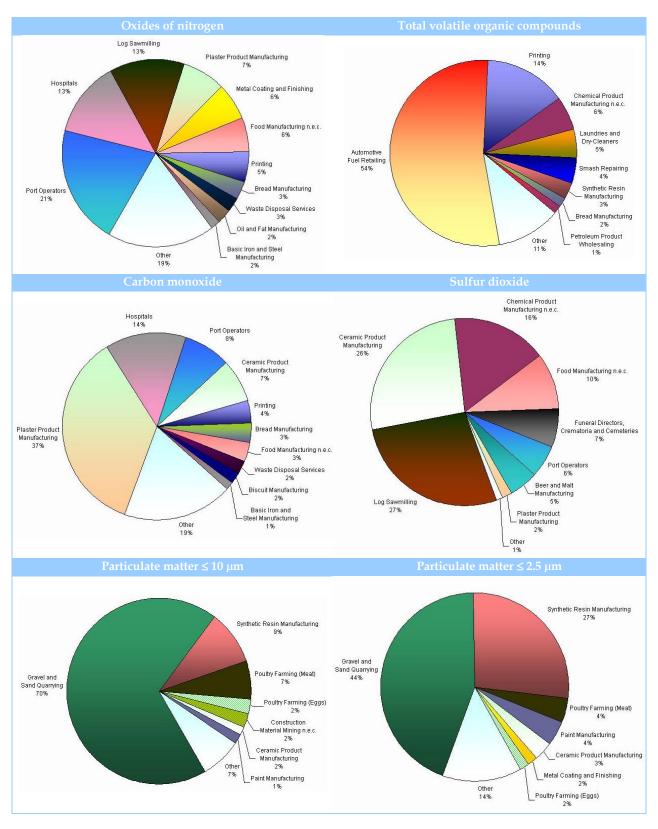


Figure ES-4: Proportion of total emissions by commercial source type in the GMR

Table ES-5 shows total estimated annual emissions (for selected substances) from each commercial source type in the Sydney region.

	Emissions (tonne/year)						
Activity	СО	NO _x	TSP	PM ₁₀	PM _{2.5}	SO ₂	VOC
Agricultural machinery							
manufacturing	0	0	0	0	0	0	0.00023
Aircraft manufacturing	2.35	2.8	0.213	0.213	0.213	0.0146	0.154
Automotive component							
manufacturing n.e.c.	0.208	0.247	1.21	0.25	0.0768	0.00129	12.7
Automotive fuel retailing	0	0	0	0	0	0	2,940
Basic iron and steel							
manufacturing	0.853	3.16	14.4	9.45	7.86	0.0053	12
Basic non-ferrous metal							
manufacturing n.e.c.	0.936	1.12	15.8	10	7.55	0.134	0.965
Beer and malt							
manufacturing	4.77	5.68	3.39	3.39	3.39	8.91	21.9
Biscuit manufacturing	6.94	8.26	0.628	0.628	0.628	0.0432	0.454
Bread manufacturing	11.6	13.8	1.05	1.05	1.05	0.0721	132
Cake and pastry							
manufacturing	1.34	1.59	0.121	0.121	0.121	0.00832	12.2
Ceramic product							
manufacturing	15.7	2.57	41.6	23.3	21.3	47.5	0.153
Chemical product							
manufacturing n.e.c.	4.54	5.54	30.8	9.51	1.91	29.6	510
Chemical wholesaling	0	0	6.75	1.29	0.313	0	81.4
Concrete slurry							
manufacturing	0	0	13.2	4.52	0.716	0	0.00006
Confectionery							
manufacturing	0.353	1.41	0.0746	0.0708	0.0702	0.00481	1.35
Corrugated paperboard							
container manufacturing	4.82	5.74	0.436	0.436	0.436	0.03	0.316
Electrical and equipment							
manufacturing n.e.c.	0.0368	0.422	0.429	0.429	0.429	0.00023	4.18
Fabricated metal product							
manufacturing n.e.c.	0.87	2.08	11.9	4.54	3.21	0.00532	103
Food manufacturing n.e.c.	6.9	8.22	0.714	0.642	0.629	0.0429	5.72
Fruit and vegetable							
processing	2.49	1.48	0.225	0.225	0.225	0.0155	0.163
Funeral directors, crematoria							
and cemeteries	1.95	4.27	0.202	0.0605	0.0403	7.51	0.18
Furniture manufacturing							
n.e.c.	0	0	0.00086	0.00017	0.00004	0	2.84
Gas supply	3.09	3.68	0.28	0.28	0.28	0.0192	0.202
Glass and glass product							
manufacturing	3.71	3.88	8.57	8.4	8.25	0.174	2.86
Gravel and sand quarrying	0	0	2590	646	145	0	0.0477
Hospitals	38	45.6	3.44	3.44	3.44	0.256	2.62
Ice-cream manufacturing	0.294	2.08	0.11	0.0964	0.0938	0.00639	0.438

Table ES-5: Total estimated annual emissions by commercial source type in the Sydney region

Air Emissions Inventory for the Greater Metropolitan Region of New South Wales Executive Summary

	Emissions (tonne/year)						
Activity	СО	NO _x	TSP	PM ₁₀	PM _{2.5}	SO_2	VOC
Industrial gas manufacturing	0.00188	0.0136	2.77	0.75	0.0868	0	5.82
Ink manufacturing	0	0	0.688	0.619	0.611	0	10.6
Laundries and dry-cleaners	3.87	4.68	0.356	0.356	0.356	0.0245	372
Lifting and material							
handling equipment							
manufacturing	0	0.124	0.0245	0.0245	0.0245	0	0.745
Medicinal and							
pharmaceutical product							
manufacturing	2.44	2.99	0.223	0.223	0.223	0.0151	1.35
Metal coating and finishing	2.7	3.83	11.3	9.85	9.28	0.0168	20.9
Milk and cream processing	1.03	1.22	0.093	0.093	0.093	0.0064	0.0673
Non-building construction							
n.e.c.	0.0165	0.119	2.46	0.476	0.118	0	0.00288
Non-metallic mineral							
product manufacturing n.e.c.	0.485	0.577	0.0439	0.0439	0.0439	0.00302	106
Oil and fat manufacturing	5.32	11.4	0.482	0.482	0.482	0.0331	0.349
Organic industrial chemical							
manufacturing n.e.c.	0.0251	0.0299	0.00227	0.00227	0.00227	0.00016	4.54
Paint manufacturing	0	0	34.3	29.3	28.3	0	124
Paper product							
manufacturing n.e.c.	1.14	1.35	0.103	0.103	0.103	0.00707	0.471
Petroleum product							
wholesaling	0	0	1.78	0.341	0.0825	0	53
Plaster product	100			10 (- 01		0.11
manufacturing	138	37.3	16.1	13.6	7.81	3.4	3.41
Plastic bag and film	0	0	0.000	0.000	0.000	0	100
manufacturing	0	0	0.899	0.899	0.832	0	17.7
Plastic injection-moulded	• • • •	0.54		- 04	0.000	0.0010	0.444
product manufacturing	2.96	3.54	20.3	5.96	0.839	0.0218	0.441
Plastic product (rigid fibre							
reinforced) manufacturing	1.4	1.66	0.22	0.153	0.129	0.00869	20.4
Port operators	31.3	102	8.95	8.95	8.95	9.94	13.7
Poultry farming (eggs)	0	0	104	45.4	10.4	0	0
Poultry farming (meat)	1.16	1.38	147	64.1	14.8	0.00719	0.0757
Prepared animal and bird							
feed manufacturing	0.00144	0.00576	0.00032	0.00031	0.00031	0.00204	0.0001
Printing	14.9	26	1.46	1.46	1.46	0.0933	1,300
Railway equipment							
manufacturing	0	0	0	0	0	0	0.058
Road and bridge		_			0.001	~	~
construction	0	0	12.6	3.44	0.394	0	0
Rubber product							
manufacturing n.e.c.	0	0	0.00191	0.00578	0	0	0.006
Scientific research	0.927	0.552	0.0839	0.0839	0.0839	0.00577	0.0607
Services to air transport	2.24	2.67	0.203	0.203	0.203	0.014	71.4
Smash repairing	0	0	0	0	0	0	308
Soap and other detergent			_	_			
manufacturing	0	0	2.35	0.665	0.0674	0	0.0289

2008 Calendar Year Commercial Emissions: Results Executive Summary

	Emissions (tonne/year)						
Activity	СО	NO _x	TSP	PM ₁₀	PM _{2.5}	SO ₂	VOC
Soft drink, cordial and syrup							
manufacturing	3.46	4.12	0.313	0.313	0.313	0.0215	2.24
Solid paperboard container							
manufacturing	0	0	0	0	0	0	15.3
Spirit manufacturing	0	0	0	0	0	0	66.8
Spring and wire product							
manufacturing	0.00452	0.00538	0.242	0.0468	0.0116	0.00003	0.00051
Steel pipe and tube							
manufacturing	0	0.744	1.91	1.27	1.05	0	0.00123
Structural metal product							
manufacturing n.e.c.	0	0	0.007	0.007	0.007	0	2.49
Structural steel fabricating	0	0	2.04	0.4	0.104	0	0
Synthetic resin							
manufacturing	0.9	1.07	212	191	189	0.0056	268
Waste disposal services	9.22	13	1.77	1.7	1.67	0.353	17.3
Wine manufacturing	0.00024	0.00175	0.00006	0.00005	0.00005	0	3.18
Wood product							
manufacturing n.e.c.	0.0005	0.0006	1.07	0.206	0.0499	0	0.00003
Wooden furniture and							
upholstered seat							
manufacturing	0	0	0	0	0	0	1.77
Grand total	335	344	3,330	1,110	485	108	6,650

n.e.c., not elsewhere classified; $PM_{2.5}$, particulate matter $\leq 2.5 \ \mu$ m; PM_{10} , particulate matter $\leq 10 \ \mu$ m; TSP, total suspended particulate; VOC, volatile organic compounds

Figure ES-5 shows the proportion of total estimated annual emissions (for selected substances) from each commercial source type in the Sydney region.

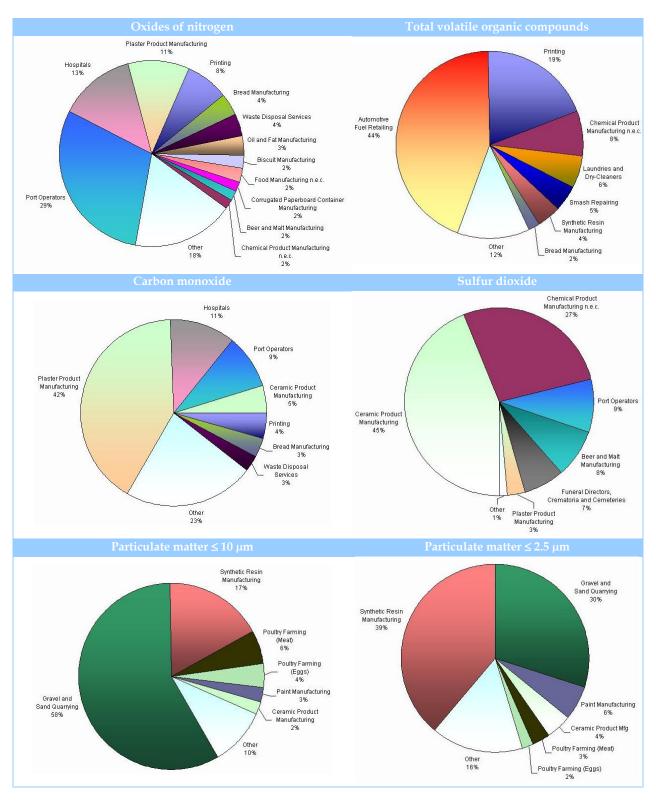


Figure ES-5: Proportion of total emissions by commercial source type in the Sydney region

CONTENTS

LIST OF TABLES xix LIST OF FIGURES xxv GLOSSARY/ABBREVIATIONS xxviii 1 INTRODUCTION 1 2 INVENTORY SPECIFICATIONS 2 2.1 The Inventory Year 2 2.2 The Inventory Region 2 2.3 Grid Coordinate System 2 2.4 Emission Sources Considered 3 2.5 Pollutants Evaluated 6 2.6 Methodology Overview 7 2.6.1 Commercial Business Identification 7 2.6.2 Emission Source Identification 8 2.6.3 Emission Estimation Technique Design 8 2.6.4 Identification of Required Data to Estimate Emissions 8 2.6.5 Data Acquisition 8 2.6.6 Deriving Commercial Type Specific Projection Factors 9 2.6.7 Emission Estimation 13 2.6.8 Data Storage 14 3 DATA SOURCES AND RESULTS 18 3.1 Automotive Fuel Retailing 24 3.1.1 Emission Sources and A
GLOSSARY/ABBREVIATIONS xxviii 1 INTRODUCTION 1 2 INVENTORY SPECIFICATIONS 2 2.1 The Inventory Year 2 2.2 The Inventory Region 2 2.3 Grid Coordinate System 2 2.4 Emission Sources Considered 3 2.5 Pollutants Evaluated 6 2.6 Methodology Overview 7 2.6.1 Commercial Business Identification 7 2.6.2 Emission Source Identification 8 2.6.3 Emission Estimation Technique Design 8 2.6.4 Identification of Required Data to Estimate Emissions 8 2.6.5 Data Acquisition 13 2.6.6 Deriving Commercial Type Specific Projection Factors 9 2.6.7 Emission Estimation 13 2.6.8 Data Storage 14 3 DATA SOURCES AND RESULTS 18 3.1 Automotive Fuel Retailing 24 3.1.1 Emission Sources and Associated Releases to Air 24
1 INTRODUCTION 1 2 INVENTORY SPECIFICATIONS 2 2.1 The Inventory Year 2 2.2 The Inventory Region 2 2.3 Grid Coordinate System 2 2.4 Emission Sources Considered. 3 2.5 Pollutants Evaluated. 6 2.6 Methodology Overview 7 2.6.1 Commercial Business Identification 7 2.6.2 Emission Source Identification 8 2.6.3 Emission Source Identification 8 2.6.4 Identification of Required Data to Estimate Emissions 8 2.6.5 Data Acquisition 8 2.6.6 Deriving Commercial Type Specific Projection Factors 9 2.6.7 Emission Estimation 13 2.6.8 Data Storage 14 3 DATA SOURCES AND RESULTS 18 3.1 Automotive Fuel Retailing 24 3.1.1 Emission Sources and Associated Releases to Air 24
2INVENTORY SPECIFICATIONS22.1The Inventory Year22.2The Inventory Region22.3Grid Coordinate System22.4Emission Sources Considered32.5Pollutants Evaluated62.6Methodology Overview72.6.1Commercial Business Identification72.6.2Emission Source Identification82.6.3Emission Estimation Technique Design82.6.4Identification of Required Data to Estimate Emissions82.6.5Data Acquisition132.6.6Deriving Commercial Type Specific Projection Factors92.6.7Emission Estimation132.6.8Data Storage143DATA SOURCES AND RESULTS183.1Automotive Fuel Retailing243.1.1Emission Sources and Associated Releases to Air.24
2.1The Inventory Year22.2The Inventory Region22.3Grid Coordinate System22.4Emission Sources Considered32.5Pollutants Evaluated62.6Methodology Overview72.6.1Commercial Business Identification72.6.2Emission Source Identification82.6.3Emission Estimation Technique Design82.6.4Identification of Required Data to Estimate Emissions82.6.5Data Acquisition82.6.6Deriving Commercial Type Specific Projection Factors92.6.7Emission Estimation132.6.8Data Storage143DATA SOURCES AND RESULTS183.1Automotive Fuel Retailing243.1.1Emission Sources and Associated Releases to Air.24
2.1The Inventory Year22.2The Inventory Region22.3Grid Coordinate System22.4Emission Sources Considered32.5Pollutants Evaluated62.6Methodology Overview72.6.1Commercial Business Identification72.6.2Emission Source Identification82.6.3Emission Estimation Technique Design82.6.4Identification of Required Data to Estimate Emissions82.6.5Data Acquisition82.6.6Deriving Commercial Type Specific Projection Factors92.6.7Emission Estimation132.6.8Data Storage143DATA SOURCES AND RESULTS183.1Automotive Fuel Retailing243.1.1Emission Sources and Associated Releases to Air.24
2.2The Inventory Region22.3Grid Coordinate System22.4Emission Sources Considered32.5Pollutants Evaluated62.6Methodology Overview72.6.1Commercial Business Identification72.6.2Emission Source Identification82.6.3Emission Estimation Technique Design82.6.4Identification of Required Data to Estimate Emissions82.6.5Data Acquisition82.6.6Deriving Commercial Type Specific Projection Factors92.6.7Emission Estimation132.6.8Data Storage143DATA SOURCES AND RESULTS183.1Automotive Fuel Retailing243.1.1Emission Sources and Associated Releases to Air24
2.3Grid Coordinate System22.4Emission Sources Considered32.5Pollutants Evaluated62.6Methodology Overview72.6.1Commercial Business Identification72.6.2Emission Source Identification82.6.3Emission Estimation Technique Design82.6.4Identification of Required Data to Estimate Emissions82.6.5Data Acquisition82.6.6Deriving Commercial Type Specific Projection Factors92.6.7Emission Estimation132.6.8Data Storage143DATA SOURCES AND RESULTS183.1Automotive Fuel Retailing243.1.1Emission Sources and Associated Releases to Air24
2.4Emission Sources Considered.32.5Pollutants Evaluated62.6Methodology Overview72.6.1Commercial Business Identification72.6.2Emission Source Identification82.6.3Emission Estimation Technique Design82.6.4Identification of Required Data to Estimate Emissions82.6.5Data Acquisition82.6.6Deriving Commercial Type Specific Projection Factors92.6.7Emission Estimation132.6.8Data Storage143DATA SOURCES AND RESULTS183.1Automotive Fuel Retailing243.1.1Emission Sources and Associated Releases to Air.24
2.5Pollutants Evaluated62.6Methodology Overview72.6.1Commercial Business Identification72.6.2Emission Source Identification82.6.3Emission Estimation Technique Design82.6.4Identification of Required Data to Estimate Emissions82.6.5Data Acquisition82.6.6Deriving Commercial Type Specific Projection Factors92.6.7Emission Estimation132.6.8Data Storage143DATA SOURCES AND RESULTS183.1Automotive Fuel Retailing243.1.1Emission Sources and Associated Releases to Air.24
2.6Methodology Overview72.6.1Commercial Business Identification72.6.2Emission Source Identification82.6.3Emission Estimation Technique Design82.6.4Identification of Required Data to Estimate Emissions82.6.5Data Acquisition82.6.6Deriving Commercial Type Specific Projection Factors92.6.7Emission Estimation132.6.8Data Storage143DATA SOURCES AND RESULTS183.1Automotive Fuel Retailing243.1.1Emission Sources and Associated Releases to Air.24
2.6.1Commercial Business Identification72.6.2Emission Source Identification82.6.3Emission Estimation Technique Design82.6.4Identification of Required Data to Estimate Emissions82.6.5Data Acquisition82.6.6Deriving Commercial Type Specific Projection Factors92.6.7Emission Estimation132.6.8Data Storage143DATA SOURCES AND RESULTS183.1Automotive Fuel Retailing243.1.1Emission Sources and Associated Releases to Air.24
2.6.2Emission Source Identification82.6.3Emission Estimation Technique Design82.6.4Identification of Required Data to Estimate Emissions82.6.5Data Acquisition82.6.6Deriving Commercial Type Specific Projection Factors92.6.7Emission Estimation132.6.8Data Storage143DATA SOURCES AND RESULTS183.1Automotive Fuel Retailing243.1.1Emission Sources and Associated Releases to Air24
2.6.3Emission Estimation Technique Design82.6.4Identification of Required Data to Estimate Emissions82.6.5Data Acquisition82.6.6Deriving Commercial Type Specific Projection Factors92.6.7Emission Estimation132.6.8Data Storage143DATA SOURCES AND RESULTS183.1Automotive Fuel Retailing243.1.1Emission Sources and Associated Releases to Air.24
2.6.4Identification of Required Data to Estimate Emissions82.6.5Data Acquisition82.6.6Deriving Commercial Type Specific Projection Factors92.6.7Emission Estimation132.6.8Data Storage143DATA SOURCES AND RESULTS183.1Automotive Fuel Retailing243.1.1Emission Sources and Associated Releases to Air24
2.6.5Data Acquisition82.6.6Deriving Commercial Type Specific Projection Factors92.6.7Emission Estimation132.6.8Data Storage143DATA SOURCES AND RESULTS183.1Automotive Fuel Retailing243.1.1Emission Sources and Associated Releases to Air24
2.6.6Deriving Commercial Type Specific Projection Factors92.6.7Emission Estimation132.6.8Data Storage143DATA SOURCES AND RESULTS183.1Automotive Fuel Retailing243.1.1Emission Sources and Associated Releases to Air24
2.6.7 Emission Estimation 13 2.6.8 Data Storage 14 3 DATA SOURCES AND RESULTS 18 3.1 Automotive Fuel Retailing 24 3.1.1 Emission Sources and Associated Releases to Air 24
2.6.8 Data Storage
3 DATA SOURCES AND RESULTS
3.1 Automotive Fuel Retailing
3.1.1 Emission Sources and Associated Releases to Air
3.1.1 Emission Sources and Associated Releases to Air
3.1.2 Emission Estimation Methodology
3.1.3 Activity Data
3.1.4 Temporal Variation of Emissions
3.1.5 Emission Estimates
3.1.6 Emission Projection Methodology
3.2 Smash Repairing
3.2.1 Emission Sources and Associated Releases to Air
3.2.2 Emission Estimation Methodology
3.2.3 Activity Data
3.2.4 Temporal Variation of Emissions
3.2.5 Emission Estimates
3.2.6 Emission Projection Methodology
3.3 Laundries and Dry Cleaners
3.3.1 Emission Sources and Associated Releases to Air
3.3.2 Emission Estimation Methodology
3.3.3 Activity Data

Air Emissions Inventory for the Greater Metropolitan Region of New South Wales Contents

3.3.4	Temporal Variation of Emissions	54
3.3.5	Emission Estimates	
3.3.6	Emission Projection Methodology	54
3.4 Pot	Iltry Farming	55
3.4.1	Emission Sources and Associated Releases to Air	55
3.4.2	Emission Estimation Methodology	57
3.4.3	Activity Data	
3.4.4	Temporal Variation of Emissions	62
3.4.5	Emission Estimates	64
3.4.6	Emission Projection Methodology	65
3.5 Ho	spitals	66
3.5.1	Emission Sources and Associated Releases to Air	66
3.5.2	Emission Estimation Methodology	67
3.5.3	Activity Data	69
3.5.4	Temporal Variation of Emissions	71
3.5.5	Emission Estimates	71
3.5.6	Emission Projection Methodology	71
3.6 Wi	ne Manufacturing	72
3.6.1	Emission Sources and Associated Releases to Air	
3.6.2	Emission Estimation Methodology	73
3.6.3	Activity Data	75
3.6.4	Temporal Variation of Emissions	
3.6.5	Emission Estimates	77
3.6.6	Emission Projection Methodology	77
3.7 Co	nstruction Material Mining	77
3.7.1	Emission Sources and Associated Releases to Air	
3.7.2	Emission Estimation Methodology	79
3.7.3	Activity Data	80
3.7.4	Temporal Variation of Emissions	82
3.7.5	Emission Estimates	82
3.7.6	Emission Projection Methodology	83
3.8 Fu	neral Directors, Crematoria and Cemeteries	84
3.8.1	Emission Sources and Associated Releases to Air	84
3.8.2	Emission Estimation Methodology	86
3.8.3	Activity Data	87
3.8.4	Temporal Variation of Emissions	88
3.8.5	Emission Estimates	88
3.8.6	Emission Projection Methodology	89
3.9 Pri	nting, Publishing and Recorded Media	89
3.9.1	Emission Sources and Associated Releases to Air	89
3.9.2	Emission Estimation Methodology	90
3.9.3	Activity Data	92
3.9.4	Temporal Variation of Emissions	
3.9.5	Emission Estimates	93
3.9.6	Emission Projection Methodology	94
3.10 Pla	stic Product Rigid Fibre Manufacturing	95
3.10.1	Emission Sources and Associated Releases to Air	
3.10.2	Emission Estimation Methodology	97

3.10.3	Activity Data	
3.10.4	Temporal Variation of Emissions	
3.10.5	Emission Estimates	
3.10.6	Emission Projection Methodology	
3.11 Co	ncrete Product Manufacturing	100
3.11.1	Emission Sources and Associated Releases to Air	100
3.11.2	Emission Estimation Methodology	102
3.11.3	Activity Data	103
3.11.4	Temporal Variation of Emissions	105
3.11.5	Emission Estimates	
3.11.6	Emission Projection Methodology	107
3.12 Bas	sic Iron and Steel Manufacturing	108
3.12.1	Emission Sources and Associated Releases to Air	
3.12.2	Emission Estimation Methodology	110
3.12.3	Activity Data	112
3.12.4	Temporal Variation of Emissions	112
3.12.5	Emission Estimates	112
3.12.6	Emission Projection Methodology	113
3.13 Bre	ead Manufacturing	114
3.13.1	Emission Sources and Associated Releases to Air	
3.13.2	Emission Estimation Methodology	116
3.13.3	Activity Data	116
3.13.4	Temporal Variation of Emissions	117
3.13.5	Emission Estimates	117
3.13.6	Emission Projection Methodology	118
3.14 Ce	ramic Product Manufacturing	118
3.14.1	Emission Sources and Associated Releases to Air	118
3.14.2	Emission Estimation Methodology	119
3.14.3	Activity Data	120
3.14.4	Temporal Variation of Emissions	120
3.14.5	Emission Estimates	121
3.14.6	Emission Projection Methodology	121
3.15 Ch	emical Product Manufacturing	
3.15.1	Emission Sources and Associated Releases to Air	121
3.15.2	Emission Estimation Methodology	123
3.15.3	Activity Data	124
3.15.4	Temporal Variation of Emissions	125
3.15.5	Emission Estimates	125
3.15.6	Emission Projection Methodology	126
3.16 Foo	od Manufacturing	127
3.16.1	Emission Sources and Associated Releases to Air	127
3.16.2	Emission Estimation Methodology	128
3.16.3	Activity Data	130
3.16.4	Temporal Variation of Emissions	130
3.16.5	Emission Estimates	
3.16.6	Emission Projection Methodology	131
3.17 Por	rt Operators	131
3.17.1	Emission Sources and Associated Releases to Air	

4 I	RESULT	S SUMMARY	201
ŝ	3.23.6	Emission Projection Methodology	194
ŝ	3.23.5	Emission Estimates	
	3.23.4	Temporal Variation of Emissions	164
ŝ	3.23.3	Activity Data	
ŝ	3.23.2	Emission Estimation Methodology	163
3	3.23.1	Emission Sources and Associated Releases to Air	159
3.2	3 Oth	er ANZSIC Classes	159
đ	3.22.6	Emission Projection Methodology	
3	3.22.5	Emission Estimates	158
3	3.22.4	Temporal Variation of Emissions	
	3.22.3	Activity Data	
	3.22.2	Emission Estimation Methodology	
ŝ	3.22.1	Emission Sources and Associated Releases to Air	
3.2	2 Met	al Coating and Finishing	
ŝ	3.21.6	Emission Projection Methodology	
ŝ	3.21.5	Emission Estimates	152
			152
	3.21.3	Activity Data	
	3.21.2	Emission Estimation Methodology	
ŝ	3.21.1	<i>Emission Sources and Associated Releases to Air</i>	
3.2	1 Stee	l Pipe and Tube Manufacturing	
ŝ	3.20.6	Emission Projection Methodology	
3	3.20.5	Emission Estimates	
3	3.20.4	Temporal Variation of Emissions	
3	3.20.3	Activity Data	
3	3.20.2	Emission Estimation Methodology	146
ŝ	3.20.1	Emission Sources and Associated Releases to Air	
3.2	0 Pain	t Manufacturing	144
ŝ	3.19.6	Emission Projection Methodology	144
ŝ	3.19.5	Emission Estimates	143
3	3.19.4	Temporal Variation of Emissions	143
đ	3.19.3	Activity Data	
3	3.19.2	Emission Estimation Methodology	141
3	3.19.1	Emission Sources and Associated Releases to Air	140
3.1	9 Glas	s and Glass Product Manufacturing	140
đ	3.18.6	Emission Projection Methodology	139
3	3.18.5	Emission Estimates	139
ŝ	3.18.4	Temporal Variation of Emissions	139
3	3.18.3	Activity Data	138
ŝ	3.18.2	Emission Estimation Methodology	137
ŝ	3.18.1	Emission Sources and Associated Releases to Air	
3.1	8 Plas	ter Product Manufacturing	135
đ	3.17.6	Emission Projection Methodology	134
ŝ	3.17.5	Emission Estimates	134
3	3.17.4	Temporal Variation of Emissions	134
3	3.17.3	Activity Data	
ć	3.17.2	Emission Estimation Methodology	133

	4.1	Source Summary	. 201
		Activity Summary	
		Emissions Summary	
5		FERENCES	
	App	pendix A: Estimated Annual Emissions of all Substances from Commercial Sources	. A-1
	App	pendix B: Emissions from Wheel-Generated Dust	. B-1

LIST OF TABLES

Table ES-1: Definition of Greater Metropolitan, Sydney, Newcastle and Wollongong regions	i
Table ES-2: Emission source summary	i
Table ES-3: Total estimated annual emissions from commercial sources in each region	iv
Table ES-4: Total estimated annual emissions by commercial source type in the GMR	vi
Table ES-5: Total estimated annual emissions by commercial source type in the Sydney region	x
Table 2-1: Definition of Greater Metropolitan, Sydney, Newcastle and Wollongong regions	2
Table 2-2: ANZSIC codes used to classify commercial businesses a	4
Table 2-3: Results from geocoding process	8
Table 2-4: Basis for commercial activity specific projection factors	10
Table 2-5: Typical reference sources for emission factors	13
Table 3-1: Summary statistics for commercial facility coverage in the 2008 air emissions inventory	20
Table 3-2: Service stations – emission sources	24
Table 3-3: Derived emission factors for petrol loading to storage	28
Table 3-4: Vehicle refuelling emission factors	29
Table 3-5: Tank breathing emission factors	31
Table 3-6: Diesel handling and storage emission factors	32
Table 3-7: Petrol vapour phase organic speciation profile ^a	32
Table 3-8: Diesel vapour phase organic speciation profile ^a	34
Table 3-9: Derived service station activity data	35
Table 3-10: Monthly temporal factors for loading storage tanks with petrol	35
Table 3-11: Daily temporal factors for service station fuel loading	36
Table 3-12: Diurnal temporal factors from the loading of fuel to storage tanks at service stations	
Table 3-13: Monthly temporal factors for tank breathing losses	37
Table 3-14: Diurnal temporal factors for tank breathing	37
Table 3-15: Monthly temporal factors for vehicle refuelling	38
Table 3-16: Daily temporal factors for petrol vehicle refuelling	38
Table 3-17: Diurnal temporal factors for petrol vehicle refuelling	39
Table 3-18: Monthly temporal factors for diesel emissions	40
Table 3-19: Daily temporal factors for diesel emissions	40
Table 3-20: Diurnal temporal factors for diesel emissions	40
Table 3-21: Estimated emissions from service stations	43
Table 3-22: Projection factors for petroleum refining related sources	43
Table 3-23: Typical VOC source points in smash repair operations	45
Table 3-24: Smash repairing - emission sources	46
Table 3-25: VOC content data for Australian automotive coatings	47
Table 3-26: Annual consumption of automotive surface coatings by the smash repair industry in NSW and in the GMR	48

Table 3-27: Annual consumption of automotive surface coatings by the smash repair industry in the GMR	48
Table 3-28: Estimated emissions from smash repairing	49
Table 3-29: Projection factors for commercial and services related sources	
Table 3-30: Dry cleaning – emission sources	
Table 3-31: Summary activity data for tetrachloroethylene usage in dry cleaners	
Table 3-32: Estimated emissions from laundries and dry cleaners	54
Table 3-33: Projection factors for population related sources	54
Table 3-34: Poultry farming - emission sources	56
Table 3-35: Particulate monitoring results – 'cup' drinker shed, May – July 2002	
Table 3-36: Particulate monitoring results – 'nipple' drinker shed, August 2002	57
Table 3-37: Measured particulate size distribution	58
Table 3-38: Derived particulate matter emission factors	60
Table 3-39: Total estimated number of meat chickens in NSW and the GMR	61
Table 3-40: Estimated number of egg layer chickens in the GMR	61
Table 3-41: Estimated total turkey in the GMR for 2003 and 2008	
Table 3-42: Total number of birds and poultry farms a	62
Table 3-43: Monthly temporal factors for emissions from poultry farming	63
Table 3-44: Hourly temporal factors for emissions from poultry farming	63
Table 3-45: Estimated emissions from poultry farming (eggs)	64
Table 3-46: Estimated emissions from poultry farming (meat)	65
Table 3-47: Projection factors for agriculture related sources	65
Table 3-48: Hospitals – emission sources	66
Table 3-49: Emission and speciation factors for all substances from hospitals	68
Table 3-50: Estimated emissions from hospitals	71
Table 3-51: Wine manufacturing – emission sources	72
Table 3-52: Emission and speciation factors for all substances from hospitals	74
Table 3-53: Summary activity statistics collected for wine production in the GMR	75
Table 3-54: Monthly temporal variation of emissions for wine manufacturing	76
Table 3-55: Estimated emissions from wine manufacturing	77
Table 3-56: Construction material mining – emission sources	78
Table 3-57: Emission and speciation factors for all substances from construction material mining	80
Table 3-58: Number of construction material mining businesses in the GMR and the number of respondent businesses	81
Table 3-59: Emission sources and activity data used for non-respondent businesses	82
Table 3-60: Estimated emissions from construction material mining n.e.c.	82
Table 3-61: Estimated emissions from gravel or sand quarrying	83
Table 3-62: Projection factors for mining related sources	
Table 3-63: Funeral directors and cemeteries – emission sources	
Table 3-64: Emission and speciation factors for all substances from crematoria	87
xx	

Air Emissions Inventory for the Greater Metropolitan Region of New South Wales List of Tables

Table 3-65: Activity data used to estimate emissions from crematoria	88
Table 3-66: Estimated emissions from crematoria	88
Table 3-67: Printing and graphical arts – emission sources	89
Table 3-68: Emission and speciation factors for all substances from printing, publishing and	
recorded media	91
Table 3-69: Estimated emissions from printing, publishing or recorded media	93
Table 3-70: Projection factors for wood, paper and printing related sources	94
Table 3-71: Plastic product rigid fibre reinforced manufacturing – emission sources	95
Table 3-72: Emission and speciation factors for all substances from plastic product rigid fibre	
manufacturing	
Table 3-73: Assumed activity data for non-respondent fibreglass manufacturing businesses	
Table 3-74: Estimated emissions from plastic product rigid fibre manufacturing	99
Table 3-75: Projection factors for other (manufacturing) industry related sources	
Table 3-76: Concrete batching – emission sources	101
Table 3-77: Emission and speciation factors for all substances from concrete product	102
manufacturing	
Table 3-78: Amount of concrete produced in the GMR by major regions Table 2-78: Amount of concrete produced in the GMR by major regions	
Table 3-79: Proportions of raw materials for non-respondent businesses Table 3-79: Proportions of raw materials for non-respondent businesses	104
Table 3-80: Emission sources and estimation data used for non-respondent concrete product manufacturing businesses	104
Table 3-81: Monthly temporal variation of emission for concrete product manufacturing	105
Table 3-82: Estimated emissions from concrete product manufacturing	107
Table 3-83: Projection factors for non-metallic minerals related sources	107
Table 3-84: Commercial businesses included in the emissions inventory	108
Table 3-85: Basic iron and steel manufacturing – emission sources	109
Table 3-86: Emission and speciation factors for all substances from basic iron and steel	
manufacturing	
Table 3-87: Number of basic iron and steel manufacturing businesses in the GMR	
Table 3-88: Estimated emissions from basic iron and steel manufacturing	
Table 3-89: Projection factors for iron and steel (primary energy) related sources	113
Table 3-90: Commercial businesses included in the emissions inventory	
Table 3-91: Bread manufacturing – emission sources	115
Table 3-92: Emission and speciation factors for all substances from basic iron and steel	116
manufacturing	
Table 3-93: Number of bread manufacturing businesses in the GMRTable 3-94: Estimated emissions from bread manufacturing	
Table 3-95: Commercial businesses included in the emissions inventory Table 2-96: Commission dust means for the inventory dust means for the inventory	
Table 3-96: Ceramic product manufacturing (excluding glass) – emission sources Table 2-97: Emission on description feature for all substances from commission and duct	118
Table 3-97: Emission and speciation factors for all substances from ceramic product manufacturing	120

Table 3-98: Number of ceramic product manufacturing businesses within the GMR	120
Table 3-99: Estimated emissions from ceramic product manufacturing	121
Table 3-100: Commercial businesses included in the emissions inventory	122
Table 3-101: Emission sources from chemical product manufacturing	122
Table 3-102: Emission and speciation factors for all substances from chemical product	
manufacturing	124
Table 3-103: Number of chemical product manufacturing businesses in the GMR	125
Table 3-104: Estimated emissions from commercial chemical product manufacturing	
Table 3-105: Projection factors for basic chemicals related sources	126
Table 3-106: Commercial businesses included in the emissions inventory	127
Table 3-107: Food manufacturing – emission sources	127
Table 3-108: Emission and speciation factors for all substances from food manufacturing	129
Table 3-109: Number of food manufacturing businesses in the GMR	130
Table 3-110: Estimated emissions from food manufacturing	131
Table 3-111: Commercial businesses included in the emissions inventory	132
Table 3-112: Port operator – emission sources	132
Table 3-113: Estimated emissions from port operators	134
Table 3-114: Projection factors for water transport related sources	135
Table 3-115: Commercial business included in the emissions inventory	136
Table 3-116: Emission sources of plaster product manufacturing	136
Table 3-117: Emission and speciation factors for all substances from plaster product	
manufacturing	138
Table 3-118: Number of plaster product manufacturing businesses in the GMR	139
Table 3-119: Estimated emissions from plaster product manufacturing	139
Table 3-120: Commercial businesses included in the emissions inventory	140
Table 3-121: Glass product manufacturing – emission sources	140
Table 3-122: Emission and speciation factors for all substances from glass and glass product	
manufacturing	
Table 3-123: Number of glass and glass product manufacturing businesses in the GMR	143
Table 3-124: Estimated emissions from glass and glass product manufacturing	143
Table 3-125: Commercial businesses included in the emissions inventory	144
Table 3-126: Paint manufacturing – emission sources	145
Table 3-127: Emission and speciation factors for all substances from paint manufacturing	147
Table 3-128: Number of paint manufacturing businesses in the GMR	148
Table 3-129: Estimated emissions from paint manufacturing	148
Table 3-130: Commercial businesses included in the emissions inventory	149
Table 3-131: Steel pipe and tube manufacturing – emission sources	149
Table 3-132: Emission and speciation factors for all substances from steel pipe and tube	
manufacturing	
Table 3-133: Number of iron and steel manufacturing businesses in the GMR	151

Table 3-134: Estimated emissions from steel pipe and tube manufacturing	152
Table 3-135: Commercial businesses included in the emissions inventory	153
Table 3-136: Metal coating and finishing – emission sources	154
Table 3-137: Emission and speciation factors for all substances from metal coating and finishing	156
Table 3-138: Number of metal coating and finishing businesses in the GMR	158
Table 3-139: Estimated emissions from metal coating and finishing	159
Table 3-140: Summary statistics for commercial businesses included in 'Other ANZSIC' classes	160
Table 3-141: Estimated emissions from agricultural machinery manufacturing	164
Table 3-142: Estimated emissions from aircraft manufacturing	165
Table 3-143: Estimated emissions from aluminium rolling, drawing, extruding	165
Table 3-144: Estimated emissions from automotive component manufacturing n.e.c.	166
Table 3-145: Estimated emissions from basic non-ferrous metal manufacturing n.e.c	166
Table 3-146: Estimated emissions from beer or malt manufacturing	167
Table 3-147: Estimated emissions from biscuit manufacturing	167
Table 3-148: Estimated emissions from cake and pastry manufacturing	168
Table 3-149: Estimated emissions from ceramic product manufacturing n.e.c.	169
Table 3-150: Estimated emissions from chemical wholesaling	169
Table 3-151: Estimated emissions from confectionary manufacturing	170
Table 3-152: Estimated emissions from corrugated paperboard container manufacturing	170
Table 3-153: Estimated emissions from electric cable and wire manufacturing	171
Table 3-154: Estimated emissions from electric cable and equipment n.e.c.	171
Table 3-155: Estimated emissions from explosive manufacturing	172
Table 3-156: Estimated emissions from fabricated metal product n.e.c. manufacturing	172
Table 3-157: Estimated emissions from fruit and vegetable processing	173
Table 3-158: Estimated emissions from furniture manufacturing	174
Table 3-159: Estimated emissions from gas supply	174
Table 3-160: Estimated emissions from ice cream manufacturing	175
Table 3-161: Estimated emissions from industrial gas manufacturing	175
Table 3-162: Estimated emissions from ink manufacturing	176
Table 3-163: Estimated emissions from lifting and material handling equipment manufacturing	176
Table 3-164: Estimated emissions from log sawmilling	177
Table 3-165: Estimated emissions from medicinal or pharmaceutical manufacturing	177
Table 3-166: Estimated emissions from milk and cream processing	178
Table 3-167: Estimated emissions from mining and construction machinery manufacturing	178
Table 3-168: Estimated emissions from non-building construction n.e.c.	179
Table 3-169: Estimated emissions from non-ferrous metal casting	180
Table 3-170: Estimated emissions from non-metallic mineral product manufacturing n.e.c.	180
Table 3-171: Estimated emissions from oil and fat manufacturing	181
Table 3-172: Estimated emissions from organic industrial chemical manufacturing n.e.c.	181

Table 3-173: Estimated emissions from paper product manufacturing n.e.c	182
Table 3-174: Estimated emissions from commercial petroleum product wholesaling	182
Table 3-175: Estimated emissions from plastic bag and film manufacturing	183
Table 3-176: Estimated emissions from plastic injection moulded product manufacturing	183
Table 3-177: Estimated emissions from prepared animal and bird feed manufacturing	184
Table 3-178: Estimated emissions from rail transport	185
Table 3-179: Estimated emissions from railway equipment manufacturing	185
Table 3-180: Estimated emissions from road and bridge construction	186
Table 3-181: Estimated emissions from rubber product manufacturing n.e.c.	186
Table 3-182: Estimated emissions from scientific research	187
Table 3-183: Estimated emissions from services to air transport	187
Table 3-184: Estimated emissions from soap and other detergent manufacturing	188
Table 3-185: Estimated emissions from soft drink, cordial and syrup manufacturing	188
Table 3-186: Estimated emissions from soil paperboard container manufacturing	189
Table 3-187: Estimated emissions from spirit manufacturing	189
Table 3-188: Estimated emissions from spring and wire product manufacturing	190
Table 3-189: Estimated emissions from structural metal product manufacturing n.e.c.	190
Table 3-190: Estimated emissions from structural steel fabricating	191
Table 3-191: Estimated emissions from synthetic resin manufacturing	192
Table 3-192: Estimated emissions from waste disposal services	192
Table 3-193: Estimated emissions from wood product manufacturing n.e.c.	193
Table 3-194: Estimated emissions from wooden furniture and upholstered seat manufacturing	193
Table 3-195: Projection factors for air transport related sources	194
Table 3-196: Projection factors for basic non-ferrous metals products related sources	195
Table 3-197: Projection factors for iron and steel (final energy) related sources	196
Table 3-198: Projection factors for other basic non-ferrous metals related sources	197
Table 3-199: Projection factors for pipeline transport related sources	198
Table 3-200: Projection factors for rail transport related sources	199
Table 3-201: Projection factors for road transport related sources	200
Table 4-1: Emission source summary	201
Table 4-2: Annual fuel consumption by commercial activity	203
Table 4-3: Total estimated annual emissions from commercial sources in each region	205
Table 4-4: Total estimated annual emissions by commercial source type in the GMR	207
Table 4-5: Total estimated annual emissions by commercial source type in the Sydney region	213
Table 4-6: Total estimated annual emissions by commercial source type in the Newcastle region	219
Table 4-7: Total estimated annual emissions by commercial source type in the Wollongong region	223
Table 4-8: Total estimated annual emissions by commercial source type in the Non Urban region	227

LIST OF FIGURES

Figure ES-1: Definition of Greater Metropolitan, Sydney, Newcastle and Wollongong regions	ii
Figure ES-2: Commercial emission sources in the GMR	iii
Figure ES-3: Proportion of total estimated annual emissions from commercial sources in each	
region	v
Figure ES-4: Proportion of total emissions by commercial source type in the GMR	ix
Figure ES-5: Proportion of total emissions by commercial source type in the Sydney region	xiii
Figure 2-1: Grid coordinate system	2
Figure 2-2: Definition of Greater Metropolitan, Sydney, Newcastle and Wollongong regions	
Figure 2-3: Commercial emissions inventory database start-up form	14
Figure 2-4: Facility configuration screen	15
Figure 2-5: Emission source configuration screen	16
Figure 2-6: Emission estimation screen	17
Figure 3-1: Service stations within the GMR	25
Figure 3-2: Summary monthly temporal variation of service station emission sources	41
Figure 3-3: Summary daily temporal variation of service station emission sources	42
Figure 3-4: Summary hourly temporal variation of service station emission sources	42
Figure 3-5: Projection factors for petroleum refining related sources	44
Figure 3-6: Smash repairers within the GMR	46
Figure 3-7: Projection factors for commercial and services related sources	50
Figure 3-8: Dry cleaners within the GMR	52
Figure 3-9: Projection factors for population related sources	55
Figure 3-10: Poultry farming businesses within the GMR	56
Figure 3-11: Measured TSP concentrations within shed during the chicken grow out cycle	58
Figure 3-12: Derived particulate size distribution from meat chicken sheds	59
Figure 3-13: Variation in ventilation rates according to bird age and temperature	60
Figure 3-14: Monthly temporal emissions profile – poultry farming	62
Figure 3-15: Hourly temporal emissions profile – poultry farming	63
Figure 3-16: Projection factors for agriculture related sources	66
Figure 3-17: Hospitals within the GMR	67
Figure 3-18: Amount of gas combusted versus number of beds at NSW hospitals	69
Figure 3-19: Variance in derived natural gas consumption per bed at hospitals in NSW GMR	70
Figure 3-20: Wine manufacturers within the GMR	73
Figure 3-21: Monthly temporal factors for wine manufacturing sources	76
Figure 3-22: Commercial construction material mines within the GMR	79
Figure 3-23: Projection factors for mining related sources	84
Figure 3-24: Crematoria within the GMR	86
Figure 3-25: Commercial printing businesses within the GMR	90

Figure 3-26: Projection factors for wood, paper and printing related sources	95
Figure 3-27: Fibreglass manufacturers within the GMR	
Figure 3-28: Projection factors for other (manufacturing) industry related sources	100
Figure 3-29: Commercial concrete product manufacturing businesses within the GMR	102
Figure 3-30: Monthly temporal variation for concrete product manufacturing	106
Figure 3-31: Projection factors for non-metallic minerals related sources	108
Figure 3-32: Basic iron and steel manufacturers within the GMR	110
Figure 3-33: Projection factors for iron and steel (primary energy) related sources	114
Figure 3-34: Locations of bread manufacturers within the GMR	
Figure 3-35: Ceramic product manufacturers within the GMR	119
Figure 3-36: Commercial chemical product manufacturers within the GMR	123
Figure 3-37: Projection factors for basic chemicals related sources	126
Figure 3-38: Food manufacturing n.e.c. businesses within the GMR	128
Figure 3-39: Commercial port operators within the GMR	133
Figure 3-40: Projection factors for water transport related sources	135
Figure 3-41: Plaster product manufacturers within the GMR	137
Figure 3-42: Glass and glass product manufacturers within the GMR	141
Figure 3-43: Paint manufacturers within the GMR	146
Figure 3-44: Steel pipe and tube manufacturers within the GMR	150
Figure 3-45: Metal coating and finishing businesses within the GMR	155
Figure 3-46: Commercial businesses included in "Other ANZSIC Classes" within the GMR	163
Figure 3-47: Projection factors for air transport related sources	194
Figure 3-48: Projection factors for basic non-ferrous metals products related sources	195
Figure 3-49: Projection factors for iron and steel (final energy) related sources	196
Figure 3-50: Projection factors for other basic non-ferrous metals related sources	197
Figure 3-51: Projection factors for pipeline transport related sources	198
Figure 3-52: Projection factors for rail transport related sources	199
Figure 3-53: Projection factors for road transport related sources	200
Figure 4-1: Commercial emission sources in the GMR	202
Figure 4-2: Proportion of total fuel consumption by commercial activity type in the GMR	204
Figure 4-3: Proportion of total estimated annual emissions from commercial sources in each	
region	206
Figure 4-4: Proportion of NO _x emissions by commercial activity type in the GMR	210
Figure 4-5: Proportion of VOC emissions by commercial activity type in the GMR	210
Figure 4-6: Proportion of CO emissions by commercial activity type in the GMR	211
Figure 4-7: Proportion of SO_2 emissions by commercial activity type in the GMR	211
Figure 4-8: Proportion of PM ₁₀ emissions by commercial activity type in the GMR	212
Figure 4-9: Proportion of PM _{2.5} emissions by commercial activity type in the GMR	212
Figure 4-10: Proportion of NO _x emissions by commercial activity type in the Sydney region	216

Figure 4-16: Proportion of NO_x emissions by commercial activity type in the Newcastle region...... 220 Figure 4-17: Proportion of VOC emissions by commercial activity type in the Newcastle region 220 Figure 4-20: Proportion of PM₁₀ emissions by commercial activity type in the Newcastle region 222 Figure 4-21: Proportion of PM_{2.5} emissions by commercial activity type in the Newcastle region 222 Figure 4-22: Proportion of NO_x emissions by commercial activity type in the Wollongong region 224 Figure 4-23: Proportion of VOC emissions by commercial activity type in the Wollongong region ... 224 Figure 4-24: Proportion of CO emissions by commercial activity type in the Wollongong region 225 Figure 4-25: Proportion of SO₂ emissions by commercial activity type in the Wollongong region..... 225 Figure 4-26: Proportion of PM₁₀ emissions by commercial activity type in the Wollongong region ... 226 Figure 4-27: Proportion of PM_{2.5} emissions by commercial activity type in the Wollongong region... 226 Figure 4-28: Proportion of NO_x emissions by commercial activity type in the Non Urban region 229 Figure 4-29: Proportion of VOC emissions by commercial activity type in the Non Urban region 229 Figure 4-30: Proportion of CO emissions by commercial activity type in the Non Urban region 230 Figure 4-31: Proportion of SO₂ emissions by commercial activity type in the Non Urban region 230 Figure 4-32: Proportion of PM₁₀ emissions by commercial activity type in the Non Urban region 231 Figure 4-33: Proportion of PM_{2.5} emissions by commercial activity type in the Non Urban region..... 231

GLOSSARY/ABBREVIATIONS

Acronym	Definition
°C	Degrees Celsius
°R	Degrees Rankine. A thermodynamic (absolute) temperature scale where zero is absolute zero and one Rankine degree is defined as equal to one degree Fahrenheit.
μm	micrometre (1 x 10-6 metre)
ABARE	Australian Bureau of Agricultural and Resource Economics
ABS	Australian Bureau of Statistics
ACT	Australian Capital Territory
ADO	Automotive diesel oil
AECL	Australian Egg Corporation Limited
Ambient Air Quality NEPM	National Environment Protection (Ambient Air Quality) Measure
am	ante meridiem (indicating the time period from midnight to midday)
ANZSIC	Australian and New Zealand Standard Industrial Classification, 1993
APMF	Australian Paint Manufacturers Federation
ARB	Air Resources Board
ATL	Automotive Testing Laboratories
AVGAS	Aviation gasoline
AVTUR	Aviation turbine fuel
BOD	Biological oxygen demand
BoM	Bureau of Meteorology
BP	British Petroleum
CA	California
CARB	California Air Resources Board
CE	Control efficiency
CE-CERT	Center for Environmental Research and Technology
CEIDARS	California emission inventory and reporting system
chromium VI	Hexavalent chromium (i.e. Cr ⁶⁺)
CO	Carbon monoxide
CO ₂	Carbon dioxide
Combustion products	CO, NO _x , TSP, PM_{10} , $PM_{2.5}$, particulate matter, VOC, SO ₂ , SO ₃ , H_2SO_4 , speciated metals, speciated organics, greenhouse gases, ammonia
CORINAIR	<u>CO</u> -o <u>R</u> dinated <u>IN</u> formation on the Environment in the European Community - <u>AIR</u> .
CSIRO	Commonwealth Scientific and Industrial Research Organisation
DCC	Australian Commonwealth Department of Climate Change
DCCEE	Australian Commonwealth Department of Climate Change and Energy Efficiency
DEC	Department of Environment and Conservation (NSW)
Dec	December
DECC	Department of Environment and Climate Change (NSW)
DECCW	Department of Environment, Climate Change and Water (NSW)
DEH	Australian Commonwealth Department of Environment and Heritage
DEW	Australian Commonwealth Department of Environment and Water
DEWHA	Australian Commonwealth Department of Environment, Water, Heritage and the Arts
DHA	Australian Commonwealth Department of Health and Aging
DITR	Australian Commonwealth Department of Industry, Tourism and Resources
DMR	NSW Department of Mineral Resources
DPI	NSW Department of Primary Industries
DRET	Australian Commonwealth Department of Resources, Energy and Tourism

Acronym	Definition
DSEWPC	Australian Commonwealth Department of Sustainability, Environment, Water, Population
	and Communities
EA	Environment Australia
EEA	European Environment Agency
EET	Emission estimation technique
EI	Emissions inventory
EIIP	Emission Inventory Improvement Program
EMEP	Automotive Testing Laboratories
EPA	Environment Protection Authority
EPAV	Environment Protection Authority Victoria
ERG	Eastern Research Group
GDA	Geocentric Datum of Australia
GJ	Gigajoule (1 x 10º joule)
GMR	Greater Metropolitan Region
GPO	Government Post Office
H_2S	Hydrogen sulfide
ha	Hectare (one hectare equals 10,000 m²)
HC	Hydrocarbons
HCl	Hydrochloric acid
HP	Horsepower
I.C.	Internal combustion
ICSM	Intergovernmental Committee on Surveying and Mapping
ID	Identification number
IPCC	Intergovernmental Panel on Climate Change
ISBN	International Standard Book Number
K	Kelvin. A thermodynamic (absolute) temperature scale where zero is absolute zero and one Kelvin is defined as equal to one degree Celsius.
kg	kilogram(1,000 gram)
kĽ	kilolitre (1,000 litre)
km	kilometre (1,000 metre)
kPa	kilopascal
kW	kilowatt (1,000 watt)
L	Litre
lb	Pound (avdp) (Avoirdupois)
LGA	Local government area
LPG	Liquefied Petroleum Gas
Ltd	Limited
m	metre
М	Moisture content
m/s	metre per second
m ²	Square metre
m ³	Cubic metre
mg	milligram (i.e. 1 thousandth of a gram, 1 millionth of a kilogram)
MGA	Map Grid of Australia based on the Geocentric Datum of Australia 1994 (GDA94)
Misc	Miscellaneous
MJ	Megajoule (1,000,000 joule)
ML	Megalitre (1,000,000 litre)
mm	millimetre (1,000 th of a metre or 1×10^{-3} metre)
Mm ³ Mt	Mega cubic metre (i.e. 1,000,000 cubic metre)
	Megatonne (1,000,000 tonne) Matar Vahiela Rapair Industry Authority
MVRIA	Motor Vehicle Repair Industry Authority

2008 Calendar Year Commercial Emissions: Results Glossary/Abbreviations

Acronym	Definition				
MW	Megawatt (1,000,000 watt)				
MWh	Megawatt hour (one million watt hour)				
n.e.c.	Not elsewhere classified				
N ₂ O	Nitrous oxide				
NA	Not applicable				
NaOH	Sodium hydroxide				
ND	No data				
NEPC	National Environment Protection Council				
NEPM	National Environment Protection Measure				
NGA	National Greenhouse Accounts				
NGGIC	National Greenhouse Gas Inventory Committee				
NICNAS	National Industrial Chemicals Notification & Assessment Scheme				
NO	Nitric oxide				
No.	Number				
NO ₂	Nitrogen dioxide				
NO _x	Oxides of nitrogen (sum of nitric oxide and nitrogen dioxide expressed as nitrogen dioxide equivalent)				
NPI	National Pollutant Inventory				
NPI NEPM	National Environment Protection (National Pollutant Inventory) Measure				
NRM	National Resource Management Regions				
NSW	New South Wales				
NSWBDM	NSW Registry Births Deaths and Marriages				
OEH	Office of Environment and Heritage (NSW)				
OEHHA	Office of Environmental Health Hazard Assessment				
OEM	Original equipment manufacturers				
Р	Power				
PAE	Pacific Air & Environment				
PAH	Polycyclic aromatic hydrocarbons				
PCA PCB	Pollution control approval Polychlorinated biphenyl				
PCDD	Polychlorinated dibenzo-p-dioxins				
PCDD/F					
PCDD/PCDF	Polychlorinated dibenzo-p-dioxins & polychlorinated dibenzo-p-furans (polychlorinated dioxins and furans) Polychlorinated dibenzo-p-dioxins & polychlorinated dibenzo-p-furans (polychlorinated				
	dioxins and furans)				
PCDF	Polychlorinated dibenzo-p-furans				
PCO	Parliamentary Counsel Office (New South Wales)				
PM	Particulate matter (included in the air emissions inventory as TSP, PM_{10} and $PM_{2.5}$)				
pm PM	post meridiem (indicating the time period from midday to midnight) Particulate matter with an aerodynamic diameter of less than or equal to 10 micrometres				
PM_{10}					
PM _{2.5}	Particulate matter with an aerodynamic diameter of less than or equal to 2.5 micrometres				
PO	Post Office				
POEO	Protection of the Environment Operations				
POP	Persistent Organic Pollutant				
pp	pages Parts par million (in mass) (a.g. gram (tanna)				
ppm Pty	Parts per million (in mass) (e.g. gram/tonne) Proprietary				
PULP	Premium unleaded petrol				
Qld	Queensland				
RTA	Road and Traffic Authority				
SO ₂	Sulfur dioxide				

Air Emissions Inventory for the Greater Metropolitan Region of New South Wales Glossary/Abbreviations

Acronym	Definition			
SO_3	Sulfur trioxide			
SQL	Structured Query Language			
Stat	Stationary			
STP	Sewage treatment plant			
t	tonne (1,000 kilogram)			
TAPM	The Air Pollution Model			
TDC	Transport Data Centre			
TJ	Terajoule (1x 10 ¹² joule)			
TSP	Total suspended particulate matter			
TTY	Text Telephone, Telephone typewriter, or telecommunication device for the Deaf			
ULP	Unleaded petrol			
UNEP	United Nations Environment Programme			
USA	United States of America			
USEPA	United States Environmental Protection Agency			
VCE	Vapour collection efficiency			
Vic	Victoria			
VOC	Total volatile organic compounds			
VRU	Vapour recovery unit			
WEBFIRE	Internet based factor information retrieval (FIRE)			

1 INTRODUCTION

An air emissions inventory project for commercial sources has taken over two years to complete. The base year of the commercial inventory represents activities that took place during the 2008 calendar year and is accompanied by emission projections in yearly increments up to the 2036 calendar year. The area included in the inventory covers greater Sydney, Newcastle and Wollongong regions, known collectively as the Greater Metropolitan Region (GMR).

The purpose of this document is to present the emission estimation methodologies and results of the commercial air emissions inventory. The information is structured as follows:

- > A description of the commercial air emissions inventory specification (Section 2) including:
 - The inventory year (Section 2.1);
 - A description of the inventory region (Section 2.2);
 - A description of the grid coordinate system (Section 2.3);
 - A description of emission sources considered (Section 2.4);
 - A description of the pollutants evaluated (Section 2.5); and
 - A broad discussion of the methodology (Section 2.6).
- > The emission estimation methodology presented by commercial source type for the GMR, Sydney, Newcastle, Wollongong and Non Urban regions (Section 3).
- An emission summary for selected substances presented by commercial source type for the GMR, Sydney, Newcastle, Wollongong and Non Urban regions (Section 3).
- An emissions summary for selected substances presented for all commercial sources for the GMR, Sydney, Newcastle, Wollongong and Non Urban regions (Section 4).
- > A complete list of references (Section 5).
- > Total commercial emissions of all substances emitted in the GMR, Sydney, Newcastle, Wollongong and Non Urban regions (Appendix A).

2 INVENTORY SPECIFICATIONS

2.1 The Inventory Year

The commercial air emissions inventory results presented in this report are based on activities that took place in the 2008 calendar year.

2.2 The Inventory Region

The inventory region defined as the GMR measures 210 km (east-west) by 273 km (north-south). The inventory region is defined in Table 2-1 and shown in Figure 2-2.

		1 , 5 5,		0 0 0
Region	South-west corner MGA ¹ co-ordinates		North-east corner MGA ¹ co-ordinates	
Region	Easting (km)	Northing (km)	Easting (km)	Northing (km)
Greater Metropolitan	210	6159	420	6432
Sydney	261	6201	360	6300
Newcastle	360	6348	408	6372
Wollongong	279	6174	318	6201

Table 2-1: Definition of Greater Metropolitan, Sydney, Newcastle and Wollongong regions

¹Map Grid of Australia based on the Geocentric Datum of Australia 1994 (GDA94) (ICSM, 2006).

2.3 Grid Coordinate System

The grid coordinate system used for the commercial air emissions inventory uses 1 km by 1 km grid cells. The grid coordinates start from the bottom left corner having index number with Easting (km) in the horizontal and Northing (km) in the vertical direction. The grid coordinate system is illustrated in Figure 2-1.

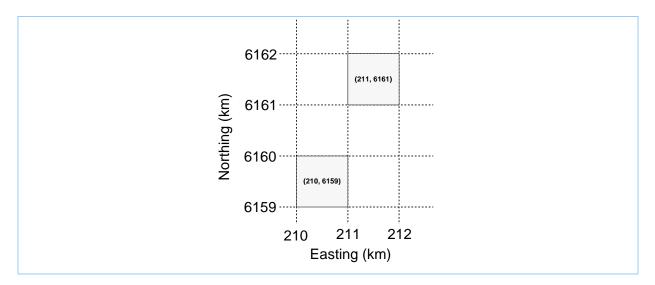


Figure 2-1: Grid coordinate system

Air Emissions Inventory for the Greater Metropolitan Region of New South Wales 2. *Inventory Specifications*



Figure 2-2: Definition of Greater Metropolitan, Sydney, Newcastle and Wollongong regions

2.4 Emission Sources Considered

The commercial sectors included in the commercial emissions inventory are outlined in Table 2-2.

Subdivision/Description	Crown/Decarintian	Class/Description
Subdivision/Description	Group/Description	Class/Description
01/Agriculture	014/Poultry farming	0141/Poultry farming (meat)
		0142/Poultry farming (eggs)
14/Other mining	141/Construction material	1411/Gravel and sand quarrying
	mining	1419/Construction material mining n.e.c.
21/Food, beverage and	212/Dairy product	2121/Milk and cream processing
tobacco	manufacturing	2122/Ice cream manufacturing
		2129/Dairy product manufacturing
	213/Fruit and vegetable	2130/Fruit and vegetable processing
	processing	
	216/Bakery product	2161/Bread manufacturing
	manufacturing	2162/Cake and pastry manufacturing
		2163/Biscuit manufacturing
	217/Other food manufacturing	2172/Confectionary manufacturing
		2174/Prepared animal and bird feed
		manufacturing
		2179/Food manufacturing n.e.c.
	218/Beverage and malt	2181/Soft drink, cordial and syrup manufacturing
	manufacturing	2182/Beer and malt manufacturing
		2182/Wine manufacturing
		2184/Spirit manufacturing
22/Textile, clothing,	221/Textile, fibre, yearn and	2214/Wool textile manufacturing
footwear and leather	woven fabric manufacturing	2214/ Woor textile manufacturing
manufacturing	224/Clothing manufacturing	2240 (Clathing manufacturing n a c
manufacturing	5 5	2249/Clothing manufacturing n.e.c.
	226/Leather and leather product	2261/Leather tanning and fur dressing
22/Wood and manage	manufacturing	2221 (Playung d and wonger manufacturing
23/Wood and paper product manufacturing	232/Other wood product manufacturing	2321/Plywood and veneer manufacturing
product manufacturing	manufacturing	2322/Fabricated wood manufacturing
		2323/Wooden structural component
		manufacturing
		2329/Wood product manufacturing n.e.c.
		2332/Solid paperboard container manufacturing
		2339/Paper product manufacturing n.e.c.
24/Printing, publishing	241/Printing and services to	2412/Printing
and recorded media	printing	2520 (D. t. 1
25/Petroleum, coal,	252/Petroleum and coal product	2520/Petroleum and coal product manufacturing
chemical and associated	manufacturing n.e.c.	
product manufacturing	253/Basic chemical	2531/Fertiliser manufacturing
	manufacturing	2532/Industrial gas manufacturing
		2533/Synthetic resin manufacturing
		2534/Organic industrial chemicals manufacturing
		n.e.c.
		2535/Inorganic industrial chemicals
		manufacturing n.e.c.
	254/Other chemical product	2541/Explosive manufacturing
	manufacturing	2542/Paint manufacturing
	manufacturing	2542/Paint manufacturing 2543/Medicinal and pharmaceutical product
	manufacturing	5

Subdivision/Description	Group/Description	Class/Description
		2547/Ink manufacturing
		2549/Chemical product manufacturing n.e.c.
	255/Rubber product	2559/Rubber product manufacturing
	manufacturing	
	256/Plastic product	2563/Plastic bag and film manufacturing
	manufacturing	2564/Plastic product rigid fibre reinforced
		manufacturing
		2566/Plastic injection moulded product
		manufacturing
26/Non-metallic mineral	261/Glass and glass product	2610/Glass and glass product manufacturing
product manufacturing	manufacturing	2621/Clay brick manufacturing
		2622/Ceramic product manufacturing
		2623/Ceramic tile and pipe manufacturing
		2629/Ceramic product manufacturing n.e.c.
		2631/Cement and lime manufacturing
		2632/Plaster product manufacturing
		2633/Concrete slurry manufacturing
		2634/Concrete pipe and box culvert
		manufacturing
27/Metal product	271/Iron and steel manufacturing	2711/Basic iron and steel manufacturing
manufacturing		2712/Iron and steel casting and forging
		2713/Steel pipe and tube manufacturing
		2729/Basic non ferrous metal manufacturing
	273/Non ferrous basic metal	2733/Nonferrous metal casting
	product manufacturing	, 0
	274/Structural metal product	2742/Architectural aluminium product
	manufacturing	manufacturing
		2749/Structural metal product manufacturing
		n.e.c.
	275/Sheet metal product	2751/Metal container manufacturing
	manufacturing	
	276/Fabricated metal product	2762/Spring and wire product manufacturing
	manufacturing	2763/But, bolt, screw and rivet manufacturing
		2764/Metal coating and finishing
		2769/Fabricated metal product manufacturing
		n.e.c.
28/Machinery and	281/Motor vehicle and part	2819/Automotive component manufacturing n.e.c.
equipment	manufacturing	
manufacturing	282/Other transport equipment	2821/Shipbuilding
	manufacturing	2824/Aircraft manufacturing
		2829/Transport equipment manufacturing n.e.c.
	284/Electronic equipment	2849/Electronic equipment manufacturing n.e.c.
	manufacturing	~
	285/Electrical equipment	2852/Electric cable and wire manufacturing
	manufacturing	2853/Battery manufacturing
	Ĭ	2859/Electrical equipment manufacturing n.e.c.
	286/Industrial machinery and	2862/Mining and construction machinery
	equipment manufacturing	manufacturing

Subdivision/Description	Group/Description	Class/Description
		manufacturing
		2922/Sheet metal furniture manufacturing
		2929/Furniture manufacturing n.e.c.
41/General construction	412/Non building construction	4121/Road and bridge construction
		4122/Non building construction n.e.c.
45/Mineral, metal and	452/Mineral, metal and chemical	4521/Petroleum product wholesaling
chemical wholesaling	wholesaling	4523/Chemical wholesaling
53/Motor vehicle	532/Motor vehicle services	5321/Automotive fuel retailing
services		5323/Smash repairing
57/Accommodation,	573/Cafes and restaurants	5730/Cafes and restaurants
cafes and restaurants		
66/Services to water	662/Services to water transport	6622/Water transport terminals
transport		
86/Health services	861/Hospitals and nursing	8611/Hospitals
	homes	8613/Nursing homes
95/Personal services	952/Other personal services	9521/Laundries and dry cleaners
		9524/Funeral directors, crematoria and cemeteries

a n.e.c. = not elsewhere classified

Exhaust emissions from commercial off-road vehicles are included in the off-road mobile emissions inventory, while emissions from off-road vehicle specific processes (e.g. material loading by a frontend loader) and wheel generated dust emissions are included in the commercial emissions inventory. Emissions from wind erosion on unpaved roads are included in the biogenic and geogenic emissions inventory.

2.5 Pollutants Evaluated

The following pollutants have been considered:

- Substances included in the National Environment Protection (National Pollutant Inventory) Measure (NEPC, 2008);
- Pollutants included in the National Environment Protection (Ambient Air Quality) Measure (NEPC, 2003);
- > Pollutants included in the National Environment Protection (Air Toxics) Measure (NEPC, 2004);
- Pollutants associated with the Protection of the Environment Operations (Clean Air) Regulation 2010 (PCO, 2011);
- Air pollutants associated with the Protection of the Environment Operations (General) Regulation 2009 (PCO, 2010);
- > Speciation of oxides of nitrogen (i.e. NO and NO₂) for photochemical modelling (USEPA, 2003c)*;
- > Speciated organic compounds for photochemical modelling sourced from Carter (2010);

 $^{^{*}}$ The default NO_x speciation profile used in the inventory is 95% NO and 5% NO₂.

- > Speciated particulate emissions (i.e. TSP (total suspended particulate), PM_{10} (particulate matter with an aerodynamic diameter $\leq 10 \ \mu$ m) and $PM_{2.5}$ (particulate matter with an aerodynamic diameter $\leq 2.5 \ \mu$ m));
- Environment Protection Authority of Victoria air toxic pollutants sourced from Hazardous Air Pollutants - A Review of Studies Performed in Australia and New Zealand (EPAV, 1999);
- Commonwealth Government Air Toxics Program Technical Advisory Group (13 March 2000) priority air pollutants (EA, 2001b);
- > U.S. Environmental Protection Agency list of 189 Hazardous Air Pollutants (USEPA, 2010);
- Air pollutants included in the Office of Environmental Human Health Assessment (OEHHA)/Air Resources Board (ARB) 'hot spots' list (CARB, 2011);
- > EPA regulated pollutants with design ground level concentrations (DEC, 2005);
- > USEPA 16 priority polycyclic aromatic hydrocarbons (PAH) (Keith et. al., 1979);
- > WHO97 polychlorinated dibenzo-p-dioxins (PCDD), polychlorinated dibenzofurans (PCDF) and polychlorinated biphenyls (PCB) (Van den Berg et. al., 1998); and
- Greenhouse gases (i.e. carbon dioxide, methane and nitrous oxide) included in the National Greenhouse Accounts (NGA) Factors (DCCEE, 2010).

2.6 Methodology Overview

This section contains a broad overview of the methodology used to develop the commercial air emissions inventory, while specific details are provided in Section 3.

The methodology used to develop the commercial air emissions inventory involves the following steps:

2.6.1 Commercial Business Identification

Commercial businesses are those defined in Section 2.4 with the potential for air emissions in the GMR that do not hold an environment protection licence under the NSW POEO Act (Protection of the Environment Operations Act 1997).

Businesses have been identified from a number of different sources including:

- > NSW WorkCover database for hazardous materials;
- NSW telephone directory;
- Service station lists from major oil distributors (BP, Shell, Caltex/Ampol and Mobil);
- > NSW Department of Primary Industries;
- ▶ NSW Health Services Directory; and
- > The Environmental Health Branch of the NSW Government.

Business addresses have been geocoded to obtain the spatial location for each business. The geocoding process queried calibrated street map layers to search for the postcode, suburb, street name and street number in order to return the most accurate MGA (Map Grid of Australia) coordinates for the business (the datum used is GDA94). Where the street number could not be located the street centroid

coordinate was returned. Where the street name could not be found the suburb centroid was returned. The statistics from the geocoding process are presented in Table 2-3.

Table 2-5: Results from geocoding process			
Geocoding Accuracy	Number of Businesses		
Accurate to business street number	4,423		
Accurate to business street	515		
Accurate to business suburb	1,285		
Total 6,223			

Table 2-3: Results from geocoding process

a It should be noted that not all commercial businesses identified have been included in the commercial emissions inventory

The coordinates have been used to spatially allocate emission sources unless more accurate data have been provided. Where commercial businesses provided specific coordinates for emission sources, the default coordinates generated from geocoding have been overwritten.

2.6.2 Emission Source Identification

Once all businesses were located, all possible emission sources from each commercial type (separated into ANZSIC classes or groups) and the substances emitted from each emission source were identified.

2.6.3 Emission Estimation Technique Design

All emissions are calculated within a specifically designed database which stores facility details and emission sources and uses NPI and USEPA emission factors to estimate emission loads. In this project, source emission test data have been used to estimate emissions to air in preference to default methodologies that utilise emission factors.

In general, emissions have been estimated using Equation 1.

$E_{i,j} = A_j \times EF_{i,j} \times CF_{i,j}$			Equation 1
where:			
E _{i,j}	=	Emissions of substance i from process j	(kg/year)
EF _{i,j}	=	Emission factor for substance i from process j	(kg/activity unit)
Aj	=	Rate of activity for process j	(activity unit/year)
CF _{i, j}	=	Control factor for substance i for process j	(-)

2.6.4 Identification of Required Data to Estimate Emissions

Based on the designed emission estimation techniques the required data to estimate emissions from each source were identified.

2.6.5 Data Acquisition

Activity data were estimated using a combination of the following methods for each commercial business sector:

1) Where commercial businesses had responded to the survey conducted for the 2003 air emissions inventory (commercial businesses in the 2003 air emissions inventory and facilities that were

licensed under POEO in 2003 but have since been de-scheduled), activity data provided in returned questionnaire was used to estimate emissions for the 2008 calendar year.

- 2) Where commercial businesses reported to the NPI for the 2007/2008 reporting period, activity data was back calculated using a matrix of emission factors for common sources and the derived activity data was used to estimate emissions for the 2008 commercial air emissions inventory
- 3) Where activity data on a business level or sector level were available from government departments and other service providers, this data was used to estimate the relevant activity data on a business by business level for the 2008 commercial air emissions inventory.

A detailed discussion of the activity, spatial and temporal data acquired for each commercial source is presented in Section 3.

2.6.6 Deriving Commercial Type Specific Projection Factors

Projection factors have been derived based on energy (primary or final) projections published by ABARE (Australian Bureau of Agricultural and Resource Economics) national or state projection data (e.g. Australian Energy, National and State Projections to 2029/2030, ABARE, 2006) or population forecasts provided by TDC (TDC, 2009).

Projection factors have been developed for every year from 2009 to 2036 (emissions for the base year 2008 are based on emission estimation techniques).

The projection factors for each source are used to estimate emissions in future annual periods using Equation 2:

$E_{i,j,k,n} =$	$E_{i,j,k,200}$	$_{18} \times \mathrm{PF}_{\mathrm{j,k,n}}$	Equation 2
where:			
E _{i,j,k,n}	=	Emission of substance i from location j for source type k for year n	(kg/year)
E _{i,j,k,2008}	=	Emission of substance i from location j for source type k for the bas year, 2008	se (kg/year)
PF _{j,k,n}	=	Projection factor for location j for source type k for year n (relative the base year)	to (-)

The methodology followed to assign projection factors to each commercial ANZSIC class was as follows:

- ABARE energy projection data for ANZSIC categories were obtained for 2004/2005 to 2030/2031 for primary and final energy consumption for NSW and by energy type (ABARE, 2006);
- Population forecasts were obtained for 2006 to 2036 from Transport Data Centre for the GMR (TDC, 2009).
- Energy usage for 2031/2032 to 2036/2037 were forecast based on ABARE data using linear regression (i.e. assuming linear growth rates out to 2036/2037);
- Calendar year energy usage was estimated based on the average of the two corresponding financial years (e.g. 2008 is the average energy usage from 2007/2008 and 2008/2009);

- ABARE energy projections or population projections were matched up with activities based on ANZSIC93 class generally. Some exceptions from this approach were forced in certain instances (e.g. Petroleum Wholesaling is matched with petroleum refining);
- Generally, either total primary or final energy consumption or population projections were chosen as the projection surrogate based on judgement for each ANZSIC class.

The basis for each commercial activity specific projection factors are provided in Table 2-4.

Projection	ABARE	ABARE	livity specific projection factors	Assigned
Basis	Category	ANZSIC Basis	Activity	ANZSIC93 Class
Final energy	Agriculture	Division A	Dairy product manufacturing n.e.c.	2129
consumption	(Section 3.1.6)		Milk and cream processing	2121
			Poultry farming (eggs)	0142
			Poultry Farming (meat)	0141
			Prepared animal and bird feed	2174
			manufacturing	
	Air transport	Subdivision 64	Aircraft manufacturing	2824
	(Section 3.23.6)		Services to air transport	6630
	Basic chemicals	Group 253	Chemical product manufacturing	2549
	(Section 3.15.6)		n.e.c.	
			Chemical wholesaling	4523
			Fertiliser manufacturing	2531
			Inorganic industrial chemical	2535
			manufacturing n.e.c.	
			Organic industrial chemical	2534
			manufacturing n.e.c.	
			Synthetic resin manufacturing	2533
	Basic non-ferrous	Group 272 and	Aluminium rolling, drawing,	2731
	metals products	Group 273	extruding	
	(Section 3.23.6)		Architectural aluminium product	2742
			manufacturing	
	Commercial and	Sectors 37, 66	Scientific research	7810
	service	and 67;	Smash repairing	5323
	(Section 3.2.6)	Divisions F, G,	Waste disposal services	9634
		H, J, K, L, M, N,		
		O, P and		
	Iron and steel (Section 3.23.6)	Group 271	Iron and steel casting and forging	2712
	Mining	Division B	Construction material mining n.e.c.	1419
	(Section 3.7.6)		Gravel and sand quarrying	1411
			Mining and construction machinery	2862
			manufacturing	
	Non-metallic	Subdivision 26	Ceramic product manufacturing	2622
	minerals		Ceramic product manufacturing	2629
	(Section 3.11.6)		n.e.c.	
			Ceramic tile and pipe	2623
			manufacturing	
			Clay brick Manufacturing	2621
			Concrete slurry manufacturing	2633

Table 2-4: Basis for commercial activity specific projection factors

Air Emissions Inventory for the Greater Metropolitan Region of New South Wales 2. *Inventory Specifications*

Projection	ABARE	ABARE	Activity	Assigned
Basis	Category	ANZSIC Basis		ANZSIC93 Class
			Glass and glass product	2610
	Other basic non	Classes 2720-	manufacturing Non-ferrous metal casting	2733
	ferrous metals	2721, 2723–2729	Non-terrous metal casting	2755
	(Section 3.23.6)	2721, 2723-2727		
	Other industry	NA (but other	Agricultural machinery	2861
	(Section 3.10.6)	industry within	manufacturing	2001
	(Section 5.10.0)	Division C)	Automotive component	2819
			manufacturing n.e.c.	2017
			Battery manufacturing	2853
			Beer and malt manufacturing	2182
			Biscuit manufacturing	2163
			Bread manufacturing	2161
			Cake and pastry manufacturing	2162
			Clothing manufacturing n.e.c.	2249
			Confectionery manufacturing	2172
			Corrugated paperboard container	2333
			manufacturing	
			Electric cable and wire	2852
			manufacturing	
			Electrical and equipment	2859
			manufacturing n.e.c.	
			Electronic equipment	2849
			manufacturing n.e.c.	
			Explosive manufacturing	2541
			Fabricated metal product	2769
			manufacturing n.e.c.	
			Food manufacturing n.e.c.	2179
			Fruit and vegetable processing	2130
			Furniture manufacturing n.e.c.	2929
			Ice cream manufacturing	2122
			Industrial gas manufacturing	2532
			Ink manufacturing	2547
			Leather tanning and fur dressing	2261
			Lifting and material handling	2865
			equipment manufacturing	
			Medicinal and pharmaceutical	2543
			product manufacturing	
			Metal coating and finishing	2764
			Metal container manufacturing	2751
			Non-metallic mineral product	2640
			manufacturing n.e.c.	
			Oil and fat manufacturing	2140
			Paint manufacturing	2542
			Plaster product manufacturing	2632
			Plastic bag and film manufacturing	2563
			Plastic injection moulded product	2566
			manufacturing	
			Plastic product, rigid fibre	2564

2008 Calendar Year Commercial Emissions: Results 2. Inventory Specifications

Projection	ABARE	ABARE	Activity	Assigned
Basis	Category	ANZSIC Basis		ANZSIC93 Class
			reinforced, manufacturing	
			Professional and scientific	2839
			equipment manufacturing n.e.c.	
			Rubber product manufacturing	2559
			n.e.c.	
			Soap and other detergent	2545
			manufacturing	
			Soft drink, cordial and syrup	2181
			manufacturing	
			Spirit manufacturing	2184
			Spring and wire product	2762
			manufacturing	
			Steel pipe and tube manufacturing	2713
			Structural metal product	2749
			manufacturing n.e.c.	
			Structural steel fabricating	2741
			Transport equipment	2829
			manufacturing n.e.c.	
			Wooden furniture and upholstered	2921
			seat manufacturing	
	Pipeline transport (Section 3.23.6)	Class 6501	Gas supply	3620
	Rail transport	Subdivision 62	Rail transport	6200
	(Section 3.23.6)		Railway equipment manufacturing	2823
	Road transport	Subdivision 61	Non-building construction n.e.c.	4122
	(Section 3.23.6)		Road and bridge construction	4121
	Water transport	Subdivision 63	Port operators	6623
	(Section 3.17.6)		Shipbuilding	2821
	Wood, paper and	Subdivision 23	Fabricated wood manufacturing	2322
	printing	& Subdivision	Log sawmilling	2311
	(Section 3.9.6)	24	Paper product manufacturing n.e.c.	2339
	, ,		Printing	2412
			Solid paperboard container	2332
			manufacturing	
			Wood product manufacturing n.e.c.	2329
			Wooden structural component	2323
			manufacturing	2020
Population	NA	NA	Funeral directors, crematoria and	9524
ropulation	(Section 3.3.6)	1 11 1	cemeteries	<i>7021</i>
	(00000000)		Hospitals	8611
			Laundries and dry-cleaners	9521
			Nursing homes	8613
			Water supply	3701
			Wine manufacturing	2183
Drimorr	Iron and steel	Croup 271	3	
Primary		Group 271	Basic iron and steel manufacturing	2711
energy	(Section 3.12.6)		Basic non-ferrous metal	2729
consumption	D (1	0.051	manufacturing n.e.c.	5001
	Petroleum	Group 251	Automotive fuel retailing	5321
	refining		Petroleum product wholesaling	4521

Air Emissions Inventory for the Greater Metropolitan Region of New South Wales 2. *Inventory Specifications*

Projection	ABARE	ABARE	Activity	Assigned
Basis	Category	ANZSIC Basis		ANZSIC93 Class
	(Section 3.1.6)			

The projection methodology for each commercial sector is presented in Section 3.

2.6.7 Emission Estimation

Emissions have been estimated using data sourced from Australian government agencies, peak body groups and supplied in commercial questionnaires. Generally emissions have been estimated using emission factors sourced from references provided in Table 2-5.

Substance	Emission Factor Source
CO, NO _x ¹ , SO ₂ & VOC	- USEPA AP42 Compilation of Air Pollutant Emission Factors
	(USEPA, 2011b)
	- NPI Emission Estimation Technique Manuals (DSEWPC, 2011)
PM _{2.5} , PM ₁₀ & TSP	- USEPA AP42 Compilation of Air Pollutant Emission Factors
	(USEPA, 2011b)
	- NPI Emission Estimation Technique Manuals (DSEWPC, 2011)
	- California Emissions Inventory and Reporting System
	(CEIDARS) Particulate Matter Size Profiles (CARB, 2008)
	- USEPA AP42 Chapter 13.2.1 Paved Roads & Chapter 13.2.2 Unpaved
	Roads (USEPA, 2006c; 2011a). A detailed description of wheel
	generated dust emission estimates is presented in Appendix B
Organic air toxics	- USEPA SPECIATE v4.2 software (USEPA, 2008e)
	- California Emissions Inventory and Reporting System Organic
	Speciation Profiles (CARB, 2005)
Metal air toxics	- California Emissions Inventory and Reporting System Particulate
	Matter Speciation Profiles (CARB, 2007)
	- USEPA SPECIATE v4.2 software (USEPA, 2008e)
Ammonia	- Ammonia Emissions from Anthropogenic Non-agricultural
	Sources - Draft Final Report (Pechan, 2004)
Sulfuric or hydrochloric acid	- USEPA AP42 Compilation of Air Pollutant Emission Factors
	(USEPA, 2011b)
	- NPI Emission Estimation Technique Manuals (DSEWPC, 2011)
	- Mass balance
	- Raoult's law (Raoult, M, 1882a; 1882b, 1887a; 1887b), using
	chemical properties from Perry and Green (1997)
РАН	- USEPA AP42 Compilation of Air Pollutant Emission Factors
	(USEPA, 2011b)
	- USEPA SPECIATE v4.2 software (USEPA, 2008e)
	- NPI Emission Estimation Technique Manuals (DSEWPC, 2011)
PCDD/PCDF	- Technical Report Number 3, Inventory of Dioxin Emissions in
	Australia, 2004 (Bawden et al, 2004)
	- Standardized Toolkit for Identification and Quantification of
	Dioxin and Furan Releases (UNEP, 2005)

Table 2-5: Typical reference sources for emission factors

2008 Calendar Year Commercial Emissions: Results 2. Inventory Specifications

Substance	Emission Factor Source
Speciated VOC	- USEPA SPECIATE v4.2 software (USEPA, 2008e)
&	- California Emissions Inventory and Reporting System Organic
Methane	Speciation Profiles (CARB, 2005)
	- USEPA TANKS 4.09D software (USEPA, 2006e)
Greenhouse gases (CO ₂ =and N ₂ O)	- National Greenhouse Accounts (NGA) Factors June 2009, (DCC,
	2009b)

Commercial source specific emission estimation techniques are detailed in Section 3.

2.6.8 Data Storage

All emissions have been calculated within the Commercial Emissions Inventory Database, which is a Microsoft® AccessTM 2003 database with SQL back end. The Commercial Emissions Inventory Database was originally designed and configured for the 2003 NSW GMR air emissions inventory (PAE, 2007). The database facilitates the storage of all data required for estimating emissions to air from commercial sources, including: activity data; emission factors; volatile organic compound (VOC) speciation profiles; spatial allocation data; hourly, daily and monthly temporal variation data; and emission projection factors. The Commercial Emissions Inventory Database start-up form is shown in Figure 2-3.

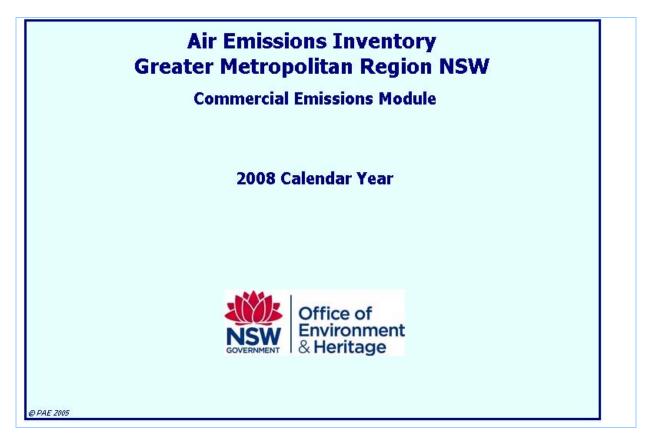


Figure 2-3: Commercial emissions inventory database start-up form

Users can enter and store facility details, including, facility name, address details as well as identified emission sources, locations of emission sources, and other facility details into the Facility Configuration Screen shown in Figure 2-4.

acility Configuration	Jump t	to Facility ID:	
etails Address			Does Not Exist
Facility: AMPOL GA: Sydney	UTM Zone 56 Easting (km): 334.430 Northing (l	km): 6251.048	
Facility ID: 1 NPI reporter:	Centroid Accuracy	t 🖲 Suburb	Survey Recv'd
urces Contacts ANZSIC Codes			j,
Source	Source Type	Easting kn	m Northing km 🔺
Service stations (Loading storage tanks - petrol)	Fugitive	334.430	0 6251.048
Service stations (Petrol vehicle refuelling)	Fugitive	334.430	0 6251.048
Service stations (Spillage of petrol)	Fugitive	334.430	0 6251.048
Service stations (Tank breathing - petrol)	Fugitive	334.430	0 6251.048
Service stations (Diesel emissions)	Fugitive	334.430	0 6251.048
* <enter name="" source=""></enter>	<not set=""></not>	334.430	0 6251.048
View Details: View all:		Di	elete: 😿 🚽
Record: 1 1 1 1 1 1 5			

Figure 2-4: Facility configuration screen

Once emission sources have been identified, users can configure each emission source by selecting an appropriate EET from a library of techniques as well as select the most appropriate organic speciation profile using the Emission Source Configuration Screen shown in Figure 2-5. Users can also store source information such as stack parameters if required and temporal factors to describe how the emission source varies over time.

cility:	AMPOL	
ource:	Service stations (Loading storage tanks - petrol)	
T:	Loading storage tanks - petrol	•
eciation ofile:	Petrol Vapour	-
<u>UTM Zone</u> Easting (k Northing	e: 56 m): 334.430 Grid Cell: 125093 X 334.000 Y 6251.000 Source Type: Fugitive Inter- Area: GMR	nput missio ata
	missioned:	
Date Com	ificantly	

Figure 2-5: Emission source configuration screen

Emissions are estimated using the Emission Estimation Screen shown in Figure 2-6. Users are required to enter the required source activity data corresponding to the EET selected to estimate emissions. Substance specific emission control factors may be entered corresponding to site specific control technologies that may be in place.

				Reset all: 🎦	
or: AMPOL: Service s	stations (Loading storage tanks - petrol):				
	Amount of petrol loaded	Required Inputs: 530.53513723000000	<mark>)0000</mark> kL/year	Editable? ☑	
	Saturation factor	1.0000000000000000000000000000000000000	00000 factor	V	
<u>Substance:</u>		<u>Measurement:</u>		Editable?	·
	TOTAL VOCS: Emission Factor	.65996800000000)0000 kg/kL		
		14245000000000	0000 (
	TOTAL VOCS: Control Factor	.14345600000000	00000 factor		
Record: 14 🕢	TOTAL VOCS: Control Factor	,	00000 factor		Colud
ubstance:	1 ▶ ▶ ▶ ▶ ₩ ▶ ₩ Ø ▶ of 2	Estimated Emission:	00000 factor		Calcula
ubstance: XYLENE	1 ▶ ▶ ▶* Ø ▶ of 2	<u>Estimated Emission:</u> .05195900000000000 kg/year	factor	I No Edits:	Calcul
ubstance: XYLENE ETHYLTOLUENE	1 • • • • • • • • • • • • • • • • • • •	Estimated Emission: .05195900000000000 kg/year .015587000000000000 kg/year	factor		Calcula
ubstance: XYLENE ETHYLTOLUENE XYLENE	1 • • • • • • • • • • • • • • • • • • •	Estimated Emission: .05195900000000000 kg/year .015587000000000000 kg/year .062351000000000000 kg/year	10000 factor		Calcula
Ubstance: XYLENE ETHYLTOLUENE XYLENE DLUENE	1 • • • • • • • • • • • • • • • • • • •	Estimated Emission: .051959000000000000 kg/year .015587000000000000 kg/year .062351000000000000 kg/year .987228000000000000 kg/year	10000 factor		Calcula
Record: II I	1 > > >	Estimated Emission: .05195900000000000 kg/year .015587000000000000 kg/year .062351000000000000 kg/year	10000 factor		Calcula

3 DATA SOURCES AND RESULTS

Emissions have been calculated based on information supplied in the returned questionnaires, other data available from industry personnel, USEPA, CARB and NPI emission factors for various engineering and combustion processes. Where monitoring data or stack test data were available, this was used in preference to literature emission rates. All emissions are calculated by a specifically designed database which stores facility details and emission sources and uses NPI and USEPA emission factors to estimate emission loads.

In this section the term "combustion products" is intended to include TSP, PM₁₀, PM_{2.5}, SO₂, CO, NO_x and VOC (total and speciated). The term "particulate matter" (PM) refers to TSP, PM₁₀ and PM_{2.5}.

In this section total emissions are presented for each NSW Activity Type for the GMR, Sydney, Newcastle and Wollongong regions in all cases and emissions released in the "Non Urban" region for Activity types where emissions in this area are significant. The "Non Urban" region is defined as the area within the GMR that is not bounded by Sydney, Newcastle or Wollongong. Emissions are presented for the following pollutants only:

- > 1,3-butadiene
- Acetaldehyde
- Benzene
- Carbon monoxide (CO)
- Formaldehyde
- Isomers of xylene
- Lead & compounds
- Oxides of nitrogen (NO_x)
- ▶ Particulate matter $\leq 10 \ \mu m \ (PM_{10})$
- ▶ Particulate matter $\leq 2.5 \ \mu m \ (PM_{2.5})$
- Perchloroethylene
- Polycyclic aromatic hydrocarbons (PAH)
- Sulfur dioxide (SO₂)
- Toluene
- > Total suspended particulate (TSP)
- > Total volatile organic compounds (VOC)
- > Trichloroethylene

These substances have been selected since they are:

The most common air pollutants found in airsheds according to the National Pollutant Inventory (NEPC, 2008);

- Referred to in National Environment Protection Measures (NEPMs) for ambient air quality (NEPC, 2003) and air toxics (NEPC, 2004); and
- > They have been classified as priority air pollutants (NEPC, 2006).

Total commercial emissions of all substances emitted in the GMR, Sydney, Newcastle, Wollongong and Non Urban regions are presented in Appendix A.

In total, individual business emissions represented by 97 commercial ANZSIC classes are included in the commercial emissions inventory. However, over 93% of businesses (i.e. 4,841 businesses) are within the following 11 ANZSIC classes:

- Automotive Fuel Retailing
- Smash Repairing
- Laundries & Dry Cleaners
- Poultry Farming
- ➢ Hospitals
- Wine Manufacturing
- Construction Material Mining
- > Funeral Directors, Crematoria & Cemeteries
- > Printing, Publishing and Recorded Media
- > Plastic Product Rigid Fibre Reinforced Manufacturing
- Concrete Product Manufacturing

Emissions from these 11 ANZSIC classes are presented separately in this section along with emissions from all ANZSIC classes that have been identified to be significant commercial contributors to emissions of criteria pollutants (i.e. NO_x , VOC, PM_{10} , CO or SO₂). The ANZSIC classes that have been identified to be significant contributors to emissions of criteria pollutants are:

- Basic Iron and Steel Manufacturing
- Bread Manufacturing
- Ceramic Product Manufacturing
- > Chemical Product Manufacturing n.e.c.
- ▶ Food Product Manufacturing n.e.c.
- Port Operators
- Plaster Product Manufacturing
- Glass and Glass Product Manufacturing
- Paint Manufacturing
- Steel Pipe and Tube Manufacturing
- Metal Coating and Finishing

Summary emissions for the remaining 74 ANZSIC classes are presented in Section 3.23.

3. Data Sources and Results

Summary statistics on the coverage of the 2008 commercial air emissions inventory are presented in Table 3-1.

		, ,			5			
				Number of	Number of	Percentage of		
	Number of	Number of	Number of	Non-	Businesses	Businesses		
ANZSIC Class	Businesses	Businesses	Businesses	Respondent	Included in Included in the			
	Identified a	Surveyed ^b	Responded ^c	NPI	the	Inventory		
				Businesses d	Inventory ^e			
Automotive fuel retailing	2087	2089	199	0	2,087	100%		
Smash repairing	1258	126	3	0	1,258	100%		
Laundries and dry-cleaners	563	56	6	2	563	100%		
Poultry farming (Eggs)	50	0	0	0	50	100%		
Poultry farming (Meat)	325	0	0	1	325	100%		
Hospitals	141	146	41	0	141	100%		
Wine manufacturing	106	129	16	1	106	100%		
Construction material mining ^f	60	64	3	1	60	100%		
Funeral directors, crematoria and cemeteries	21	21	9	0	21	100%		
Printing	84	70	25	1	84	100%		
Plastic product, rigid fibre reinforced, manufacturing	88	87	8	3	88	100%		
Concrete slurry manufacturing	58	57	3	0	58	100%		
Agricultural machinery manufacturing	1	1	1	0	1	100%		
Aircraft manufacturing	6	6	0	1	1	17%		
Aluminium rolling, drawing, extruding	2	0	0	2	2	100%		
Architectural aluminium product manufacturing	3	3	0	0	0	0%		
Automotive component manufacturing n.e.c.	11	11	4	0	4	36%		
Basic iron and steel manufacturing	11	10	6	1	7	64%		
Basic non-ferrous metal manufacturing n.e.c.	6	5	3	0	3	50%		
Battery manufacturing	4	4	1	0	1	25%		
Beer and malt manufacturing	3	0	0	3	3	100%		
Biscuit manufacturing	2	2	0	2	2	100%		
Bread manufacturing	8	6	1	4	5	63%		
Cake and pastry manufacturing	2	2	1	0	1	50%		

Table 3-1: Summary statistics for commercial facility coverage in the 2008 air emissions inventory

Air Emissions Inventory for the Greater Metropolitan Region of New South Wales

3. Data Sources and Results

ANZSIC Class	Number of Businesses Identified ^a	Number of Businesses Surveyed ^b	Number of Businesses Responded ^c	Number of Non- Respondent NPI Businesses ^d	Number of Businesses Included in the Inventory °	Percentage of Businesses Included in the Inventory
Ceramic product manufacturing	5	4	0	3	3	60%
Ceramic product manufacturing n.e.c.	7	7	1	0	1	14%
Ceramic tile and pipe manufacturing	2	2	0	0	0	0%
Chemical product manufacturing n.e.c.	72	69	15	2	17	24%
Chemical wholesaling	30	27	6	0	6	20%
Clay brick manufacturing	4	4	0	0	0	0%
Clothing manufacturing n.e.c.	4	4	0	0	0	0%
Confectionery manufacturing	7	5	4	1	5	71%
Corrugated paperboard container manufacturing	2	1	0	2	2	100%
Dairy product manufacturing n.e.c.	1	1	0	0	0	0%
Electric cable and wire manufacturing	2	2	1	0	1	50%
Electrical and equipment manufacturing n.e.c.	20	20	3	0	3	15%
Electronic equipment manufacturing n.e.c.	4	4	1	0	1	25%
Explosive manufacturing	5	3	0	2	2	40%
Fabricated metal product manufacturing n.e.c.	46	32	22	0	22	48%
Fabricated wood manufacturing	1	1	0	0	0	0%
Fertiliser manufacturing	1	1	0	0	0	0%
Food manufacturing n.e.c.	59	58	6	5	11	19%
Fruit and vegetable processing	3	3	1	0	1	33%
Furniture manufacturing n.e.c.	38	38	4	0	4	11%
Gas supply	6	6	0	6	6	100%
Glass and glass product manufacturing	6	5	2	1	3	50%
Ice cream manufacturing	1	1	1	0	1	100%
Industrial gas manufacturing	10	10	2	0	2	20%
Ink manufacturing	7	7	2	0	2	29%
Inorganic industrial chemical manufacturing n.e.c.	2	1	0	1	1	50%
Iron and steel casting and forging	1	1	0	0	0	0%

2008 Calendar Year Commercial Emissions: Results

3. Data Sources and Results

ANZSIC Class	Number of Businesses Identified ^a	Number of Businesses Surveyed ^b	Number of Businesses Responded ^c	Number of Non- Respondent NPI Businesses ^d	Number of Businesses Included in the Inventory ^e	Percentage of Businesses Included in the Inventory
Leather tanning and fur dressing	2	2	0	0	0	0%
Lifting and material handling equipment manufacturing	1	1	1	0	1	100%
Log sawmilling	1	0	1	0	1	100%
Medicinal and pharmaceutical product manufacturing	15	15	3	0	3	20%
Metal coating and finishing	111	96	34	1	35	32%
Metal container manufacturing	3	3	0	0	0	0%
Milk and cream processing	1	1	1	0	1	100%
Mining and construction machinery manufacturing	9	9	2	0	2	22%
Non-building construction n.e.c.	13	13	2	0	2	15%
Non-ferrous metal casting	1	1	1	0	1	100%
Non-metallic mineral product manufacturing n.e.c.	1	0	1	0	1	100%
Nursing homes	373	0	0	0	0	0%
Oil and fat manufacturing	1	0	1	0	1	100%
Organic industrial chemical manufacturing n.e.c.	2	1	1	0	1	50%
Paint manufacturing	24	23	6	0	6	25%
Paper product manufacturing n.e.c.	5	5	2	1	3	60%
Petroleum product wholesaling	86	80	11	20	31	36%
Plaster product manufacturing	2	2	1	0	1	50%
Plastic bag and film manufacturing	10	10	3	0	3	30%
Plastic injection moulded product manufacturing	155	153	13	1	14	9%
Port operators	1	1	1	0	1	100%
Prepared animal and bird feed manufacturing	4	3	1	2	3	75%
Professional and scientific equipment manufacturing n.e.c.	1	0	0	1	1	100%
Rail transport	1	1	1	0	1	100%
Railway equipment manufacturing	1	0	0	1	1	100%
Road and bridge construction	26	23	9	0	9	35%
Rubber product manufacturing n.e.c.	8	8	6	0	6	75%

Air Emissions Inventory for the Greater Metropolitan Region of New South Wales

3. Data Sources and Results

ANZSIC Class	Number of Businesses Identified ^a	Number of Businesses Surveyed ^b	Number of Businesses Responded ^c	Number of Non- Respondent NPI Businesses ^d	Number of Businesses Included in the Inventory °	Percentage of Businesses Included in the Inventory
Scientific research	1	0	0	1	1	100%
Services to air transport	1	0	1	0	1	100%
Shipbuilding	1	1	0	0	0	0%
Soap and other detergent manufacturing	7	7	2	0	2	29%
Soft drink, cordial and syrup manufacturing	4	3	1	2	3	75%
Solid paperboard container manufacturing	3	3	2	0	2	67%
Spirit manufacturing	3	3	1	1	2	67%
Spring and wire product manufacturing	13	13	5	1	6	46%
Steel pipe and tube manufacturing	7	7	3	0	3	43%
Structural metal product manufacturing n.e.c.	4	3	2	1	3	75%
Structural steel fabricating	1	1	1	0	1	100%
Synthetic resin manufacturing	7	3	5	0	5	71%
Transport equipment manufacturing n.e.c.	1	1	0	0	0	0%
Waste disposal services	23	0	23	0	23	100%
Water supply	3	0	0	3	3	100%
Water transport terminals	2	2	0	0	0	0%
Wood product manufacturing n.e.c.	13	13	2	0	2	15%
Wooden furniture and upholstered seat manufacturing	11	11	1	0	1	9%
Wooden structural component manufacturing	14	14	1	0	1	7%
TOTAL	6,223	3,748	553	81	5153	83%

a The number of businesses identified indicates the number of identified businesses operating in 2008.

b The number of businesses surveyed indicates the number of businesses surveyed for the 2003 air emissions inventory and includes facilities that have been 'de-scheduled' between 2003 and 2008 that were moved from the industrial emissions inventory to the commercial emissions inventory

c Indicates the number of businesses that responded to a questionnaire during the 2003 air emissions inventory. This includes businesses that were included in the 2003 industrial air emissions inventory that have been descheduled between 2003 and 2008 (and hence moved to from the 2003 industrial air emissions inventory to the 2008 commercial air emissions inventory

d Indicates the number of non-respondent NPI businesses based on NPI data published for the 2007/2008 NPI reporting period.

e Includes the number of businesses that were included in the 2003 commercial air emissions inventory based on either (i) response to the 2003 air emissions inventory questionnaire, (ii) reported air emissions to the NPI based on the 2007/2008 NPI reporting period; or (iii) based on a top-down approach detailed in this report (e.g. regional based activity data for the 2008 calendar year was used to estimate activity data for each commercial business).

f Construction material mining includes ANZSIC classes 'Gravel and Sand Quarrying' and 'Construction Material Mining n.e.c.'.

3.1 Automotive Fuel Retailing

3.1.1 Emission Sources and Associated Releases to Air

Service stations were identified during the 2003 air emissions inventory and were identified using the following sources:

- NSW WorkCover database for hazardous materials;
- NSW telephone directory;
- Service station lists from major oil distributors (BP, Shell, Caltex/Ampol and Mobil); and
- Survey of commercial facilities performed by NSW DECC (DECC, 2007).

From these sources a total of 2,039 service stations were identified to be within the GMR.

The emissions sources and associated releases to air from service stations are outlined in Table 3-2.

Table 3-2: Service stations – emission sources

Process	Emissions to Air
Loading storage tanks with petrol	VOC
Petrol vehicle refuelling	VOC
Spillage of petrol	VOC
Petrol storage tank breathing losses	VOC
Emissions from diesel transfer and storage operations	VOC

The locations of service stations within the GMR are shown in Figure 3-1.

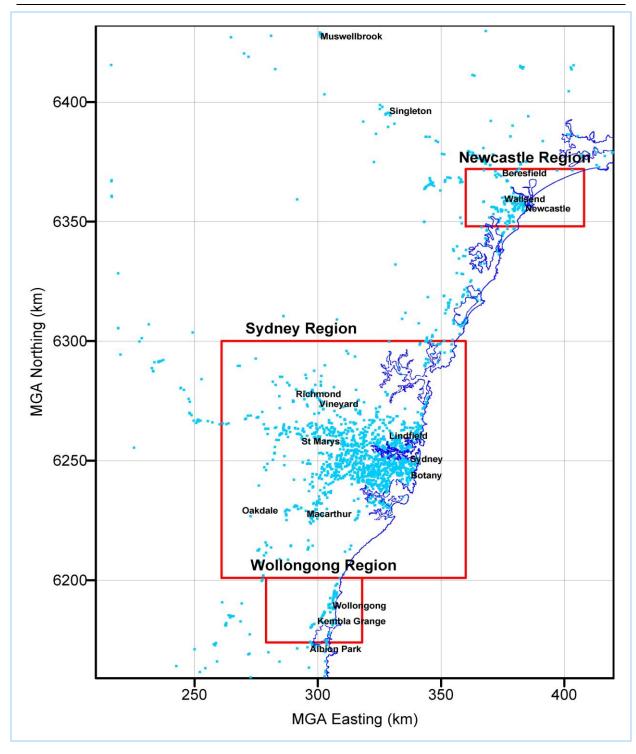


Figure 3-1: Service stations within the GMR

3.1.2 Emission Estimation Methodology

3.1.2.1 Transfer of petrol to tanks for storage

When petrol is transferred to stationary storage tanks, VOC emissions result from the loading operation when vapours present in the empty storage tank are displaced by the added petroleum. Evaporative loss during emptying occurs when air drawn into the tank during liquid removal becomes saturated with organic vapour and expands, thus exceeding the capacity of the vapour space.

VOC emissions from the transfer of petrol to tanks for storage were estimated using the following technique (Equation 3) from USEPA AP42 *Chapter 5.2 Transportation and Marketing of Petroleum Liquids* (USEPA, 2008b):

E = EF	$F_i \times A$	$\times 10^{-6} \times CF$	Equation 3
where:			
Е	=	VOC emissions from transfer of petrol to tanks for storage	(kg/year)
EFi	=	Emission factor for petrol transfer	(mg/L)
А	=	Amount of petrol dispensed	(L/year)
CF	=	Control factor of transfer of petrol to storage	(%)

The emission factor for the transfer of petrol to storage was estimated using the following technique (Equation 4) from USEPA AP42 *Chapter 5.2 Transportation and Marketing of Petroleum Liquids* (USEPA, 2008b):

EF _{i,VOC} =	=12.4	$6 \times \frac{S_i \times P \times M}{T} \times \left(1 - \frac{CE_{VRU}}{100} \times \frac{CE_{VCE}}{100}\right) \times \frac{1000}{(2.20462 \times 3.785412)} $ Equation	on 4
where:			
EF _{i,VOC}	=	VOC emission factor from loading petrol to tanks for storage for	(mg/L)
		loading type i	
S	=	Saturation factor for loading type i (S _{Submerged loading: dedicated normal service} =	(-)
		0.60; S _{Submerged loading: dedicated vapour balance} = 1.00 Source: Table 5.2-1: AP42	
		Chapter 5.2 (USEPA, 2008b)).	
Р	=	True vapour pressure of liquid loaded	(psia)
М	=	Molecular weight of vapour	(lb/lb-mole)
Т	=	Temperature of bulk liquid loaded	(°R)
CEvru	=	Control efficiency of vapour recovery unit	(%)
CE _{VCE}	=	Vapour collection efficiency	(%)
i	=	Loading type (either "submerged loading: dedicated normal service"	(-)
		or "submerged loading: dedicated vapour balance")	

The stock true vapour pressure of the bulk liquid loaded is estimated using the following technique (Equation 5) published in USEPA AP42 *Chapter 7.1 Organic Liquid Storage Tanks* (USEPA, 2006a):

$P = \exp\left\{ \begin{bmatrix} 0.7553 - \left(\frac{413.0}{T + 459.6}\right) \end{bmatrix} \times S^{0.5} \log_{10}(RVP) - \left[1.854 - \left(\frac{1,042}{T + 459.6}\right) \right] \times S^{0.5} \\ + \left[\left(\frac{2,416}{T + 459.6}\right) - 2.013 \right] \times \log_{10}(RVP) - \left(\frac{8,742}{T + 459.6}\right) + 15.64 \end{bmatrix} \right\}$ Equation 5

where:

Р	=	Stock true vapour pressure of liquid loaded	(psia)
Т	=	Stock temperature of liquid loaded	(°F)
RVP	=	Reid vapour pressure of liquid loaded	(psi)
S	=	Slope of the ASTM distillation curve at 10% evaporated, in degrees	(°F/%)
		Fahrenheit per percent, (S = 3.0, Table 7.1.4 (USEPA, 2006a)	

The stock temperature of the liquid loaded is estimated using the following equation (Equation 6) from USEPA Chapter 7.1 *Organic Liquid Storage Tanks* (USEPA, 2006a):

$T_{\rm B} = T_{\rm A} + 6 \times \alpha - 1$			ion 6
where:			
T _B	=	Stock temperature of liquid loaded	(°R)
T _A	=	Ambient temperature	(°R)
α	=	Tank paint solar absorptance, dimensionless ($\alpha = 0.17$, Table 7.1-6 (USEPA, 2006a).	(-)

USEPA recommends that a vapour collection efficiency of 98.7% should be used for trucks passing the New Source Performance Standard (NSPS) level annual test (USEPA, 2008b). As no other data are available relating the vapour collection efficiency for service stations in NSW, this collection efficiency has been assumed.

The control efficiency of vapour recovery units in NSW has been estimated at 96%. This correlates to an emission rate of 30 mg VOC released per litre of fuel input (or 30 mg VOC per litre of air displaced).

Controlled emission factors were also adjusted to account for the rate of non-compliance with vapour recovery stage one control equipment. A recent compliance assessment completed by DECCW in the GMR indicates that 94% of service stations within the GMR are compliant with vapour recovery stage one control equipment (PAE, 2004). Therefore, the adjusted vapour balance emission factors were adjusted using Equation 7:

EF _{C,CP}	= EF	$_{\rm C} \times \frac{\rm CP}{100} + \rm EF_{\rm UC} \times \left[\left(\frac{100 - \rm CP}{100} \right) \right]$ EC	quation 7
where:			
EF _{C,CP}	=	Emission factor (controlled with vapour balance with complia	ance (mg/L)
		adjustment)	
EFc	=	Controlled emission factor due to dedicated vapour balance	(mg/L)
CP	=	Rate of compliance with vapour recovery stage one standards (C	CP = (%)
		94%, PAE, 2004)	
EF _{UC}	=	Uncontrolled emission factor from loading petrol to storage	(mg/L)

Derived emission factors for transfer of petrol to tanks for storage are presented in Table 3-3.

Month	RVP ª (kPa)	Ta ^b (°C)	Loading Loss VOC Emission Factor (Submerged Loading - Dedicated Normal Service) (mg/L)	Loading Loss VOC Emission Factor (Submerged Loading - Dedicated Vapour Balance) (mg/L)	Loading Loss VOC Emission Factor (Submerged Loading - Dedicated Vapour Balance, with Compliance Factor) (mg/L)
January	62	25.3	723	64	104
February	62	24.7	711	63	102
March	69	21.4	707	63	101
April	75	18.0	693	61	99
May	75	15.2	636	56	91
June	75	12.9	592	53	85
July	75	11.5	565	50	81
August	75	12.1	577	51	83
September	75	15.1	633	56	91
October	75	17.4	681	60	98
November	69	20.8	694	62	100
December	62	24.6	709	63	102
DVD D : 1 V D		l Average:	660	-	94.7

Table 3-3: Derived emission factors for petrol loading to storage

a RVP: Reid Vapour Pressure

T_a: Average daily temperature at locations within the GMR where service stations are located (estimated from TAPM predictions)

3.1.2.2 Vehicle Refuelling

When petrol is transferred from a service station's storage tank to the tank of an automobile, emissions occur due to displaced vapours from the automobile's tank by dispensed petrol. VOC emissions from petrol vehicle refuelling will be estimated using the following technique (Equation 8) from the *NPI EET Manual for Aggregated Emissions from Service Stations* (EA, 1999c):

E = EF	$\mathbf{E} = \mathbf{E}\mathbf{F}_{i} \times \mathbf{A} \times 10^{-6} \times \mathbf{C}\mathbf{F}$		Equation 8
where:			
Е	=	VOC emissions from vehicle refuelling	(kg/year)
EF_{i}	=	Emission factor for fuel type i	(mg/L)
А	=	Amount of fuel type i dispensed	(L/year)
CF	=	Control factor of vehicle refuelling technology	(%)

Baseline emission factors are estimated using an equation developed by the Automotive Testing Laboratories Inc (ATL) (ATL, 1988). It is noted that the USEPA also developed a refuelling emissions equation (USEPA, 1993). However, the USEPA equation was based on testing conducted on only eight vehicles, compared with 22 vehicles for the ATL equation. The USEPA concluded that as the ATL equation is based on a broader mix of domestic and import vehicles and contains a larger number of trucks, that the ATL equation is the best available predictor of emission factors from vehicle refuelling. It is noted that this technique is utilised by the USEPA in the NONROAD 2002 model and in the Onboard Refueling Vapor Recovery Rule (USEPA, 1993). The ATL emission factor equation (Equation 9) is as follows:

Air Emissions Inventory for the Greater Metropolitan Region of New South Wales 3. Data Sources and Results

$EF_i = ($	$e^{(-1.2)}$	$(\Delta T) + 0.0203T_{d} + 0.1315RVP) \times \frac{1,000}{3.785}$	Equation 9
where:			
EFi	=	VOC emission factor for vehicle refuelling fuel type i	(mg/L)
T _d	=	Dispensed fuel temperature	(°F)
ΔΤ	=	Difference in temperature between dispensed fuel and fuel	(°F)
		onboard vehicle	
RVP_i	=	Reid Vapour Pressure (RVP) of fuel type i	(psia)

The temperature of the dispensed fuel is estimated as follows (USEPA, 2006a) (Equation 10):

$T_{d} = 62 + 0.6 \times (T_{a} - 62)$		$0.6 \times (T_a - 62)$	Equation 10
where:			
T _d	=	Dispensed fuel temperature	(°F)
Ta	=	Ambient temperature	(°F)

The temperature of the fuel on-board vehicles is estimated as follows (USEPA, 2006a) (Equation 11):

$T_v = T_d + (0.418T_d - 16.6)$			Equation 11
where:			
$T_{\rm v}$	=	Temperature of fuel on-board vehicle	(°F)
T _d	=	Dispensed fuel temperature	(°F)

Derived emission factors for petrol vehicle refuelling are provided in Table 3-4.

Month	RVP ª (kPa)	Та ^ь (°С)	Td ° (°C)	Tv ^d (°C)	Refuelling VOC Emission Factor (mg/L)
January	62	25.3	21.9	29.2	956
February	62	24.7	21.5	28.7	945
March	69	21.4	19.5	25.9	1,002
April	75	18.0	17.5	23.0	1,060
May	75	15.2	15.8	20.6	1,004
June	75	12.9	14.4	18.7	960
July	75	11.5	13.6	17.4	933
August	75	12.1	13.9	18.0	944
September	75	15.1	15.7	20.5	1,001
October	75	17.4	17.1	22.5	1,049
November	69	20.8	19.1	25.4	990
December	62	24.6	21.4	28.6	943
	nual Average	982			

Table 3-4: Vehicle refuelling emission factors

a RVP: Reid Vapour Pressure

b T_a: Average daily temperature at locations within the GMR where service stations are located (estimated from TAPM predictions)

 $c \hspace{1cm} T_d \hspace{-0.5cm}: \hspace{-0.5cm} \text{Dispensed fuel temperature}$

d T_v: Temperature of fuel on-board vehicle

3.1.2.3 Spillage

Spillage losses are made up of contributions from prefill and postfill nozzle drip and from spit-back and overflow from the vehicle's fuel tank filler pipe during refuelling. The amount of spillage loss can depend on several variables, including service station business characteristics, tank configuration, and operator techniques. As spillage losses are relatively small compared to other service station VOC emission sources and dependent upon operator techniques rather than only service station operations, a default spillage emission factor was used for all service stations. VOC emissions from spillages were estimated using the emission factor presented in the *NPI EET Manual for Aggregated Emissions from Service Stations* (EA, 1999c) (Equation 12):

$E = EF_i \times A \times 10^{-6}$			Equation 12
where:			
Ei	=	VOC emissions from spillages of petrol	(kg/year)
EFi	=	Default emission factor for spillages of petrol (88 mg/L)	(mg/L)
А	=	Amount of petrol dispensed	(L/year)

No control factor is present in this equation as spillages are an uncontrolled process.

3.1.2.4 Storage Tank Breathing Losses

VOC emissions from storage tanks containing petrol occur as a result of both standing and working losses. Standing loss is the expulsion of vapour from a tank through vapour expansion and contraction, which are the results of changes in temperature, fuel Reid vapour pressure and atmospheric pressure. This loss occurs without any liquid level change in the tank. The combined loss from filling and emptying is called working loss and is not detailed in this section (see Section 3.1.2.1). VOC breathing loss emissions from stationary petroleum and/or petroleum product storage tanks were estimated using the following technique from the *EMEP/CORINAIR Emission Inventory Guidebook* – 2006 (EEA, 2006) (Equation 13):

$E_i = I$	$EF_i \times I$	A	Equation 13
where:	:		
Ei	=	VOC emissions from storage tank breathing losses	(kg/year)
EFi	=	Default emission factor for storage tank breathing	(mg/L)
А	=	Amount of fuel type dispensed	(L/year)

The emission factor for storage tank breathing losses is estimated using the following equation (EEA, 2006) (Equation 14):

EFvoc	= 3.	$3 \times \rho \times \text{RVP} \times 10^{((0.00000707 \times \text{RVP} + 0.0132) \times \text{T} + (0.000231 \times \text{RVP} - 0.523)}$	⁽⁹⁾ Equation 14
where:			
EF _{VOC}	=	Emission factor for underground tank breathing	(mg/L)
ρ	=	Density of petrol (ρ = 0.735 kg/L Source: ABARE, 2009)	(kg/L)
RVP	=	Reid vapour pressure of liquid loaded	(kPa)
Т	=	Temperature of fuel loaded	(°C)

Derived petrol tank breathing emission factors are presented in Table 3-5.

Table 3-5:	Tank breathing	emission	factors
------------	----------------	----------	---------

Tuble 5.5. Tulk bleuting emission factors			
Month	RVP ^a (kPa)	Т _d ^ь (°С)	Tank Breathing VOC Emission Factor (mg/L)
January	62	21.9	92
February	62	21.5	92
March	69	19.5	95
April	75	17.5	99
May	75	15.8	93
June	75	14.4	90
July	75	13.6	87
August	75	13.9	88
September	75	15.7	93
October	75	17.1	97
November	69	19.1	94
December	62	21.4	91
Annual Average			93

a RVP: Reid Vapour Pressure

b T_d: Dispensed fuel temperature

3.1.2.5 Emissions from diesel transfer and storage operations

When diesel is transferred in similar operations as petrol VOC emissions also occur. The *NPI EET Manual for Aggregated Emissions from Service Stations* (EA, 1999c) reports the following equation to adjust petrol emission factors to diesel emission factors based on the difference in the relative Reid vapour pressures between the fuels (Equation 15):

$EF_d =$	EF _p	$\times \frac{P_{d}}{P_{p}}$	Equation 15
where:			
EFd	=	Emission factor for the handling of diesel	(mg/L)
EFp	=	Emission factor for the handling of petrol	(mg/L)
P _d	=	Typical vapour pressure of diesel	(kPa)
Pp	=	Typical vapour pressure of petrol	(kPa)

The Reid vapour pressure of diesel has been estimated to be 3.5 kPa. Derived diesel emission factors are provided in Table 3-6.

Month	Spillage VOC Emission Factor (mg/L)	Refuelling VOC Emission Factor (mg/L)	Loading Loss VOC Emission Factor (Submerged Loading - Dedicated Normal Service) (mg/L)	Tank Breathing VOC Emission Factor (mg/L)	Total VOC Emission Factor (mg/L)
January	4.36	54.0	40.8	5.22	104.38
February	4.36	53.4	40.1	5.17	103.03
March	4.36	51.2	36.1	4.88	96.57
April	4.36	49.5	32.3	4.60	90.76
May	4.36	46.8	29.7	4.36	85.22
June	4.36	44.8	27.6	4.18	80.97
July	4.36	43.5	26.4	4.06	78.32
August	4.36	44.1	26.9	4.11	79.45
September	4.36	46.7	29.5	4.35	84.93
October	4.36	48.9	31.8	4.55	89.60
November	4.36	50.6	35.5	4.82	95.24
December	4.36	53.2	40.0	5.15	102.77
Annual Average	4.36	48.9	33.1	4.62	90.94

Table 3-6: Diesel handling and storage emission factors

Emissions from petrol and diesel vapours emitted from service stations have been estimated using vapour phase speciation profiles supplied by BP. The vapour phase speciation profiles used to estimate speciated organic emissions from petrol and diesel emission from service stations are shown in Table 3-7 and Table 3-8 respectively.

	Mass fraction
Substance	(kg i/kg Total Organic Compound)
ISOMERS OF PENTANE	0.4955
N-BUTANE	0.1333
2-METHYLPENTANE	0.0478
2-METHYL-2-BUTENE	0.0443
2-METHYLPROPANE; ISOBUTANE	0.0305
TRANS-2-PENTENE	0.0294
TRANS-2-BUTENE	0.0283
3-METHYLPENTANE	0.0234
TOLUENE	0.0190
CIS-2-PENTENE	0.0162
2-METHYL-1-BUTENE	0.0113
2,3-DIMETHYLBUTANE	0.0081
BENZENE	0.0078
3-METHYLHEXANE	0.0063
1-PENTENE	0.0055
2-METHYLHEXANE	0.0051
2,2,4-TRIMETHYLPENTANE	0.0049
1-BUTENE	0.0046

Table 3-7: Petrol vapour phase organic speciation profile ^a

Substance	Mass fraction
Substance	(kg i/kg Total Organic Compound)
N-HEPTANE	0.0039
M-XYLENE	0.0033
CIS-2-BUTENE	0.0030
METHYLCYCLOPENTANE	0.0029
N-HEXANE	0.0022
CIS-1,3-DIMETHYLCYCLOPENTANE	0.0022
2,3-DIMETHYLPENTANE	0.0018
2,4-DIMETHYLPENTANE	0.0016
2,2-DIMETHYLBUTANE	0.0015
2-METHYLHEPTANE	0.0015
CIS-1-2-DIMETHYLCYCLOPENTANE	0.0014
2,4-DIMETHYLHEXANE	0.0014
CIS-1,CIS-2,4-TRIMETHYLCYCLOPENTANE	0.0014
3-METHYLHEPTANE	0.0014
P-XYLENE	0.0012
1,4-PENTADIENE	0.0010
3-ETHYLPENTANE	0.0010
ETHYLBENZENE	0.0010
O-XYLENE	0.0010
2,3-DIMETHYLHEXANE	0.0008
4-METHYLHEPTANE	0.0008
TRANS-1,3-DIMETHYLCYCLOPENTANE	0.0007
2,5-DIMETHYLHEXANE	0.0007
3,3-DIMETHYLPENTANE	0.0006
M-ETHYLTOLUENE	0.0006
2,2-DIMETHYLPENTANE	0.0005
CYCLOHEXANE	0.0005
TRANS-1-2-DIMETHYLCYCLOPENTANE	0.0005
2,3,4-TRIMETHYLPENTANE	0.0005
2,3,3-TRIMETHYLPENTANE	0.0005
TRANS-1,CIS-2,3-TRIMETHYLCYCLOPENTANE	0.0004
3-METHYL-1-BUTENE	0.0003
CYCLOPENTENE	0.0003
ETHYLCYCLOPENTANE	0.0003
TRANS-1,2-CIS-4-TRIMETHYLCYCLOPENTANE	0.0003
TRANS-2-ETHYLMETHYLCYCLOPENTANE	0.0003
P-ETHYLTOLUENE	0.0003
1,2,4-TRIMETHYLBENZENE	0.0003
2,2,3-TRIMETHYLBUTANE	0.0002
2,2-DIMETHYLHEXANE	0.0002
3-METHYLOCTANE	0.0002
N-PROPYLBENZENE	0.0002
2,2,3,TRIMETHYLHEXANE	0.0001
4-METHYLOCTANE	0.0001
2-METHYLOCTANE	0.0001
TRANS 1-METHYL-4-ETHYLCYCLOHEXANE	0.0001
N-NONANE	0.0001
2-METHYLNONANE	0.0001

Substance	Mass fraction (kg i/kg Total Organic Compound)
N-DECANE	0.0001

Source: BP (2001b)

Table 3-8: Diesel vapour phase organic speciation profile ^a

	Mass fraction
Substance	(kg i/kg Total Organic Compound)
P-ETHYLTOLUENE	0.1976
1,2,3-TRIMETHYLBENZENE	0.1402
M-ETHYLTOLUENE	0.1200
1,3,5-TRIMETHYLBENZENE	0.1056
O-ETHYLTOLUENE	0.1031
1,2,4-TRIMETHYLBENZENE	0.0752
N-PROPYLBENZENE	0.0613
CUMENE (1-METHYLETHYLBENZENE)	0.0504
O-XYLENE	0.0469
M-XYLENE	0.0433
TOLUENE	0.0277
N-DODECANE	0.0082
ETHYLBENZENE	0.0059
N-TRIDECANE	0.0055
N-TETRADECANE	0.0040
N-UNDECANE	0.0027
N-PENTADECANE	0.0014
HEXADECANE	0.0003
N-HEPTADECANE	0.0001
a Source: BP (2001a)	

3.1.3 Activity Data

During the 2003 air emissions inventory, all service stations were sent commercial survey questionnaires to collect site specific activity data. Responses were received from 239 facilities (i.e. a response rate of approximately 11%).

Total petroleum product sale data by state has been obtained from the Department of Resources Energy and Tourism (DRET, 2009). Data obtained from DRET includes:

- > Total petrol fuel sold in 2008 in NSW (including ACT) (to petrol retailers) = 4,713,748 kL;
- > Total diesel fuel sold in 2008 in NSW (including ACT) (to diesel retailers) = 1,320,316 kL; and
- ➤ Total LPG fuel sold in 2008 in NSW (including ACT) = 674,078 kL.

The total fuel sold in the GMR has been estimated using the population of NSW and ACT and the GMR, assuming that petrol throughput is proportional to population. The total population of the GMR accounts for approximately 71.2% of the total population of NSW and ACT. Therefore the estimated amounts of fuel types sold in the GMR are:

- Total petrol sold in 2008 = 3,537,665 kL;
- Total diesel fuel sold in 2008 = 990,896 kL; and

➤ Total LPG fuel sold in 2008 = 505,895 kL.

As commercial survey questionnaires were not sent out for the 2008 air emissions inventory , it was assumed that the location and the magnitude of total fuel throughput (when compared to total fuel throughput for the GMR) was consistent for the 2008 air emissions inventory as it was for the 2003 air emissions inventory. Therefore, activity data for petrol stations was scaled in accordance with the change in total fuel throughput between inventory years. The required data to scale activity data are shown in Table 3-9.

(2008/2002 Data)
b (2008/2003 Data)
0 0.95
0 1.37
0 1.50
)()(

Table 3-9: Derived service station activity data

a Source: DRET (2009) Australian Petroleum Statistics, 2008

^b Source: DITR (2005) Australian Petroleum Statistics, 2003

Further detail on how activity data was allocated to service station facilities is presented in DECC (2007).

LPG loss at service stations is estimated to be 0.04 kg/ML (EA, 1999c). Therefore, the total estimated emissions from LPG distribution at service stations in the GMR are 27 kg per year or 0.01 kg per business per year. Consequently, emissions from LPG distribution at service stations are deemed to be negligible in this study.

3.1.4 Temporal Variation of Emissions

3.1.4.1 Loading Storage Tanks with Petrol

Monthly temporal factors have been determined based on the difference in petrol RVP and fuel temperature for each month of the year and the monthly petrol throughput for NSW (DITR, 2009). Temperatures at service station locations within the GMR were derived from TAPM. The derived monthly temporal factors for petrol fuel loading are shown in Table 3-10.

Month	Temporal Factor	
January	1.05	
February	1.07	
March	1.06	
April	1.03	
May	0.94	
June	0.86	
July	0.69	
August	0.93	
September	0.98	
October	1.11	
November	1.06	
December	1.21	

Table 3-10: Monthly temporal factors for loading storage tanks with petrol

Loading of fuel to storage tanks from delivery tankers have been determined to occur approximately 3 to 4 times a week, with the ratio between weekday and weekend being approximately 4:1. The variations of emissions by day of week are provided in Table 3-11.

Day	Temporal Factor
Monday	1
Tuesday	1
Wednesday	1
Thursday	1
Friday	1
Saturday	0.25
Sunday	0.25

Table 3-11: Daily temporal factors for service station fuel loading

Emissions resulting from the transfer of petrol to storage tanks over a day are generally dependent on delivery schedules of tankers. Data provided in returned commercial survey questionnaires for the 2003 air emissions inventory has been analysed to determine the delivery times of tankers for service stations. While there are no set times restricted for tankers to deliver fuel to service stations, there are common time phases at which tankers delivered fuel to service stations determined from returned commercial survey questionnaires.

Results from the analysis show that:

- 72% of deliveries occur between the hours of 12 am and 12 pm with 50% of these deliveries occurring between 12 am and 4 am;
- ▶ 4% of deliveries occur between the hours of 12 pm and 6 pm; and
- ➤ 24% of deliveries occur between the hours of 6 pm and 12 am with 82% of these deliveries occurring between the hours of 9 pm and 12 am.

This analysis allows for the derivation of the diurnal temporal profile shown in Table 3-12.

1	0	0
Time Phase	Hour	Temporal Factor
	1	1.00
	2	1.00
	3	1.00
	4	1.00
	5	0.46
Morning	6	0.46
Monning	7	0.46
	8	0.46
	9	0.46
	10	0.46
	11	0.46
	12	0.46
	13	0.07
Afternoon	14	0.07
	15	0.07

Air Emissions Inventory for the Greater Metropolitan Region of New South Wales 3. Data Sources and Results

Time Phase	Hour	Temporal Factor
	16	0.07
	17	0.07
	18	0.07
Evening	19	0.15
	20	0.15
	21	0.15
	22	0.70
	23	0.70
	24	0.70

3.1.4.2 Petrol Storage Tank Breathing Losses

Breathing losses from petrol storage tanks vary according to temperature fluctuation of tanks, Reid vapour pressure of fuel and pressure differences in the atmosphere. Monthly and hourly temporal factors were estimated using the emission factor equation presented in *EMEP/CORINAIR Emission Inventory Guidebook* – 2006 (EEA, 2006).

The derived monthly temporal factors are shown in Table 3-15.

Table 3-13: Monthly temporal factors for tank breathing losses

Month	Temporal Factor
January	1.00
February	0.99
March	1.03
April	1.06
May	1.01
June	0.97
July	0.94
August	0.95
September	1.01
October	1.05
November	1.02
December	0.98

There is no variation in tank breathing emissions between days. The derived hourly temporal factors are shown in Table 3-14.

	· · · · · · · · · · · · · · · · · · ·
Hour	Temporal Factor
1	0.900
2	0.894
3	0.890
4	0.887
5	0.884
6	0.889
7	0.920
8	0.981
9	1.052

Table 3-14: Diurnal temporal factors for tank breathing

2008 Calendar Year Commercial Emissions: Results 3. Data Sources and Results

Hour	Temporal Factor
10	1.110
11	1.147
12	1.166
13	1.173
14	1.167
15	1.149
16	1.119
17	1.077
18	1.023
19	0.974
20	0.942
21	0.926
22	0.916
23	0.909
24	0.904

3.1.4.3 Petrol Vehicle Refuelling

Monthly temporal factors have been determined based on the difference in petrol Reid Vapour Pressure (RVP) and monthly temperature variations. Temperatures at service station locations within the GMR were derived from TAPM. The derived monthly temporal factors are shown in Table 3-15.

Month	Temporal Factor
January	0.93
February	0.96
March	1.01
April	1.06
May	0.99
June	0.94
July	0.76
August	1.02
September	1.05
October	1.15
November	1.02
December	1.09

Table 3-15: Monthly temporal factors for vehicle refuelling

It was assumed that variations between emissions from vehicle refuelling on weekdays versus weekend days are proportional to vehicle traffic on each day type. Therefore, weekly temporal factors have been estimated based on weekday versus weekend traffic flow (TDC, 2009). The daily temporal factors for vehicle refuelling are provided in Table 3-16.

Table 3-16: Daily	y temporal factors f	for petrol vehicle refuelling

Day Type	Temporal factor
Monday	1
Tuesday	1
Wednesday	1

Air Emissions Inventory for the Greater Metropolitan Region of New South Wales 3. Data Sources and Results

Day Type	Temporal factor
Thursday	1
Friday	1
Saturday	0.875
Sunday	0.875

Emissions during the day vary according to changes in temperature and vehicle traffic. The distribution of vehicles travelling by time of the day on weekends was derived from *Car Travel in Sydney: Changes in the Last Decade* (TDC, 2005). The derived temporal factors for petrol vehicle refuelling are provided in Table 3-17. It has been assumed that all petrol stations operate 24 hours per day as emissions between 10 pm and 6 am account for only 5% of total petrol vehicle refuelling emissions.

Hour	Weekday Temporal Factor	Weekend Temporal Factor
1	0.097	0.062
2	0.055	0.030
3	0.047	0.022
4	0.051	0.022
5	0.151	0.061
6	0.484	0.153
7	0.985	0.350
8	1.855	0.715
9	2.300	1.282
10	1.547	2.189
11	1.337	2.247
12	1.429	2.287
13	1.342	2.175
14	1.385	2.001
15	1.549	1.689
16	2.024	1.643
17	2.006	1.614
18	1.952	1.459
19	1.315	1.304
20	0.761	0.981
21	0.451	0.642
22	0.350	0.412
23	0.349	0.346
24	0.178	0.313

Table 3-17: Diurnal temporal factors for petrol vehicle refuelling

3.1.4.4 Spillage of Petrol

As spillages are often associated with nozzle drip and spit back during vehicle refuelling, temporal variation of emissions from spillage of petrol are assumed to be proportional to the relative VKT for any hour in a day (i.e. the same diurnal and 'week day/weekend day' temporal factors as for petrol vehicle refuelling). The derived temporal factors are provided in Table 3-16 and Table 3-17.

It has been assumed that the monthly vehicle travel is consistent throughout the year. Therefore, monthly emissions (per day) from the spillage of petrol have been assumed to be constant.

3.1.4.5 Diesel Emissions

Emissions from diesel transfer and storage operations have been estimated using a constant emission factor from the *NPI EET Manual for Aggregated Emissions from Service Stations* (EA, 1999c). The default emission factor estimates emissions from tank filling, vehicle refuelling losses and tank breathing. Each diesel emission source would have a different temporal profile and contribute different amounts to total diesel emissions. Therefore composite temporal profiles were derived based on the magnitude of emissions from each source due to petrol handling at service stations.

Temporal profiles for diesel emissions from service stations are shown in Table 3-18, Table 3-19 and Table 3-20.

Month	Temporal Factor
January	1.047
February	1.099
March	1.036
April	1.016
May	0.969
June	0.822
July	0.902
August	0.901
September	0.967
October	1.038
November	1.047
December	1.157

Table 3-18: Monthly temporal factors for diesel emissions

Table 3-19: Daily temporal factors for diesel emissions

Day Type	Temporal Factor
Monday	1
Tuesday	1
Wednesday	1
Thursday	1
Friday	1
Saturday	0.655
Sunday	0.655

Table 3-20: Diurnal temporal factors for diesel emissions

Hour	Weekday Temporal Factor	Weekend Temporal Factor
1	0.384	0.376
2	0.374	0.368
3	0.372	0.366
4	0.373	0.366
5	0.213	0.191
6	0.296	0.214
7	0.420	0.263
8	0.633	0.354
9	0.740	0.493
10	0.556	0.713
11	0.505	0.727

Air Emissions Inventory for the Greater Metropolitan Region of New South Wales 3. *Data Sources and Results*

Hour	Weekday Temporal Factor	Weekend Temporal Factor
12	0.528	0.736
13	0.373	0.576
14	0.384	0.534
15	0.424	0.458
16	0.539	0.447
17	0.535	0.441
18	0.523	0.403
19	0.395	0.393
20	0.259	0.313
21	0.182	0.230
22	0.345	0.360
23	0.344	0.344
24	0.302	0.336

It is noted that diesel is much less volatile than petrol and generally accounts for less than 5% of VOC emissions from a service station.

3.1.4.6 Summary

Summary temporal variation for service station VOC emission sources over months, days and hours in the day are shown in Figure 3-2, Figure 3-3 and Figure 3-4.

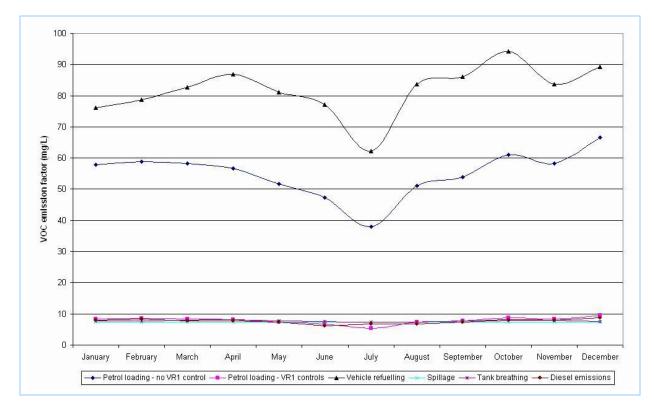
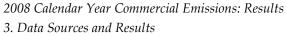
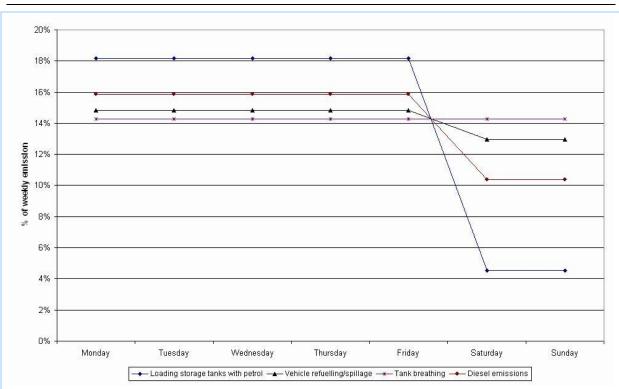





Figure 3-2: Summary monthly temporal variation of service station emission sources

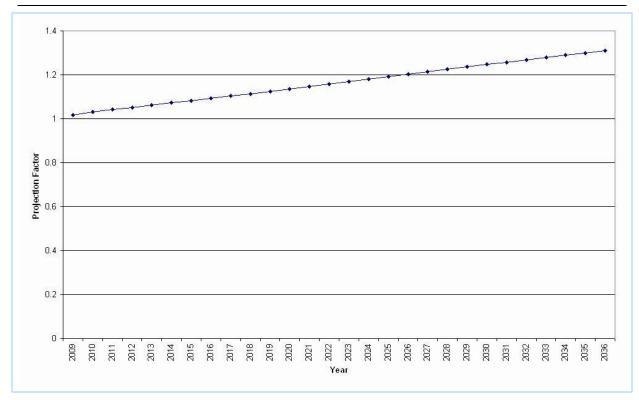
3.1.5 Emission Estimates

Estimated emissions from service station businesses within the GMR, Sydney, Newcastle, Wollongong and Non Urban regions are provided in Table 3-21.

Substance	Estimated Emissions (kg/year)				
Substatee	Sydney	Newcastle	Wollongong	Non Urban	GMR a
1,3 BUTADIENE	0	0	0	0	0
ACETALDEHYDE	0	0	0	0	0
BENZENE	23,700	3,140	2,360	10,400	39,600
CARBON MONOXIDE	0	0	0	0	0
FORMALDEHYDE	0	0	0	0	0
ISOMERS OF XYLENE	16,800	2,220	1,670	7,360	28,000
LEAD & COMPOUNDS	0	0	0	0	0
OXIDES OF NITROGEN	0	0	0	0	0
PARTICULATE MATTER ≤ 10 µm	0	0	0	0	0
PARTICULATE MATTER ≤ 2.5 µm	0	0	0	0	0
PERCHLOROETHYLENE	0	0	0	0	0
POLYCYCLIC AROMATIC HYDROCARBONS	0	0	0	0	0
SULFUR DIOXIDE	0	0	0	0	0
TOLUENE	57,700	7,640	5,740	25,400	96,500
TOTAL SUSPENDED PARTICULATE	0	0	0	0	0
TOTAL VOLATILE ORGANIC COMPOUNDS	2,940,000	389,000	292,000	1,290,000	4,910,000
TRICHLOROETHYLENE	0	0	0	0	0
^a Totals may not appear additive due to rounding					

Table 3-21: Estimated emissions from service stations

3.1.6 **Emission Projection Methodology**


Projection factors for automotive fuel retailing have been derived based on primary energy consumption projections for petroleum refining in NSW published by ABARE (ABARE, 2006).

Derived projection factors are provided in Table 3-22 and illustrated in Figure 3-5.

Table 3-22. I Tojection factors for perioteum ferming related sources				
Year	Projection Factor	Year	Projection Factor	
2009	1.0156	2023	1.1680	
2010	1.0301	2024	1.1792	
2011	1.0420	2025	1.1905	
2012	1.0520	2026	1.2018	
2013	1.0620	2027	1.2133	
2014	1.0722	2028	1.2249	
2015	1.0824	2029	1.2367	
2016	1.0927	2030	1.2467	
2017	1.1032	2031	1.2562	
2018	1.1137	2032	1.2671	
2019	1.1244	2033	1.2780	
2020	1.1352	2034	1.2888	
2021	1.1460	2035	1.2997	
2022	1.1570	2036	1.3106	

Table 3-22: Projection factors for petroleum refining related sources

Source: ABARE (2006)

Figure 3-5: Projection factors for petroleum refining related sources

3.2 Smash Repairing

3.2.1 Emission Sources and Associated Releases to Air

Motor vehicle refinishing consists of applying primer, a topcoat and hardener to motor vehicle surfaces and aims to protect the substrates (usually metal) to which they are applied from corrosion, abrasion and decay, and damage from ultraviolet light and water. VOC are emitted during the application of coatings, the drying phase, and the cleaning equipment such as spray guns. Chemical reactions may also cause emissions to occur during the refinishing, drying, curing and hardening phases (EA, 1999a).

Most surface coatings consist of resin, solvent and pigments. The resin component forms the final paint film after application and drying of the coating. The solvent acts as a carrier for the resins and pigments and evaporates as the paint film forms during the drying process (EA, 1999a).

A brief description of the operations and equipment that give rise to VOC emissions in a smash repair facility are provided in Table 3-23.

VOC Emission Source	Description ^a		
Vehicle preparation	The preparation of a vehicle for refinishing involves chemical cleaning to remove		
	existing coatings. VOC are emitted through the use of paint stripping solvents that		
	may be applied using solvent-soaked materials.		
Paint mixing	VOC are emitted when paints are mixed with thinners in order to achieve the final		
	product for refinishing. Thinners typically have the highest VOC content per litre of		
	coatings used in the smash repair industry.		
Vehicle refinishing	The refinishing process is the point where the majority of VOC are emitted from a		
	smash repair facility. Primers, fillers, paints (base coats and top coats) and clear coats		
	are applied, each with varying VOC content. As the coats dry, the volatile solvents		
	evaporate and are released to atmosphere.		
	The application of coatings in the vehicle refinishing process is predominantly via		
	spray guns. The transfer efficiency of the spray gun used or the amount of coating		
	used is directly correlated to the magnitude of VOC emissions. HVLP (High volume		
	low pressure) spray guns typically offer transfer efficiencies of greater than 65%		
	whereas electrostatic spray guns offer up to 95% compared with conventional guns		
	with transfer efficiencies between $20 - 40\%$.		
Clean up	The post-refinishing clean-up stage involves the cleaning of spray guns and any other		
	finishing equipment. Cleaning solvents are usually high in VOC content and unless		
	applied in an enclosed device and captured are released to atmosphere during the		
	clean up phase.		
Disposal and waste	Leftover coatings and used cleaning solvents if left in open containers will be released		
	to atmosphere. It is noted that leftover coatings and solvents are required under the		
	Protection of the Environment Operations Act 1997) to be disposed of via a licensed		
	waste facility.		

Table 3-23: Typical VOC source	points in smash repair op	erations
Tuble 5 25. Typical VOC Source	points in sinusii repuir op	crations

Source: RARE, 2009

а

The location of smash repair facilities were identified during the compilation of the 2003 air emissions inventory for commercial sources (DECC, 2007). Smash repair businesses were identified using the following sources (DECC, 2007):

- > NSW WorkCover database for hazardous materials; and
- > NSW telephone directory.

The businesses were cross checked against a list of approved smash repairers provided by the Motor Vehicle Repair Industry Authority (MVRIA). In total, 1,258 smash repair businesses have been identified to be within the GMR.

Emissions from smash repair businesses are generally due to the use of automotive surface coatings of namely primer, lacquers, paint, thinners, adhesives and enamel. The emission sources and associated releases to air for smash repairing are outlined in Table 3-24.

Table 3-24: Smash repairing - emission sources

Operation	Emissions to Air
Motor vehicle refinishing	VOC

The locations of smash repairers within the GMR are shown in Figure 3-6.

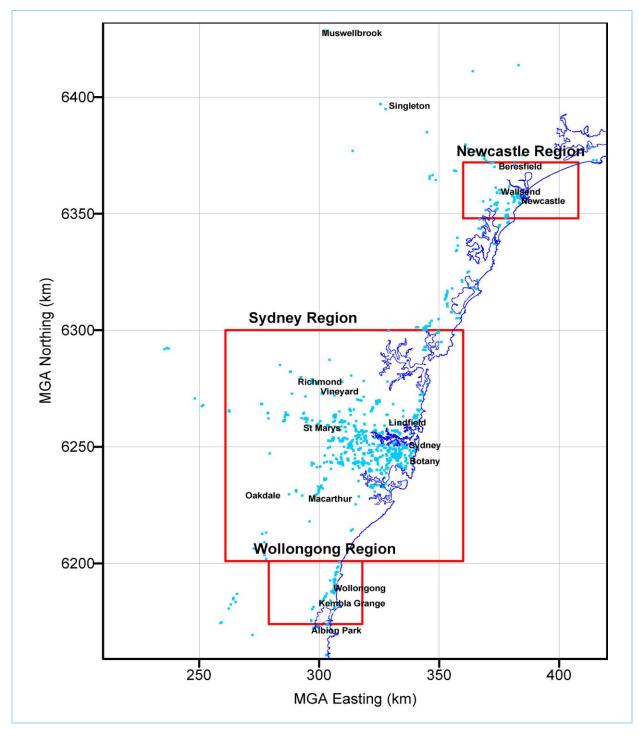


Figure 3-6: Smash repairers within the GMR

3.2.2 Emission Estimation Methodology

Emissions from smash repair facilities are estimated assuming that all the VOC contained within automotive coatings are released to atmosphere. VOC content data from Australian automotive coatings were obtained from suppliers and manufacturers as detailed in ENVIRON (2009) and RARE (2009). VOC content data for Australian automotive coatings are provided in Table 3-25.

Tuble 0 201 1 0 C content una for Trastratian automotive countings		
Technology	Coating type	VOC Content (kg/L)
1K	Primers	0.732ª
1K	Lacquers - Clear	0.738ª
1K	Lacquers - Colour	0.759ª
1K	Synthetic air dry enamels	0.631ª
1K	Thinners	0.855ª
2K	Primers - Urethane	0.587ª
2K	Primers - Other	0.697ª
2K	Basecoats	0.771ª
2K	Topcoats - Clear	0.587ª
2K	Topcoats - Colour	0.571ª
2K	Hardeners - Isocyanates	0.489 ^b
2K	Hardeners - Other	0.721 ^b
2K	Thinners	0.735 ^b
Other	Other (e.g. Cleaners, Enamel)	0.713 ^b

Table 3-25: VOC content data for Australian automotive coatings

a Source: Table 31, ENVIRON (2009)

^b Source: Table A.2, RARE (2009)

3.2.3 Activity Data

Quarterly automotive refinishing sales statistics were obtained for the nation from the Australian Paint Manufactures Federation (APMF, 2009) for the year 2008. This data set provided a breakdown of usage by coating type for the nation. However, this data set excluded usage of coatings from original equipment manufacturers (OEM). OEM usage only occurs in South Australia and Victoria. APMF also supplied quarterly sales data for 2008 for the automotive refinishing industry by state separated into two coating categories "primers and undercoats" and "finishing coats" (APMF, 2009). This data set included usage by OEM and excluded usage statistics for thinners and adhesives. Therefore, activity data for the state was estimated using the following procedure:

- The total amount of coating used by OEM was removed from the data set supplied in APMF (2009) by ensuring that the total amount of coating usage correlated between the two data sets.
- The total amount of "primers and undercoats" and "finishing coats" was estimated for NSW based on data supplied by APMF (APMF, 2009).
- The total amount of thinners and adhesives used by each state was assumed to be proportional to the total amount of "primers and undercoats" and "finishing coats" used by each state excluding usage by OEM.
- > The total amount of each coating type used was estimated based on the state derived data and the proportion of each coating type used by the automotive industry as supplied in APMF (2009).

> The total amount of automotive surface coatings used in the GMR was estimated using the difference in population in the GMR versus the population in NSW.

The estimated total amount of each coating type used during 2008 in the GMR is provided in Table 3-26.

		VOC Content	NSW Usage	GMR Usage
Technology	Coating type	(kg VOC/L)	(L/year)	(L/year)
1K	Primers	0.732	11,006	7,871
1K	Lacquers – Clear	0.738	6,775	4,845
1K	Lacquers – Colour	0.759	29,411	21,034
1K	Synthetic air dry enamels	0.631	42,818	30,622
1K	Thinners	0.855	121,383	86,810
2K	Primers – Urethane 0.587		29,797	21,310
2K	Primers – Other 0.697		6,499	4,648
2K	Basecoats	0.771	53,340	38,147
2K	Topcoats - Clear	0.587	84,466	60,407
2K	Topcoats – Colour	0.571	115,358	82,501
2K	Hardeners – Isocyanates	0.489	75,469	53,973
2K	Hardeners - Other	0.721	4,703	3,364
2K	Thinners	0.735	124,223	88,841
Other	Other (e.g. Cleaners, Enamel)	0.713	102,480	73,291
		TOTAL	807,728	577,663

Table 3-26: Annual consumption of automotive surface coatings by the smash repair industry inNSW and in the GMR

The annual consumption of automotive surface coatings is also presented in Table 3-27 in categories in concordance with those presented in the *NPI EET Manual for Aggregated Emissions from Motor Vehicle Refinishing* (EA, 1999).

Table 3-27: Annual consumption of automotive surface coatings by the smash repair industry in theGMR

NPI Surface Coating Category	Weighted average VOC content (kg VOC/L)	GMR Usage (L/year)
Primer	0.636	33,829
Lacquer	0.755	25,879
Enamels	0.631	30,622
Thinners	0.770	248,941
Paint (solvent based)	0.618	181,055
Adhesive	0.503	57,337
	TOTAL	577,663

Surface coating usage has been spatially allocated to each business in proportion to the population in each local government area (LGA) compared with the total population in the GMR. The total surface coating usage in each LGA has been divided by the total number of smash repairers in each LGA to estimate the amount of surface coating usage for each business.

3.2.4 Temporal Variation of Emissions

Emissions from surface coatings and solvents are generally emitted during the application and drying phase of the process. The typical operating hours of smash repairers were estimated from a number of smash repairing businesses provided in the Auto Repairs Directory of Sydney (Sydney Auto Repairers Directory, 2005) during the completion of the 2003 GMR emissions inventory (DECC, 2007). The temporal variation of emissions based on operating hours have been assumed to be constant on weekdays from 7.30 am to 5.30 pm and only Saturdays from 7.30 am to 1 pm. No monthly variations in emissions are assumed to occur during the year.

3.2.5 Emission Estimates

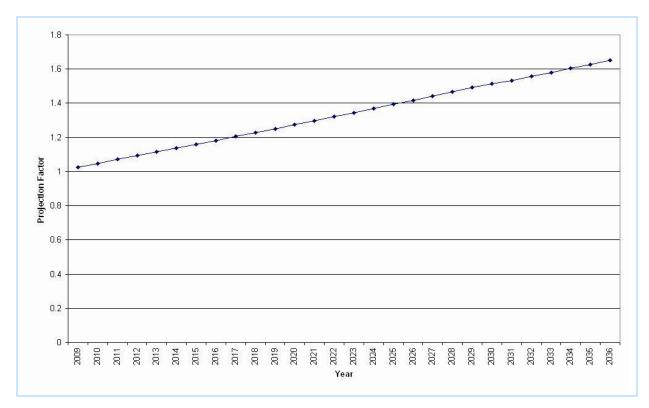
Estimated emissions from smash repairing businesses within the GMR, Sydney, Newcastle, Wollongong and Non Urban regions are provided in Table 3-28.

Colorana a	Estimated Emissions (kg/year)					
Substance	Sydney	Newcastle	Wollongong	Non Urban	GMR a	
1,3 BUTADIENE	0	0	0	0	0	
ACETALDEHYDE	0	0	0	0	0	
BENZENE	0	0	0	0	0	
CARBON MONOXIDE	0	0	0	0	0	
FORMALDEHYDE	0	0	0	0	0	
ISOMERS OF XYLENE	16,400	1,110	807	2,600	20,900	
LEAD & COMPOUNDS	0	0	0	0	0	
OXIDES OF NITROGEN	0	0	0	0	0	
PARTICULATE MATTER $\leq 10 \ \mu m$	0	0	0	0	0	
PARTICULATE MATTER ≤ 2.5 μm	0	0	0	0	0	
PERCHLOROETHYLENE	0	0	0	0	0	
POLYCYCLIC AROMATIC HYDROCARBONS	0	0	0	0	0	
SULFUR DIOXIDE	0	0	0	0	0	
TOLUENE	74,700	5,050	3,670	11,800	95,300	
TOTAL SUSPENDED PARTICULATE	0	0	0	0	0	
TOTAL VOLATILE ORGANIC COMPOUNDS	308,000	20,800	15,100	48,800	393,000	
TRICHLOROETHYLENE	0	0	0	0	0	

Table 3-28: Estimated emissions from smash repairing

^a Totals may not appear additive due to rounding

3.2.6 Emission Projection Methodology


Projection factors for smash repairing have been derived based on final energy consumption projections for commercial and services in NSW published by ABARE (ABARE, 2006).

Derived projection factors are provided in Table 3-29 and illustrated in Figure 3-7.

Year	Projection Factor	Year	Projection Factor
2009	1.0239	2023	1.3455
2010	1.0474	2024	1.3695
2011	1.0708	2025	1.3935
2012	1.0931	2026	1.4175
2013	1.1154	2027	1.4419
2014	1.1377	2028	1.4667
2015	1.1599	2029	1.4919
2016	1.1822	2030	1.5133
2017	1.2047	2031	1.5336
2018	1.2275	2032	1.5569
2019	1.2505	2033	1.5801
2020	1.2740	2034	1.6034
2021	1.2976	2035	1.6267
2022	1.3214	2036	1.6500

Table 3-29: Projection factors for commercial and services related sources

Source: ABARE (2006)

Figure 3-7: Projection factors for commercial and services related sources

3.3 Laundries and Dry Cleaners

3.3.1 Emission Sources and Associated Releases to Air

Laundry and dry cleaning businesses were identified for the 2003 air emissions inventory and were identified using the following sources (DECC, 2007):

- > NSW WorkCover database for hazardous materials; and
- > NSW telephone directory.

A total of 561 businesses were identified to be within the GMR.

The emission sources and associated releases to air for dry cleaning are outlined in Table 3-30.

Table 3-30: Dry cleaning – emission sources

	5 0
Emission Source	Emissions to Air
Dry cleaning	VOC

The solvent itself is the primary emission from dry cleaning operations. Solvent is given off by washer, drier, solvent still, cooker, still residue, and filtercake storage areas, as well as by leaky pipes, flanges, and pumps. Two general types of solvents are used in the industry: petroleum solvents and synthetic solvents. In NSW, the principal solvent used is tetrachloroethylene. A small amount of petroleum solvents, such as white spirit, is also used.

The locations of laundries and dry cleaning businesses are shown in Figure 3-8.

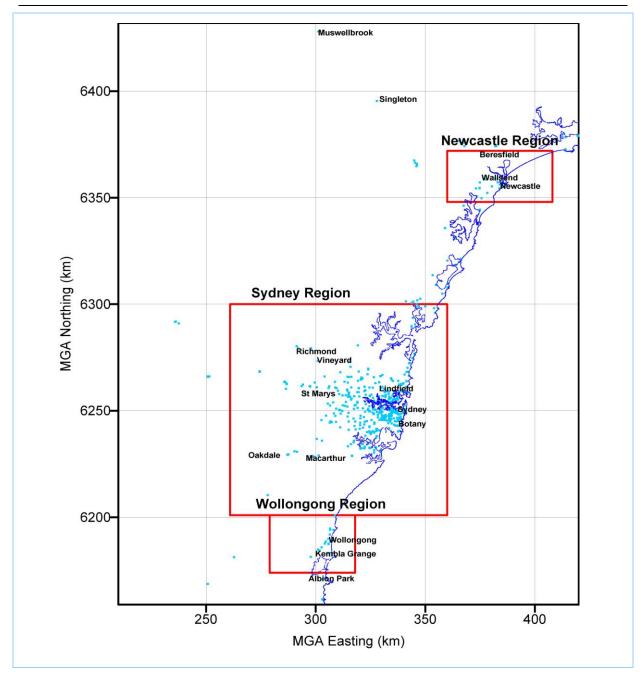


Figure 3-8: Dry cleaners within the GMR

3.3.2 Emission Estimation Methodology

Emissions from dry cleaning businesses have been estimated using techniques outlined in the *NPI EET Manual for Aggregated Emissions from Dry Cleaning* (EA, 1999d).

3.3.3 Activity Data

Tetrachloroethylene has not been produced in Australia in significant quantities since 1991. Therefore, all tetrachloroethylene used in dry cleaners is imported into Australia. Statistics on tetrachloroethylene imports into the country was available from the Australian Bureau of Statistics

(ABS, 2009d). Data was obtained on annual imports of tetrachloroethylene for the calendar years, 1988 to 2008 (ABS, 2009d). However, data was only available on a State level from 1988 to 2002. From 2003 onwards import data was only available for the country as a whole (ABS, 2009d). In the 2008 calendar year 1,454,759 kg of tetrachloroethylene was imported into the country.

In order to estimate the usage of tetrachloroethylene in NSW, the state disaggregated import data was analysed to determine the percentage of national imports for each State. The data indicates that from 1994 to 2001 the proportion of national imports to each State or Territory was relatively consistent at 52% (annual standard deviation of 4%). Therefore, the average percentage over this period was used to estimate the amount of tetrachloroethylene used in NSW during the 2008 calendar year. It was estimated that in the 2008 calendar year, 758,549 kg of tetrachloroethylene was imported for use in NSW (i.e. 52% of national imports).

It was reported under the National Industrial Chemicals Notification & Assessment Scheme (NICNAS) that in 2001 dry cleaning accounts for 79% of all tetrachloroethylene usage (DHA, 2001). Therefore, it is estimated that 597,283 kg of tetrachloroethylene was used in dry cleaners in NSW during 2008. It is further assumed usage of dry cleaners is directly proportional to the difference in population. Therefore, it is estimated that 448 tonne of tetrachloroethylene was used in dry cleaners in the NSW GMR in the 2008 calendar year.

Table 5-51: Summary activity data for tetrachloroethylene usage in dry cleaners							
Parameter	Value	Unit					
Total national import of tetrachloroethylene in 2008	1,454,759	kg/year					
Average percentage of national import used in NSW	52%						
Estimated usage of tetrachloroethylene in NSW in 2008	758,549	kg/year					
Overall use of tetrachloroethylene in dry cleaning operations	79%						
Estimated usage of tetrachloroethylene in NSW in dry cleaners 2008	597,283	kg/year					
Percentage of NSW population that lives in GMR	75.05%						
Estimated usage of tetrachloroethylene in NSW GMR in dry cleaners	448.26	t/year					

Summary activity data is presented in Table 3-31.

Table 3-31: Summary activity data for tetrachloroethylene usage in dry cleaners

No data were available for white spirit usage in dry cleaners for the 2008 calendar year. Therefore, the ratio between white spirit usage and tetrachloroethylene usage used in the 2003 air emissions inventory was used to estimate the amount of white spirit usage in 2008. In the 2003 emissions inventory, it was estimated that the usage of white spirit in dry cleaners was 13.4 tonne and the usage of tetrachloroethylene in dry cleaners was 263 tonne. For the 2008 air emissions inventory it is assumed this ratio is consistent. Therefore, it is estimated that the usage of white spirit in dry cleaners for the 2008 calendar year is 22.8 tonne.

Solvent usage has been spatially allocated to each business in proportion to the population in each local government area (LGA) compared with the total population in the GMR. The total solvent usage in each LGA has been divided by the number of laundries and dry cleaners in each LGA to estimate the amount of solvent usage for each business.

3.3.4 Temporal Variation of Emissions

VOC emissions from solvents to air are generally emitted during the washing and drying operations of the dry cleaning business. The typical operating hours of dry cleaning businesses have been determined from respondent businesses. The temporal variation of emissions based on operating hours have been assumed to be constant on weekdays from 8 am to 6 pm and only Saturday from 8 am to 1 pm. No monthly variations in emissions are assumed to occur during the year.

3.3.5 *Emission Estimates*

Estimated emissions from laundries and dry cleaning businesses within the GMR, Sydney, Newcastle, Wollongong and Non Urban regions are provided in Table 3-32.

Substance	Estimated Emissions (kg/year)					
Substance	Sydney	Newcastle	Wollongong	Non Urban	GMR a	
1,3 BUTADIENE	0	0	0	0	0	
ACETALDEHYDE	0	0	0	0	0	
BENZENE	23.4	0	0	0	23.4	
CARBON MONOXIDE	3870	0	0	0	3,870	
FORMALDEHYDE	46.9	0	0	0	46.9	
ISOMERS OF XYLENE	751	37.6	29.8	105	924	
LEAD & COMPOUNDS	0.0234	0	0	0	0.0234	
OXIDES OF NITROGEN	4680	0	0	0	4,680	
PARTICULATE MATTER ≤ 10 µm	356	0	0	0	356	
PARTICULATE MATTER ≤ 2.5 µm	356	0	0	0	356	
PERCHLOROETHYLENE	352,000	21,400	16,900	59,600	450,000	
POLYCYCLIC AROMATIC HYDROCARBONS	0.0322	0	0	0	0.0322	
SULFUR DIOXIDE	24.5	0	0	0	24.5	
TOLUENE	110	4.92	3.9	13.8	133	
TOTAL SUSPENDED PARTICULATE	356	0	0	0	356	
TOTAL VOLATILE ORGANIC COMPOUNDS	372,000	22,300	17,700	62,400	474,000	
TRICHLOROETHYLENE	0	0	0	0	0	

Table 3-32: Estimated emissions from laundries and dry cleaners

Totals may not appear additive due to rounding

3.3.6 Emission Projection Methodology

Projection factors for laundries and dry cleaners have been derived based on population projections for the GMR published by TDC (TDC, 2009).

Derived projection factors are provided in Table 3-33 and illustrated in Figure 3-9.

	· · · · · · · · · · · · · · · · · · ·	I I I I I I I I I I I I I I I I I I I	
Year	Projection Factor	Year	Projection Factor
2009	1.0094	2023	1.1333
2010	1.0187	2024	1.1417
2011	1.0281	2025	1.1500
2012	1.0371	2026	1.1584

Table 3-33: Projection factors for population related sources

Air Emissions Inventory for the Greater Metropolitan Region of New South Wales 3. Data Sources and Results

Year	Projection Factor	Year	Projection Factor
2013	1.0460	2027	1.1662
2014	1.0550	2028	1.1739
2015	1.0640	2029	1.1817
2016	1.0729	2030	1.1895
2017	1.0817	2031	1.1973
2018	1.0904	2032	1.2045
2019	1.0991	2033	1.2118
2020	1.1079	2034	1.2191
2021	1.1166	2035	1.2264
2022	1.1250	2036	1.2336

Source: TDC (2009)

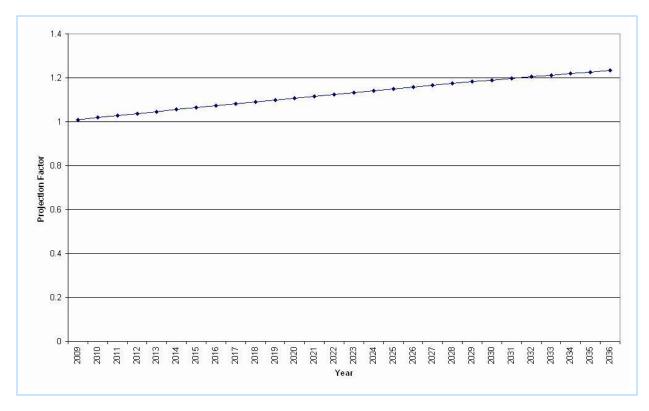


Figure 3-9: Projection factors for population related sources

3.4 Poultry Farming

3.4.1 Emission Sources and Associated Releases to Air

Poultry farming businesses for meat chicken (broiler), laying hens and turkey farms were supplied for the 2003 air emissions inventory by the NSW Department of Primary Industries (DPI) and Australian Egg Corporation Limited (AECL) (DPI, 2005; AECL, 2005). These businesses have been included in the emissions inventory.

The emission sources considered from poultry farming and associated releases to air are outlined in Table 3-34.

Table 3-34: Poultry farming - emission sources

	5 8
Emission Source	Emissions to Air
Poultry shed	PM, ammonia

The locations of poultry farming businesses are shown in Figure 3-8.

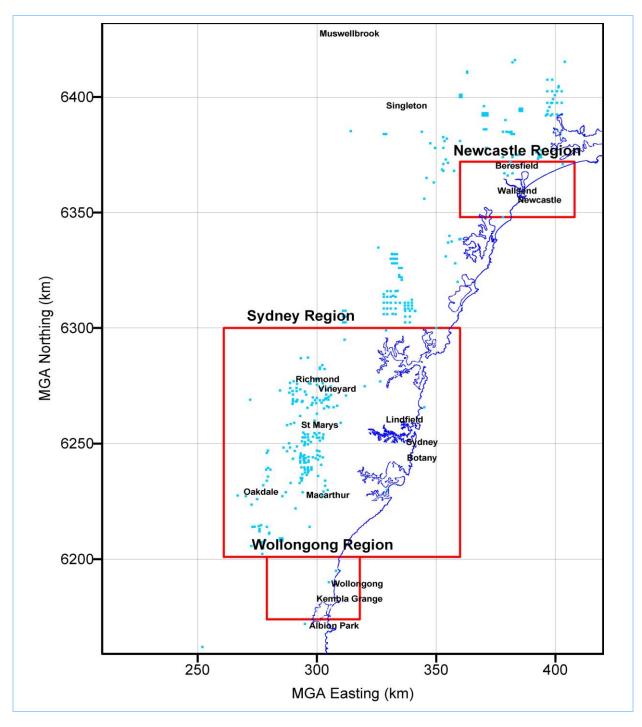


Figure 3-10: Poultry farming businesses within the GMR

3.4.2 Emission Estimation Methodology

Emissions of particulate matter from poultry farming (meat chicken) facilities were estimated using measurement data and ventilation data for tunnel ventilated sheds from the *"Silverweir" Broiler Farm Development Approval Application* located in Tamworth, NSW (Mirrabooka, 2002).

Particulate matter measurements were conducted over an eight week chicken rearing cycle from a tunnel ventilated shed fitted with a cup drinker system and during week five of the rearing cycle (when ventilation rates and total bird mass is at a maximum) from a tunnel ventilated shed fitted with a nipple drinker system.

Particulate measurement data is presented in Table 3-35 for the cup drinker shed and in Table 3-36 for the nipple drinker shed.

Week	No of Birds	No of Fans	Gas Flow (per fan) (m³/min)	Total Shed Gas Flow (m³/min)	TSP Concentration (mg/Nm³)	Shed TSP Emission Rate (g/min)	PM ₁₀ Concentration (mg/Nm³)	Shed PM ₁₀ Emission Rate (g/min)
1	27,033	1	649	649	5	3.2	1.6	1.0
2	26,749	1	640	640	6	3.8	1.9	1.2
3	26,687	1	656	656	9.6	6.3	3	2.0
4	26,623	1	747	747	14	10.5	5.1	3.8
5	26,558	1	757	757	16	12.1	6.3	4.8
5	26,558	2	737	1,474	11	16.2	5.6	8.3
5	26,558	4	757	3,028	7.3	22.1	2.1	6.4
5	26,558	6	757	4,542	5.1	23.2	1.6	7.3
6	8,620	1	716	716	5.6	4.0	1.7	1.2
7	8,617	1	680	680	8.4	5.7	2.6	1.8
8	7,201	1	692	692	6.9	4.8	2.1	1.5

Table 3-35: Particulate monitoring results – 'cup' drinker shed, May – July 2002

Source: Table 8, "Silverweir" Broiler Farm Development Approval Application - Air Quality Assessment (Mirrabooka, 2002)

Table 3-36: Particulate monitoring results – 'nipple' drinker shed, August 2002

Week	No of Birds	No of Fans	Gas Flow (per fan) (m³/min)	Total Shed Gas Flow (m³/min)	TSP Concentration (mg/Nm³)	Shed TSP Emission Rate (g/min)	PM ₁₀ Concentration (mg/Nm³)	Shed PM ₁₀ Emission Rate (g/min)
5	30,986	1	639	639	13	8.3	5.2	3.3
5	30,986	2	761	1,522	8.6	13.1	3.5	5.3
5	30,986	4	831	3,324	6.4	21.3	2.5	8.3
5	30,986	5	828	4,140	5	20.7	1.7	7.0
5	30,986	6	801	4,806	4.7	22.6	1.6	7.7

^a Source: Table 9, "Silverweir" Broiler Farm Development Approval Application - Air Quality Assessment (Mirrabooka, 2002)

The measurements show that TSP emissions from nipple drinker sheds are generally less than from cup drinker sheds. However there is less noticeable difference in emissions of PM_{10} between the different types of sheds. It is also noted that the number of samples collected and included in this analysis is small. Therefore, drawing conclusions between the differences in emission rates for each shed type is highly uncertain. The measurements also show that the concentration of TSP within the shed varies considerably during a meat chicken grow-out cycle. The measured TSP concentration

within the tunnel ventilated shed during the meat chicken grow out cycle are displayed in Figure 3-11. Maximum particulate concentrations occur between weeks four and six and are reduced in weeks seven and eight due to the initial harvesting that generally occurs between weeks five and six. Thinning of bird numbers at this stage supplies the market for smaller size birds and provides additional space for growing larger birds.

The measured variation in particulate concentration inside the shed is provided in Figure 3-11 over the chicken rearing cycle. It was conservatively assumed that the particulate concentration during week six is maintained at the maximum measured particulate concentration (as measured during week five).

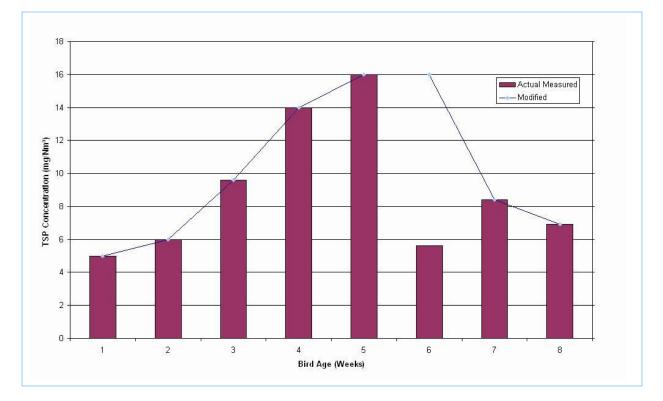


Figure 3-11: Measured TSP concentrations within shed during the chicken grow out cycle

Particulate emissions from the sheds were also analysed to determine the particulate size distribution released from each shed (as provided in Table 3-37).

Table 5-57. Wedsured particulate size distribution				
Particulate Size	'Cup' Drinker Shed	'Nipple' Drinker Shed	Average	
PM _{2.5}	ND	ND	10%	
PM ₅	17%	22%	20%	
PM ₁₀	42%	46%	44%	
PM ₂₂	74%	77%	75%	
TSP	100%	100%	100%	

Source: Mirrabooka (2002)

No data were available for $PM_{2.5}$ so the fraction of particulates in the $PM_{2.5}$ size range was estimated assuming that the $PM_{2.5}$ fraction was half the PM_5 fraction. The derived particulate size distribution for particulates released from meat chicken farm sheds is shown in Figure 3-12.

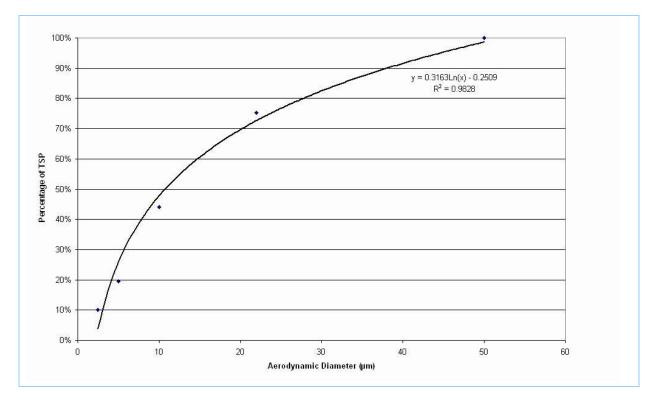


Figure 3-12: Derived particulate size distribution from meat chicken sheds

Ventilation rates also vary according to bird age and ambient temperature. Data sourced from the *"Silverweir" Broiler Farm Development Approval Application* located in Tamworth, NSW (Mirrabooka, 2002) show that typical design tunnel ventilation rates vary according to bird age and ambient temperature as shown in Figure 3-13.

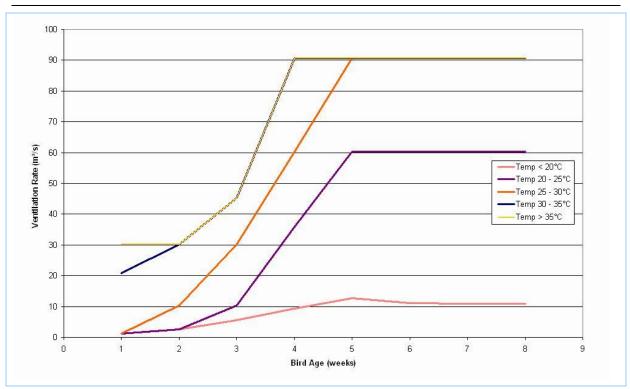


Figure 3-13: Variation in ventilation rates according to bird age and temperature

The average ambient temperature for each hour of the day in the year 2008 was derived using TAPM for locations where facilities are located in the NSW GMR. These data were used to estimate the hourly average ventilation rates for meat chicken farms in the NSW GMR. The hourly average ventilation rates were then combined with the particulate concentration data over the chicken grow out cycle to arrive at hourly estimated emission rates for 2008 from a single shed. The emission testing was conducted on a shed with a stocking capacity of 27.000 birds (Mirrabooka, 2002). Therefore, annual average emission factors for particulate matter (TSP, PM_{10} and $PM_{2.5}$) were derived based on 6 grow out phases occurring per year with a shed size of 27,000 birds. The derived emission factors for particulate matter are presented in Table 3-38.

Tuble o oo. Denveu putterinte function fuctors		
Substance	Derived Emission Factor (kg/bird produced)	
TOTAL SUSPENDED PARTICULATE	0.039	
PARTICULATE MATTER $\leq 10 \ \mu m$	0.017	
PARTICULATE MATTER $\leq 2.5 \ \mu m$	0.0039	

Table 3-38: Derived particulate matter emission factors

Emissions of ammonia from each source have been estimated using techniques provided in the *NPI EET Manual for Intensive Livestock – Poultry Raising v1.0* (EA, 2002a).

3.4.3 Activity Data

The number of meat chickens in the GMR was estimated based on data provided by DPI and AECL for meat chicken farms for the 2003 air emissions inventory and data obtained from the ABS for the number of meat chickens in New South Wales for the years 2003 and 2008. The number of meat chickens in the GMR was estimated using the ratio between the number of meat chicken farms in the

GMR compared to NSW and the total number of meat chickens in NSW in 2008 provided in ABS data. It was assumed that there were no changes in facility details between the 2003 and 2008 air emissions inventory. The total estimated number of meat chickens produced in NSW and the GMR are provided in Table 3-39.

Period	Area	Number of chickens (birds/year)
2003	GMR	18,300,000 ª
2003	NSW	27,282,500 b
2008	NSW	26,606,372 c
2008	GMR	17,900,000

a Data provided by DPI (pers. comm. G Bolla, 14/03/2005 (DPI))

b ABS (2004), 7120 Agricultural Commodities

c ABS (2009) 72150DO018_200812 Livestock Products, Australia, Dec 2008; ABS (2008a) Section 18, ABS Publication 7215.0 Livestock Products (December Quarter 2007) (filename: 72150_dec 2007.pdf)

The total number of egg layer chickens in the GMR in 2008 was estimated based on data provided by the ABS for the number of egg layers in NSW and for specific National Resource Management Regions (NRM) within the GMR. Data published by ABS for the 2007/2008 financial year for NRMs within the GMR are provided in Table 3-40.

NRM Region	Estimated Percentage of Region in GMR	Total Number of Egg Chickens in NRM region ^a	Total Number of Egg Chickens in GMR (per annum)
Hawkesbury-Nepean	95%	2,459,910	2,336,915
Sydney-Metro	100%	206,367	206,367
Southern Rivers	1%	35,053	351
Central West	5%	180,000	9,000
Hunter-Central Rivers	40%	473,117	189,247
Lachlan	0%	446,153	-
TOTAL (2007/2008)			2,741,879
TOTAL (2008) 2,969,500 b			

Table 3-40: Estimated number of egg layer chickens in the GMR

a ABS (2009c) 71210DO009_200708 Agricultural Commodities, Australia, 2007-08, Table 1 Livestock, NRM Region–New South Wales–Year ended 30 June 2008

b Projected for the calendar year based on published growth rates between 2006/2007 and 2007/2008 (ABS, 2009)

No activity data were available for the number of turkeys in the GMR for the 2008 calendar year. Therefore, it was assumed that the change in the number of turkeys between the 2008 inventory period and the 2003 air emissions inventory was proportional to the change in the number of meat chickens between 2003 and 2008. The estimated total turkey production rate for the 2008 inventory is presented in Table 3-41.

Table 3-41: Estimated total turkey in the GMR for 2003 and 2008

Period	Area	Number of birds (birds/year)
2003	GMR	2,580,300
2008	GMR	2,516,300

The ratio between the total poultry production rates between the 2003 and 2008 inventory periods was used to scale activity rates at each poultry farm in NSW. A summary of the data used to estimate emissions is presented in Table 3-42.

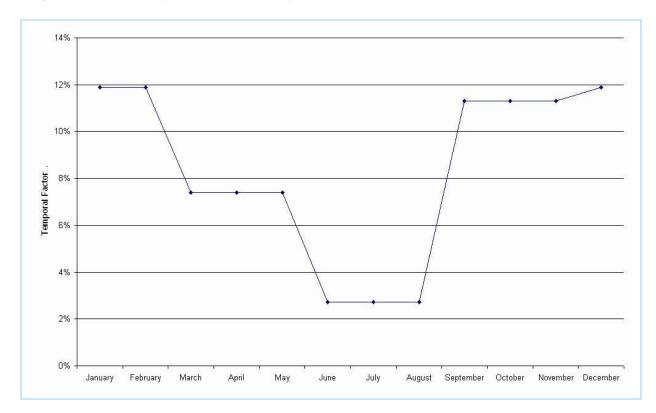
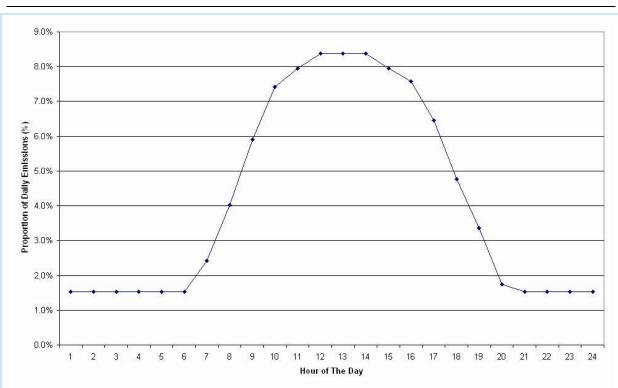

Poultry Farm Type	Number of Farms Identified ^a	Number of Birds
Broiler	272	17,900,000
Turkey	52	2,516,300
Laying hens	50	2,969,500
^a Data provided by DPI (2005)		

Table 3-42: Total number of birds and poultry farms^a


Data provided by DPI (2005)

3.4.4 **Temporal Variation of Emissions**

Temporal factors were derived using TAPM meteorological data averaged over all locations were poultry facilities are located in the GMR to derive temperature and bird age dependent ventilation rates which affect the rate of emission from sheds. The derived monthly and hourly temporal factors are shown in Figure 3-14 and Figure 3-15. There are no estimated variations in emissions between days of the week. Temporal factors are also provided in Table 3-43 and Table 3-44.

Figure 3-14: Monthly temporal emissions profile - poultry farming

Air Emissions Inventory for the Greater Metropolitan Region of New South Wales 3. Data Sources and Results

Figure 3-15: Hourly temporal emissions profile – poultry farming

Month	Temporal Factor
January	11.9
February	11.9
March	7.4
April	7.4
May	7.4
June	2.7
July	2.7
August	2.7
September	11.3
October	11.3
November	11.3
December	11.9

Table 3-43: Monthly temporal factors for emissions from poultry farming

Table 3-44: Hourly temporal factors for emissions from poultry farming

Hour	Weekday Temporal Factor	Weekend Temporal Factor		
1	1.53	1.53		
2	1.53	1.53		
3	1.53	1.53		
4	1.53	1.53		
5	1.53	1.53		
6	1.53	1.53		
7	2.42	2.42		
8	4.02	4.02		
9	5.90	5.90		

2008 Calendar Year Commercial Emissions: Results 3. Data Sources and Results

Hour	Weekday Temporal Factor	Weekend Temporal Factor
10	7.41	7.41
11	7.95	7.95
12	8.38	8.38
13	8.38	8.38
14	8.38	8.38
15	7.94	7.94
16	7.57	7.57
17	6.46	6.46
18	4.77	4.77
19	3.37	3.37
20	1.75	1.75
21	1.53	1.53
22	1.53	1.53
23	1.53	1.53
24	1.53	1.53

3.4.5 *Emission Estimates*

Estimated emissions from poultry farming (eggs) within the GMR, Sydney, Newcastle, Wollongong and Non Urban regions are provided in Table 3-45.

Substance	Estimated Emissions (kg/year)				
Substance	Sydney	Newcastle	Wollongong	Non Urban	GMR a
1,3 BUTADIENE	0	0	0	0	0
ACETALDEHYDE	0	0	0	0	0
BENZENE	0	0	0	0	0
CARBON MONOXIDE	0	0	0	0	0
FORMALDEHYDE	0	0	0	0	0
ISOMERS OF XYLENE	0	0	0	0	0
LEAD & COMPOUNDS	0	0	0	0	0
OXIDES OF NITROGEN	0	0	0	0	0
PARTICULATE MATTER ≤ 10 µm	45,400	0	0	5,120	50,500
PARTICULATE MATTER $\leq 2.5 \ \mu m$	10,400	0	0	1,170	11,600
PERCHLOROETHYLENE	0	0	0	0	0
POLYCYCLIC AROMATIC HYDROCARBONS	0	0	0	0	0
SULFUR DIOXIDE	0	0	0	0	0
TOLUENE	0	0	0	0	0
TOTAL SUSPENDED PARTICULATE	104,000	0	0	11,700	116,000
TOTAL VOLATILE ORGANIC COMPOUNDS	0	0	0	0	0
TRICHLOROETHYLENE	0	0	0	0	0
TRICHLOROETHYLENE Totals may not appear additive due to rounding	0	0	0	0	

Table 3-45: Estimated emissions from poultry farming (eggs)

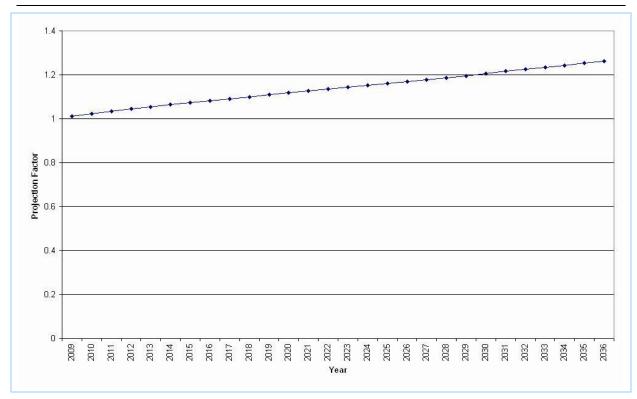
Totals may not appear additive due to rounding

Estimated emissions from poultry farming (meat) (includes emissions from turkey farms and meat chicken farms) within the GMR, Sydney, Newcastle, Wollongong and Non Urban regions are provided in Table 3-46.

Table 3-46: Estimated emissions from poultry farming (meat)							
Substance	Eulotanco			Estimated Emissions (kg/year)			
Substance	Sydney	Newcastle	Wollongong	Non Urban	GMR a		
1,3 BUTADIENE	0	0	0	0	0		
ACETALDEHYDE	0	0	0	0	0		
BENZENE	6.88	0	0	0	6.88		
CARBON MONOXIDE	1,160	0	0	0	1,160		
FORMALDEHYDE	13.8	0	0	0	13.8		
ISOMERS OF XYLENE	0	0	0	0	0		
LEAD & COMPOUNDS	0.00688	0	0	0	0.00688		
OXIDES OF NITROGEN	1,380	0	0	0	1,380		
PARTICULATE MATTER ≤ 10 µm	64,100	2,350	593	64,900	132,000		
PARTICULATE MATTER ≤ 2.5 µm	14,800	539	136	14,900	30,300		
PERCHLOROETHYLENE	0	0	0	0	0		
POLYCYCLIC AROMATIC HYDROCARBONS	0.00946	0	0	0	0.00946		
SULFUR DIOXIDE	7.19	0	0	0	7.19		
TOLUENE	3.44	0	0	0	3.44		
TOTAL SUSPENDED PARTICULATE	147,000	5,390	1,360	149,000	303,000		
TOTAL VOLATILE ORGANIC COMPOUNDS	75.7	0	0	0	75.7		
TRICHLOROETHYLENE	0	0	0	0	0		
a Totals may not appear additive due to rounding							

Table 3-46: Estimated emissions from poultry farming (meat)

3.4.6 **Emission Projection Methodology**


Projection factors for poultry farming have been derived based on final energy consumption projections for agriculture in NSW published by ABARE (ABARE, 2006).

Derived projection factors are provided in Table 3-47 and illustrated in Figure 3-16.

Table 3-47. 110 Jection Tactors for agriculture related sources					
Year	Projection Factor	Year	Projection Factor		
2009	1.0123	2023	1.1445		
2010	1.0237	2024	1.1533		
2011	1.0344	2025	1.1617		
2012	1.0444	2026	1.1701		
2013	1.0542	2027	1.1785		
2014	1.0637	2028	1.1868		
2015	1.0729	2029	1.1953		
2016	1.0820	2030	1.2055		
2017	1.0910	2031	1.2160		
2018	1.1000	2032	1.2251		
2019	1.1089	2033	1.2342		
2020	1.1179	2034	1.2432		
2021	1.1269	2035	1.2523		
2022	1.1357	2036	1.2613		

Table 3-47: Projection factors for agriculture related sources

Source: ABARE (2006)

Figure 3-16: Projection factors for agriculture related sources

3.5 Hospitals

3.5.1 Emission Sources and Associated Releases to Air

Hospitals in the GMR have been identified using data supplied by NSW Health (NSW Health, 2009a; 2009b). A total of 129 hospitals have been identified to be within the GMR.

The emission sources and associated releases to air from hospitals are outlined in Table 3-48.

Emission Source	Emissions to Air
Boiler (LPG)	Combustion products
Boiler (natural gas)	Combustion products
Internal combustion engine (diesel)	Combustion products
Surface coating (degreaser)	VOC
Surface coating (solvent based paint)	VOC
Surface coating (water based paint)	VOC

Table 3-48: Hospitals - emission sources

The locations of hospitals within the GMR are shown in Figure 3-17.

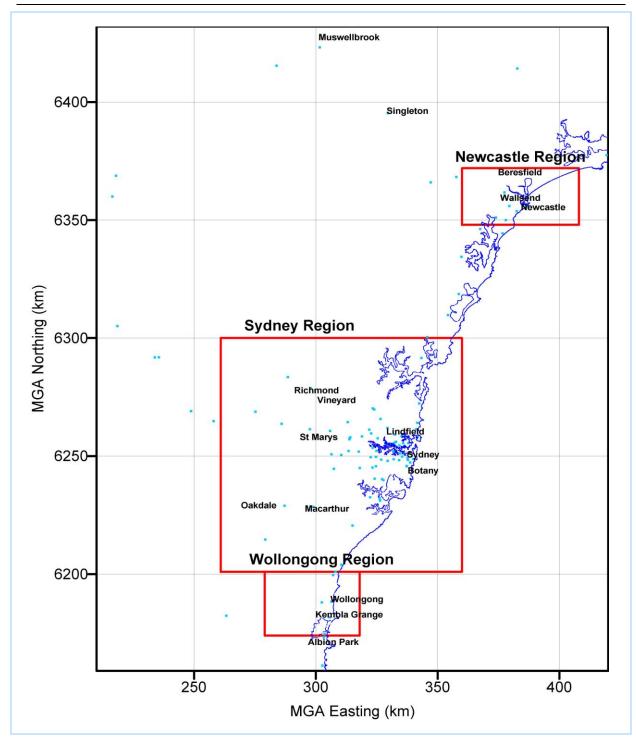


Figure 3-17: Hospitals within the GMR

3.5.2 Emission Estimation Methodology

Data sources for emission and speciation factors used to estimate emissions from hospitals are provided in Table 3-49.

Substance	Emission Source	Emission Factor Source	
CO, NO _x ¹ , SO ₂	Boiler (LPG)	AP42 Chapter 1.5 LPG Combustion (USEPA,	
&		2008a)	
VOC	Boiler (natural gas)	AP42 Chapter 1.4 Natural Gas Combustion	
		(USEPA, 1998b)	
	Internal combustion engine (diesel)	AP42 Chapter 3.3 Gasoline and Diesel Industrial	
		Engines (USEPA, 1996a)	
	Surface coating (degreaser)	Mass balance	
	Surface coating (solvent based paint)	VOCs from Surface Coatings Final Report	
	Surface coating (water based paint)	(ENVIRON, 2009)	
PM _{2.5} , PM ₁₀ &	Boiler (LPG)	AP42 Chapter 1.5 LPG Combustion (USEPA,	
TSP		2008a)	
	Boiler (natural gas)	AP42 Chapter 1.4 Natural Gas Combustion	
		(USEPA, 1998b)	
	Internal combustion engine (diesel)	AP42 Chapter 3.3 Gasoline and Diesel Industrial	
		Engines (USEPA, 1996a)	
Speciated	Boiler (LPG)	AP42 Chapter 1.5 LPG Combustion (USEPA,	
organics		2008a)	
(including	Boiler (natural gas)	SPECIATEv4.2 (Profile ID=0003) (USEPA, 2008c)	
methane)	Internal combustion engine (diesel)	SPECIATEv4.2 (Profile ID=0008) (USEPA, 2008c)	
	Surface coating (degreaser)	SPECIATEv4.2 (Profile ID=1195) (USEPA, 2008c)	
	Surface coating (solvent based paint)	SPECIATEv4.2 (Profile ID=1003) (USEPA, 2008c)	
	Surface coating (water based paint)	SPECIATEv3.2 (Profile ID=1013) (USEPA, 2008c)	
Speciated	Boiler (LPG)	AP-42 Chapter 1.4, Natural Gas Combustion	
particulate		(USEPA, 1998b) (assuming the same emissions	
matter		per joule combusted as natural gas)	
	Boiler (natural gas)	AP-42 Chapter 1.4, Natural Gas Combustion	
		(USEPA, 1998b)	
	Internal combustion engine (diesel)	CEIDARS PM profile 114 for speciated metals	
		(CARB, 2007)	
Ammonia	Boiler (LPG)	Estimating Ammonia Emissions from	
	Boiler (natural gas)	Anthropogenic Non-agricultural Sources - Draft	
	Internal combustion engine (diesel)	Final Report (Pechan, 2004)	
Sulfuric or	NA	NA	
hydrochloric acid			
PAH	Boiler (LPG)	AP-42 Chapter 1.4, Natural Gas Combustion	
		(USEPA, 1998b) (assuming the same emissions	
		per joule combusted as natural gas)	
	Boiler (natural gas)	AP42 Chapter 1.4 Natural Gas Combustion	
		(USEPA, 1998b)	
	Internal combustion engine (diesel)	AP42 Chapter 3.3 Gasoline and Diesel Industrial	
/		Engines (USEPA, 1996)	
PCDD/PCDF	Boiler (LPG)	Technical Report Number 3, Inventory of Dioxin	
	Boiler (natural gas)	Emissions in Australia, 2004 (Bawden et al, 2004)	
Greenhouse	Boiler (LPG)	National Greenhouse Accounts (NGA) Factors	
gases (CO_2 and	Boiler (natural gas)	June 2009, (DCC, 2009)	
N ₂ O)	Internal combustion engine (diesel)		

Table 3-49: Emission and speciation factors for all substances from hospitals

3.5.3 Activity Data

All hospitals were sent a questionnaire during the 2003 air emissions inventory to collect activity data. Responses were received from 43 hospitals (i.e. a response rate of 30%). It was assumed that data provided for the 2003 air emissions inventory is valid for the 2008 air emissions inventory. Data provided in returned commercial survey questionnaires have been used to estimate site-specific emissions from the 43 hospitals. Analysis of the returned commercial survey questionnaires shows that the number of hospitals with natural gas combustion, diesel combustion and LPG combustion is 22, 3 and 1 respectively. Some hospitals have no fuel usage and hence no air emissions.

Activity data for the 85 hospitals that did not respond to the commercial survey questionnaire have been estimated based on data provided in the returned commercial survey questionnaires.

It has been assumed that all non-respondent hospitals combust natural gas. Analysis of combustion data provided by non-respondent facilities shows that as the number of beds at a hospital increases the rate of natural gas combustion increases. The data showing the relationship between the number of beds at a hospital and the rate of natural gas combustion is shown in Figure 3-18.

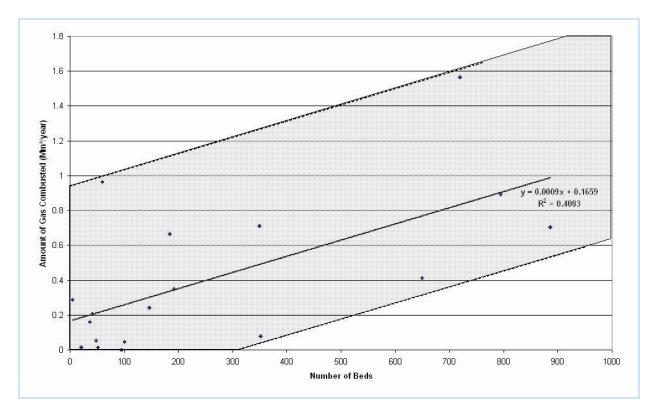
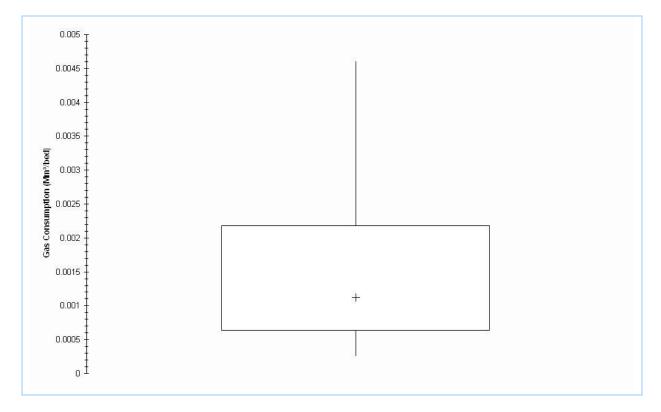


Figure 3-18: Amount of gas combusted versus number of beds at NSW hospitals


In order to estimate the rate of natural gas combustion at non-respondent hospitals, it has been assumed that the best estimation of gas combustion can be achieved through a linear relationship between gas combustion and the number of beds at a hospital. As can be seen from Figure 3-18, there is significant variance at individual hospitals from this relationship. A least squares regression provides a best fit linear relationship of (Equation 16):

$n_i = 0.0009 \times n_i + 0.1659$	Equation 16
------------------------------------	-------------

where:						
А	=	Estimated rate of natural gas combustion at non- (Mm ³ /year)				
	respondent hospital i					
n	=	Number of beds at non respondent hospital i (beds/hospital)				

Using this approach, the total natural gas consumption at hospitals in the GMR is estimated to be 41 Mm³ per year.

As there is significant variance in the derived relationship, analysis has been performed on the data to determine the significance of the variance in terms of its potential contribution to overall uncertainty in estimated emissions. A box and whisker plot, showing the variance in the estimated gas consumption per bed from each respondent hospital, is shown in Figure 3-19.

Figure 3-19: Variance in derived natural gas consumption per bed at hospitals in NSW GMR

Applying the maximum, derived natural gas consumption per bed to non-respondent hospitals generates a natural gas consumption rate of 76 Mm³ per year (~2.9 TJ). This is an additional, 34 Mm³ of natural gas combustion per year. The difference between the activity estimate and the maximum estimated natural gas consumption represents 1% of the total estimated gas consumption in the GMR. Since the uncertainty in the activity estimate is insignificant in terms of regional emission estimates, further refinement was judged to be unnecessary.

It has been assumed that emissions are released from stacks from non-respondent hospitals with the following stack parameters:

- Stack height = 15 m
- Stack diameter = 0.2 m

- Exit velocity = 10 m/s۶
- Exit temperature = 423 K ۶

These have been assumed based on typical values supplied in returned commercial survey questionnaires.

3.5.4 **Temporal Variation of Emissions**

Temporal variation of emissions is assumed to remain constant throughout the day and year.

3.5.5 **Emission Estimates**

Estimated emissions from hospitals within the GMR, Sydney, Newcastle, Wollongong and Non Urban regions are provided in Table 3-50.

Calatanaa	Estimated Emissions (kg/year)				
Substance	Sydney	Newcastle	Wollongong	Non Urban	GMR a
1,3 BUTADIENE	1.3	8.39	0	1.68	11.4
ACETALDEHYDE	0	0	0	0	0
BENZENE	227	35.4	12.5	59.6	334
CARBON MONOXIDE	38,000	4,660	2,100	9,510	54,200
FORMALDEHYDE	450	51.8	25	115	642
ISOMERS OF XYLENE	3.51	0	0	0	3.51
LEAD & COMPOUNDS	0.336	0.21	0.0125	0.0937	0.652
OXIDES OF NITROGEN	45,600	6,630	2,500	11,800	66,500
PARTICULATE MATTER ≤ 10 µm	3,440	496	190	880	5,000
PARTICULATE MATTER ≤ 2.5 μm	3,440	495	190	880	5,000
PERCHLOROETHYLENE	0	0	0	0	0
POLYCYCLIC AROMATIC HYDROCARBONS	0.343	0.0908	0.0172	0.0892	0.54
SULFUR DIOXIDE	256	122	13	77.6	469
TOLUENE	130	13	6.24	28.8	178
TOTAL SUSPENDED PARTICULATE	3,440	498	190	881	5,010
TOTAL VOLATILE ORGANIC COMPOUNDS	2,620	391	137	644	3,790
TRICHLOROETHYLENE	0	0	0	0	0

Table 3-50: Estimated emissions from hospitals

3.5.6 **Emission Projection Methodology**

Projection factors for hospitals have been derived based on population projections for the GMR published by TDC (TDC, 2009).

Derived projection factors are provided in Table 3-33 and illustrated in Figure 3-9.

3.6 Wine Manufacturing

3.6.1 Emission Sources and Associated Releases to Air

Wine manufacturers were identified using the Wine Industry Directory sourced from Winetitles (Winetitles, 2009). A total of 105 wine manufacturers were identified to be within the GMR.

The emission sources and associated releases to air from wine manufacturing are outlined in Table 3-51.

Emission Source	Emissions to Air
Boiler (LPG)	Combustion products
Fuel storage (diesel)	VOC
Fuel storage (petrol)	VOC
Wastewater treatment	Ammonia, VOC
Wine fermentation (red wine)	H ₂ S, VOC
Wine fermentation (white wine)	H ₂ S, VOC
Wine manufacturing (bottling (red wine))	VOC
Wine manufacturing (bottling (white wine))	VOC
Wine manufacturing (pomace pressing (red	VOC
wine))	
Wine manufacturing (pomace screening (red	VOC
wine))	
Wine maturation (red wine, barrel)	VOC
Wine maturation (white wine, barrel)	VOC

Table 3-51: Wine manufacturing – emission sources

The locations of wine manufacturers within the GMR are shown in Figure 3-20.

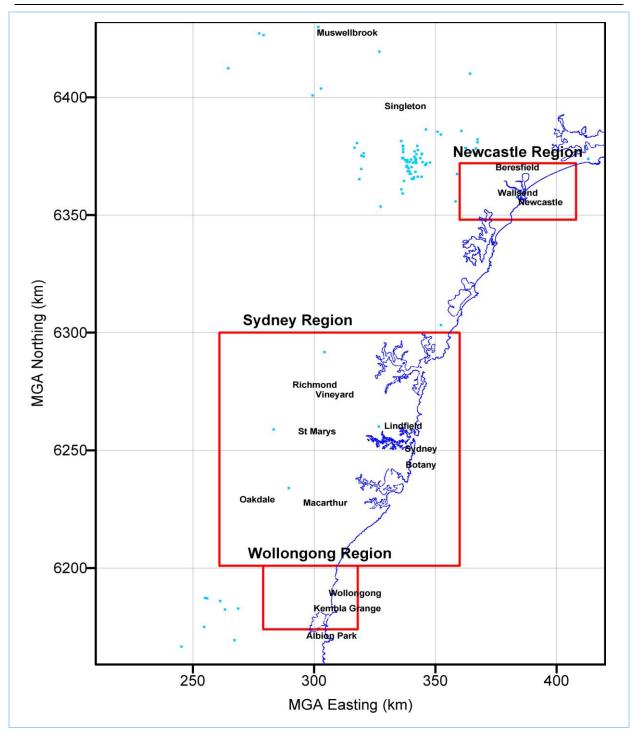


Figure 3-20: Wine manufacturers within the GMR

3.6.2 Emission Estimation Methodology

Data sources for emission and speciation factors used to estimate emissions from wine manufacturing are provided in Table 3-52.

Substance	Emission and speciation factors	Emission Factor Source
CO, NO _x ¹ , SO ₂	Boiler (LPG)	AP42 Chapter 1.5 LPG Combustion (USEPA,
&		2008a)
VOC	Wastewater treatment	NGGIC Workbook for Waste (NGGIC, 1996)
	Wine fermentation (white wine)	AP42 Chapter 9.12.2 Wines and Brandy (USEPA,
	Wine fermentation (velue wine)	1995b)
	Wine manufacturing (bottling (red	17700)
	wine))	
	Wine manufacturing (bottling (white	
	.	
	wine))	
	Wine manufacturing (pomace pressing	
	(red wine))	
	Wine manufacturing (pomace screening	
	(red wine))	
	Wine maturation (red wine, barrel)	NPI EET Manual for Wine and Spirit
	Wine maturation (white wine, barrel)	Manufacturing v2.0 (DEWHA, 2010)
PM _{2.5} , PM ₁₀ &	Boiler (LPG)	AP42 Chapter 1.5 LPG Combustion (USEPA,
TSP		2008a)
Speciated	Boiler (LPG)	AP42 Chapter 1.5 LPG Combustion (USEPA,
organics		2008a)
(including	Wastewater treatment	CEIDARS Organic Gas Speciation Profiles (Profile
methane)		ID=1402) (assuming that unidentified portion is
		methane) (CARB, 2005)
	Wine fermentation (white wine)	SPECIATEv4.2 (Profile ID=1188) (USEPA, 2008c)
	Wine fermentation (red wine)	
	Wine manufacturing (bottling (red	
	wine))	
	Wine manufacturing (bottling (white	
	wine))	
	Wine manufacturing (pomace pressing	
	(red wine))	
	Wine manufacturing (pomace screening	
	(red wine))	
	Wine maturation (red wine, barrel)	
	Wine maturation (white wine, barrel)	
Speciated	Boiler (LPG)	AP-42 Chapter 1.4, Natural Gas Combustion
particulate matter		(USEPA, 1998a) (assuming the same emissions per
r		joule combusted as natural gas)
Ammonia	Boiler (LPG)	Estimating Ammonia Emissions from
		Anthropogenic Non-agricultural Sources - Draft
		Final Report (Pechan, 2004)
Sulfuric or	NA	NA
hydrochloric acid	1 1/2	
PAH	Boiler (LPG)	AP-42 Chapter 1.4, Natural Gas Combustion
1 / 11 1		(USEPA, 1998b) (assuming the same emissions per
		joule combusted as natural gas)
	Boilor (LDC)	
PCDD/PCDF	Boiler (LPG)	Technical Report Number 3, Inventory of Dioxin
Constant		Emissions in Australia, 2004 (Bawden et al, 2004)
Greenhouse gases	Boiler (LPG)	National Greenhouse Accounts (NGA) Factors
$(CO_2 \text{ and } N_2O)$		June 2009, (DCC, 2009)

Table 2 50. Emission and a	maniation fasta	na fam all amhat	an eas from hospitals
Table 3-52: Emission and s	peciation facto	rs for all subst	ances from nospitals

3.6.3 Activity Data

State wine production was sourced from the ABS and found to be 422,354 kL for the 2008 calendar year (ABS, 2009b).

Wine facilities were identified from the Wine Industry Directory (Winetitles, 2009). The Wine Industry Directory also had other data for each facility such as fermentation capacity, tonnage ranges and case production ranges for each winery. An initial estimate on facility production volumes was made using the following hierarchical approach.

- 1) If a winery completed a questionnaire for the 2003 air emissions inventory, it was assumed that production for the 2008 calendar year was the same as in 2003;
- 2) For facilities that did not fill out a questionnaire, it was assumed the fermentation capacity was the same as the annual production capacity for the winery;
- 3) Where fermentation capacity was not available, production capacities were assumed to be the same as other wineries with similar tonnage ranges and case production ranges as the winery with no production data available.

Using this approach the estimated total wine production in NSW was 364,988 kL. The estimated production rate at each facility were then adjusted so that the total wine production in the GMR was equal to the total wine production sourced from the ABS of 422,354 kL (i.e. estimated production rates were increased by 16% at each facility).

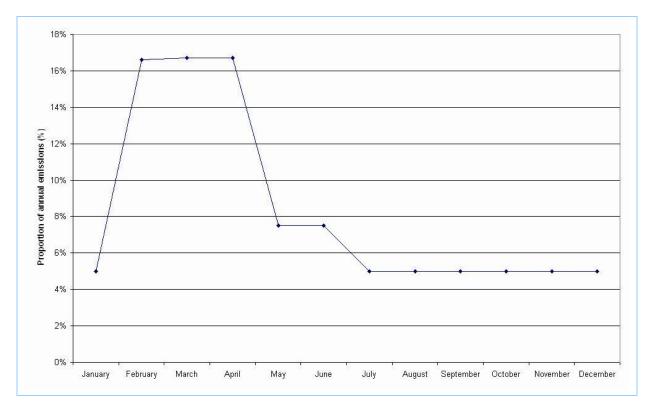
Where site specific data were not available to estimate the rate of red versus white wine production rates, the average grape type production in the GMR sourced from ABARE was used to estimate site specific red and white wine production rates. ABARE reports that 56% of grape production in the GMR is for white wine and 44% of grape production is for red wine (ABARE, 2009a).

Summary activity statistics collected for wine production in the GMR is presented in Table 3-53.

Parameter	Value
Amount of wine produced in NSW in 2008	422,354 kL/year ^a
Amount of wine produced in NSW in 2008	422,354 kL/year ^b
Total red/rose wine production in NSW in 2008	216,338 kL/year ^a
Total white wine production in NSW in 2008	206,016 kL/year ^a
Amount of wine produced in GMR	54,901 kL/year ^b
Percentage of total state wine produced in GMR	13.0% b
Amount of grapes produced in NSW in 2008	385,169 t/year ^c
Amount of grapes produced in GMR in 2008	56,948 t/year ^c
a ABS (2009b)	•

Table 3-53: Summary activity statistics collected for wine production in the GMR

b Derived from Winetitles (2009)


c ABARE (2009a)

Temporal Variation of Emissions 3.6.4

Temporal variation of emissions has been estimated based on data provided in returned commercial survey questionnaires. It has been assumed that emissions remain constant throughout the operating hours of the business from 6 am to 3 pm each day, for 7 days a week. Monthly temporal factors are provided in Table 3-54 and Figure 3-21.

Proportion ^a
0.50
1.66
1.67
1.67
0.75
0.75
0.50
0.50
0.50
0.50
0.50
0.50

Table 3-54: Monthly temporal variation of emissions for wine manufacturing

Temporal variation of emissions provided by Tamburlain Wines

Figure 3-21: Monthly temporal factors for wine manufacturing sources

3.6.5 *Emission Estimates*

Estimated emissions from wine manufacturing within the GMR, Sydney, Newcastle, Wollongong and Non Urban regions are provided in Table 3-55.

California	Estimated Emissions (kg/year)				
Substance	Sydney	Newcastle	Wollongong	Non Urban	GMR a
1,3 BUTADIENE	0	0	0	0	0
ACETALDEHYDE	0	0	0	0	0
BENZENE	0.0541	0	0	0.174	0.229
CARBON MONOXIDE	0.241	0	0	0	0.241
FORMALDEHYDE	0.247	0.0407	0	5.33	5.62
ISOMERS OF XYLENE	1.39	0.244	0	32.3	33.9
LEAD & COMPOUNDS	0.00000535	0	0	0	0.00000535
OXIDES OF NITROGEN	1.75	0	0	0	1.75
PARTICULATE MATTER ≤ 10 µm	0.0542	0	0	0	0.0542
PARTICULATE MATTER ≤ 2.5 μm	0.0537	0	0	0	0.0537
PERCHLOROETHYLENE	1.58	0.285	0	37.3	39.2
POLYCYCLIC AROMATIC HYDROCARBONS	0.00000747	0	0	0	0.00000747
SULFUR DIOXIDE	0.00000903	0	0	0	0.00000903
TOLUENE	1.02	0.163	0	21.8	23
TOTAL SUSPENDED PARTICULATE	0.0555	0	0	0	0.0555
TOTAL VOLATILE ORGANIC COMPOUNDS	3,180	34	0	20,900	24,100
TRICHLOROETHYLENE	0.226	0.0407	0	5.33	5.6

Table 3-55: Estimated emissions from wine manufacturing

Totals may not appear additive due to rounding

3.6.6 Emission Projection Methodology

Projection factors for wine manufacturing have been derived based on population projections for the GMR published by TDC (TDC, 2009).

Derived projection factors are provided in Table 3-33 and illustrated in Figure 3-9.

3.7 Construction Material Mining

3.7.1 Emission Sources and Associated Releases to Air

The category construction material mining includes ANZSIC classes 'Gravel and Sand Quarrying' and 'Construction Material Mining n.e.c.'. Construction material mines were identified using the NSW WorkCover database for hazardous materials and the telephone directory for NSW. A total of 60 commercial construction material mines have been identified from these sources to be within the GMR. The emission sources and associated releases to air for construction material mining are outlined in Table 3-56.

rubie b boi construc	
Emission Source	Emissions to Air
Blasting	PM
Drilling	PM
Fuel storage (diesel)	VOC
Loaders (overburden)	PM
Primary crushing (M < 4%)	PM
Screening	PM
Secondary crushing (M < 4%)	PM
Tertiary crushing (M < 4%)	PM
Trucks (dumping overburden)	PM
Wheel generated dust (unpaved roads)	PM
Wind erosion	PM

Table 3-56: Construction material mining – emission sources

The locations of commercial construction material mining businesses are shown in Figure 3-22.

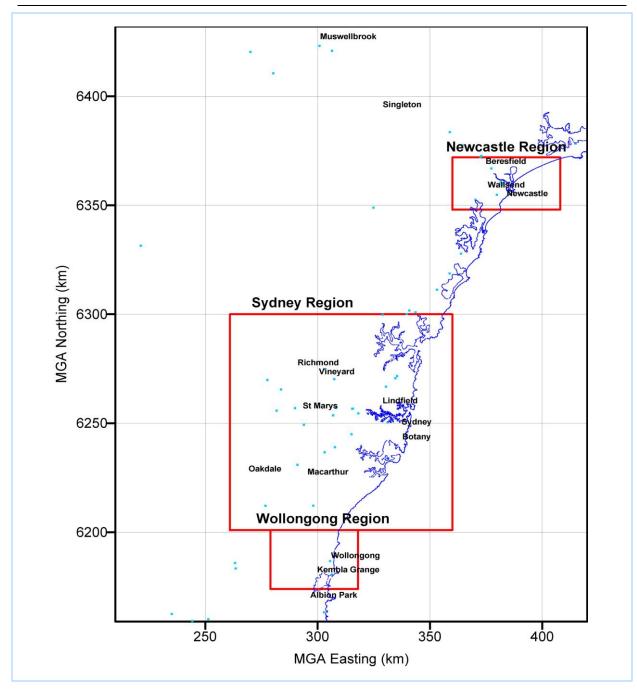


Figure 3-22: Commercial construction material mines within the GMR

3.7.2 Emission Estimation Methodology

Data sources for emission and speciation factors used to estimate emissions from construction material mining are provided in Table 3-57.

Table 3-57: Emission and s	speciation factors for	all substances from	n construction materi	al mining
Tuble 5 57. Emission and 5	speciation factors for	an substances non	i constituction materi	ur minning

Substance	Emission Source	Emission Factor Source
CO, NO_x^1, SO_2	Fuel storage (diesel)	TANKS 4.09D software (USEPA, 2006d)
&		
VOC		
PM _{2.5} , PM ₁₀ &	Blasting	NPI EET Manual for Mining v2.3 (EA, 2003b)
TSP	Drilling	
	Loaders (overburden)	
	Primary crushing (M < 4%)	
	Screening	
	Secondary crushing (M < 4%)	
	Tertiary crushing (M < 4%)	
	Trucks (dumping overburden)	
	Wheel generated dust	AP42 Chapter 13.2.2 Unpaved Roads (USEPA, 2006c)
	(unpaved roads)	
	Wind erosion	NPI EET Manual for Mining v2.3 (EA, 2003b)
Speciated	Fuel storage (diesel)	Average diesel vapour concentration from diesel
organics		produced at BP refineries around Australia (BP, 2001a)
(including		
methane)		
Speciated	Blasting	Appendix B, NPI EET Manual for Mining v2.3 (EA, 2003b)
particulate matter	Drilling	
	Loaders (overburden)	
	Primary crushing (M < 4%)	CEIDARS Particulate Matter (PM) Speciation Profiles -
		Rock crushing (CARB, 2007)
	Screening	CEIDARS Particulate Matter (PM) Speciation Profiles -
		Rock screening (CARB, 2007)
	Secondary crushing ($M < 4\%$)	CEIDARS Particulate Matter (PM) Speciation Profiles -
	Tertiary crushing (M < 4%)	Rock crushing (CARB, 2007)
	Trucks (dumping overburden)	Appendix B, NPI EET Manual for Mining v2.3 (EA, 2003b)
	Wheel generated dust	California Emissions Inventory and Reporting System -
	(unpaved roads)	Unpaved Road Dust, 1997 (CARB, 2007)
	Wind erosion	Appendix B, NPI EET Manual for Mining v2.3 (EA, 2003b)
Ammonia	NA	NA
Sulfuric or	NA	NA
hydrochloric acid		
РАН	NA	NA
PCDD/PCDF	NA	NA
Greenhouse gases	NA	NA
(CO ₂ and N ₂ O)		

3.7.3 Activity Data

The methodology to estimate emissions from commercial construction material mining facilities has not changed from the 2003 air emissions inventory. The only change to this sector is the inclusion of wheel generated dust in the commercial emissions module and the removal of facilities that are known to have ceased operation.

All 60 identified construction material mining businesses were sent commercial surveys for the 2003 air emissions inventory. The number of respondent businesses is provided in Table 3-58.

respondent submesses						
	Number	Number				
ANZSIC Class	of	of	Response Rate			
AINZOIC CIASS	Businesses	Businesses	(%)			
	Identified	Responded				
Gravel and sand quarrying	58	2	3			
Construction material mining	2	1	50			
Total	60	3	5.0			

Table 3-58: Number of construction material mining businesses in the GMR and the number of respondent businesses

Site specific data supplied in the returned commercial survey questionnaires from respondent businesses have been used for emissions estimation when provided. Further, air emissions reported to the NPI have also been included from non-respondent commercial construction material mining businesses.

Activity data for non-respondent commercial construction material mining businesses have been estimated based on data extracted from the following references:

- > New South Wales Industrial Minerals Database, NSW Department of Mineral Resources (DMR, 2003);
- Supply and Demand for Construction Sand in the Sydney Planning Region, NSW Department of Mineral Resources (DMR, 2001a);
- Structural Clay/Shale Resources of the Sydney Region, NSW Department of Mineral Resources (DMR, 2001b); and
- Supply and Demand for Coarse Aggregate in the Sydney Planning Region, NSW Department of Mineral Resources (DMR, 2000).

These references were queried to retrieve business and annual production data for all material extraction sites located within the GMR. The business list was cross-checked with licensed premises and all licensed (i.e. industrial) businesses have been removed. Further, businesses that are known to have ceased production have been removed.

If no data were available from the DMR references, it has been assumed that each business has the air emission sources detailed in Table 3-59. Furthermore, if no production data were available from the DMR references it has been assumed that the annual production at each business is equal to the median value of all identified non-licensed material extraction sites. The median production quantity from all non-licensed sites has been determined from the *New South Wales Industrial Minerals Database* (DMR, 2003) to be 17,500 tonne per year. The activity data assumed in order to estimate emissions from each emission source are provided in Table 3-59.

Emission Source	Inputs for Emission Estimation
Drilling	260 holes/year
Blasting ^{a,b,c}	431 m² / blast
Stockpile loading	17,500 tonne/year
Stockpile unloading	17,500 tonne/year
Primary crushing	17,500 tonne/year
Secondary crushing	17,500 tonne/year
Tertiary crushing	17,500 tonne/year
Screening	17,500 tonne/year
Material loaded onto trucks	17,500 tonne/year
Fuel storage (diesel)	1.8 kg VOC/year
Wheel generated dust (unpaved roads)	See Appendix B
Wind erosion (exposed area) d,e	30,000 m ²
Wind erosion (stockpiles) ^{d,e}	7,725 m ²

Table 3-59: Emission sources and activity data used for non-respondent businesses

a Moisture content of material was estimated to be 2% (EA, 2003b)

b Average depth of blast was assumed to be 20 m

c Number of blasts per year was assumed to be 10

d Silt content was assumed to be 15%

3.7.4 Temporal Variation of Emissions

Data provided in returned commercial survey questionnaires have been used to estimate temporal variation of emissions for respondent businesses. Temporal variations in emission sources from construction material mining businesses have been assumed to remain constant throughout the operating hours of the businesses. Monthly variations have been assumed to vary directly in proportion to production variations provided in returned commercial survey questionnaires. Temporal variation of emission sources from non-respondent businesses have been estimated based on the response provided for a typical 'small to medium' sized quarry which indicates that the typical operating hours are from 6 am to 4 pm on weekdays.

3.7.5 Emission Estimates

Estimated emissions from construction material mining n.e.c. within the GMR, Sydney, Newcastle, Wollongong and Non Urban regions are provided in Table 3-60.

Substance	Estimated Emissions (kg/year)				
Substance	Sydney	Newcastle	Wollongong	Non Urban	GMR a
1,3 BUTADIENE	0	0	0	0	0
ACETALDEHYDE	5.25	0	0	0	5.25
BENZENE	52	0	0	0	52
CARBON MONOXIDE	4,540	0	0	0	4,540
FORMALDEHYDE	55.6	0	0	0	55.6
ISOMERS OF XYLENE	125	0	0	33.5	158
LEAD & COMPOUNDS	3.89	0	0	0.00185	3.89
OXIDES OF NITROGEN	5,540	0	0	0	5,540
PARTICULATE MATTER ≤ 10 µm	9,510	0	0	7.86	9,520

Table 3-60: Estimated emissions from construction material mining n.e.c.

Air Emissions Inventory for the Greater Metropolitan Region of New South Wales 3. Data Sources and Results

Substance	Estimated Emissions (kg/year)				
Substance	Sydney	Newcastle	Wollongong	Non Urban	GMR a
PARTICULATE MATTER $\leq 2.5 \ \mu m$	1,910	0	0	5.69	1,920
PERCHLOROETHYLENE	0	0	0	0	0
POLYCYCLIC AROMATIC HYDROCARBONS	0.0382	0	0	0	0.0382
SULFUR DIOXIDE	29,600	0	0	0	29,600
TOLUENE	138,000	0	0	71.9	138,000
TOTAL SUSPENDED PARTICULATE	30,800	0	0	19.9	30,800
TOTAL VOLATILE ORGANIC COMPOUNDS	510,000	6,340	0	4,060	520,000
TRICHLOROETHYLENE	3,500	0	0	0	3,500

Totals may not appear additive due to rounding

Estimated emissions from gravel or sand quarrying within the GMR, Sydney, Newcastle, Wollongong and Non Urban regions are provided in Table 3-61.

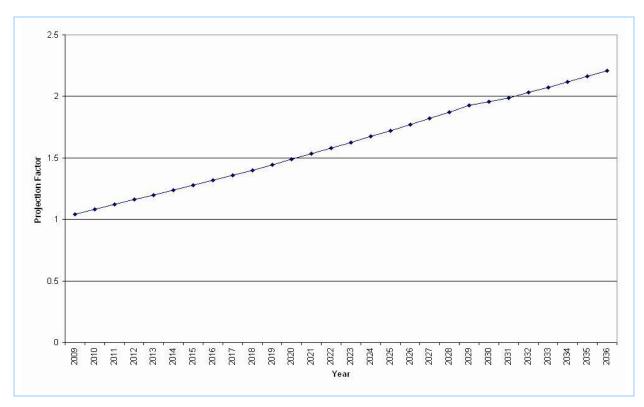
Substance	Estimated Emissions (kg/year)				
Substance	Sydney	Newcastle	Wollongong	Non Urban	GMR a
1,3 BUTADIENE	0	0	0	0	0
ACETALDEHYDE	0	0	0	0	0
BENZENE	0	0	0	0	0
CARBON MONOXIDE	0	0	0	0	0
FORMALDEHYDE	0	0	0	0	0
ISOMERS OF XYLENE	4.31	0.812	0.325	4.02	9.46
LEAD & COMPOUNDS	40.9	2.44	1.17	29.5	74
OXIDES OF NITROGEN	0	0	0	0	0
PARTICULATE MATTER $\leq 10 \ \mu m$	647,000	85,500	35,100	621,000	1,391,000
PARTICULATE MATTER ≤ 2.5 µm	145,000	18,400	7,620	136,000	306,000
PERCHLOROETHYLENE	0	0	0	0	0
POLYCYCLIC AROMATIC HYDROCARBONS	0	0	0	0	0
SULFUR DIOXIDE	0	0	0	0	0
TOLUENE	1.32	0.249	0.0998	1.23	2.91
TOTAL SUSPENDED PARTICULATE	2,594,000	245,000	106,000	2,140,000	5,084,000
TOTAL VOLATILE ORGANIC COMPOUNDS	47.7	9	3.6	44.5	105
TRICHLOROETHYLENE	0	0	0	0	0

Table 3-61: Estimated emissions from gravel or sand quarrying

Totals may not appear additive due to rounding

а

3.7.6 Emission Projection Methodology


Projection factors for construction material mining have been derived based on final energy consumption projections for mining in NSW published by ABARE (ABARE, 2006).

Derived projection factors are provided in Table 3-62 and illustrated in Figure 3-23.

Year	Projection Factor	Year	Projection Factor		
2009	1.0415	2023	1.6258		
2010	1.0819	2024	1.6735		
2011	1.1216	2025	1.7215		
2012	1.1602	2026	1.7703		
2013	1.1990	2027	1.8202		
2014	1.2383	2028	1.8716		
2015	1.2780	2029	1.9243		
2016	1.3181	2030	1.9580		
2017	1.3591	2031	1.9869		
2018	1.4008	2032	2.0307		
2019	1.4437	2033	2.0746		
2020	1.4878	2034	2.1184		
2021	1.5330	2035	2.1623		
2022	1.5789	2036	2.2061		

Table 3-62: Projection factors for mining related sources

Source: ABARE (2006)

Figure 3-23: Projection factors for mining related sources

3.8 Funeral Directors, Crematoria and Cemeteries

3.8.1 Emission Sources and Associated Releases to Air

Crematories are usually designed with a primary and a secondary combustion chamber. The crematories are usually single ended units which process one coffin at a time. The coffin is placed inside the primary chamber of the crematory at a temperature of about 300-800°C. The primary

chamber is only preheated by the previous cremation. The secondary chamber, however, is preheated by the support fuel to about 850°C (EEA, 2009). Emissions from preheating are not included in this sector but are covered under unaccounted for fuel combustion (see the domestic-commercial air emissions inventory)

The primary chamber has burners that are directed at the coffin and air lances to break up the remains and promote combustion. The combustion gases from the primary chamber are then fed by a series of ducts into the compartmentalised secondary chamber, which is heated with afterburners and supplied with secondary air to complete combustion and reduce the emissions of carbon based particulate matter (PM), VOC, and persistent organic pollutants (POPs). The secondary chamber has a residence time for the gases of one to two seconds (EEA, 2009).

Cremation begins immediately once the coffin is inserted into the first chamber and only one coffin is ever placed inside the chamber at any one time. The average time taken to for an adult cremation is 90 minutes at a temperature between 800°C and 1,000°C (DEWHA, 2011). The main fuels used in NSW crematoria are natural gas and LPG.

Twenty-one crematoria businesses were identified within the NSW GMR through consultation with the Environmental Health Branch of the NSW Government. Commercial survey questionnaires were sent to crematoria businesses for the 2003 emissions inventory to collect activity data and responses were received from nine businesses (representing a response rate of 42.9%) (DECC, 2007).

The emission source and associated release to air from funeral directors and cemeteries is outlined in Table 3-63.

Table 3-63: Funeral directors and cemeteries - emission sources

Emission Source	Emissions to Air
Cremation	Combustion products

The locations of crematoria businesses within the GMR are shown in Figure 3-24.

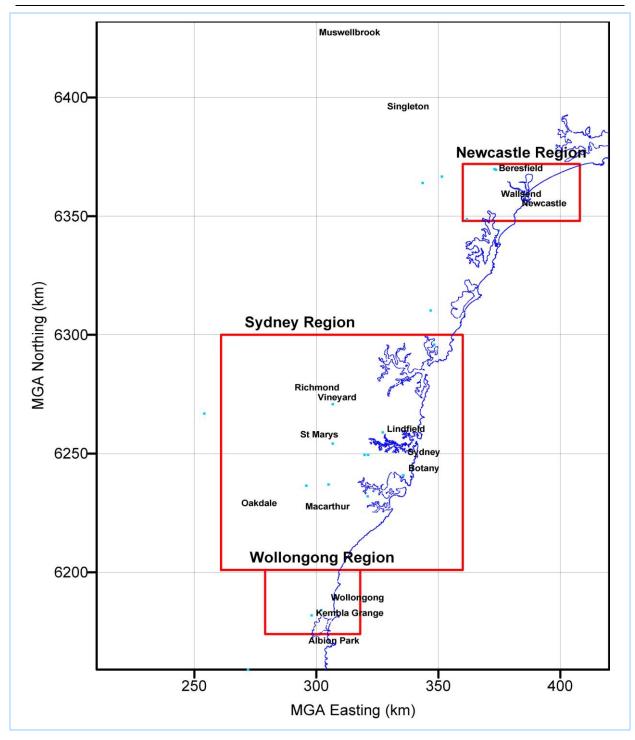


Figure 3-24: Crematoria within the GMR

3.8.2 Emission Estimation Methodology

Data sources for emission and speciation factors used to estimate emissions from crematoria are provided in Table 3-64.

Table 3-64: Emission and speciation factors for all substances from crematoria				
Substance	Emission Source	Emission Factor Source		
CO, NO _x ¹ , SO ₂	Cremation	Tier 1 emission factors for source category 6.C.d		
&		Cremation: Cremation of human bodies (EEA, 2009)		
VOC				
PM _{2.5} , PM ₁₀ &	Cremation	Tier 1 emission factors for source category 6.C.d		
TSP		Cremation: Cremation of human bodies (EEA, 2009)		
Speciated	Cremation	Evaluation Test on Two Propane Fired Crematories at		
organics		Camellia Memorial Lawn Cemetery (CARB, 1990)		
(including				
methane)				
Speciated	Cremation	Tier 1 emission factors for source category 6.C.d		
particulate matter		Cremation: Cremation of human bodies (EEA, 2009) and		
		Evaluation Test on Two Propane Fired Crematories at		
		Camellia Memorial Lawn Cemetery (CARB, 1990)		
Ammonia	NA	NA		
Sulfuric or	Cremation	Evaluation Test on Two Propane Fired Crematories at		
hydrochloric acid		Camellia Memorial Lawn Cemetery (CARB, 1997)		
PAH	Cremation	Tier 1 emission factors for source category 6.C.d		
		Cremation: Cremation of human bodies (EEA, 2009)		
PCDD/PCDF	Cremation	Tier 1 emission factors for source category 6.C.d		
		Cremation: Cremation of human bodies (EEA, 2009)		
Greenhouse gases	Cremation	Cremation or Burial – Carbon Emissions and the		
(CO ₂ and N ₂ O)		Environment (Stevens, H, 2010) and nitrous oxide		
		emission factor estimated by using the same ratio of		
		CO ₂ :N ₂ O as LPG combustion from National Greenhouse		
		Accounts (NGA) Factors June 2009, (DCC, 2009)		

Table 3-64: Emission and s	speciation factors for all substances from crematoria
Table 5-04. Linission and 5	speciation factors for an substances from crematoria

3.8.3 Activity Data

Data received in returned commercial survey questionnaires performed for the 2003 air emissions inventory were used to estimate emissions from these businesses. The number of cremations performed per year at respondent businesses was scaled according to the difference in population between the years 2003 and 2008.

The number of deaths, burials and cremations performed in NSW in 2008 was obtained from the NSW Registry Births Deaths and Marriages (NSWBDM, 2009). The number of cremations that occurred within the GMR was estimated assuming that the rate of death is proportional to population (i.e. approximately 75% of NSW population are in the GMR). Based on information provided by the NSW Registry of Births Deaths & Marriages, the total number of cremations that occurred in the GMR in 2008 is estimated to be 21,788.

The number of cremations performed by the respondent businesses is estimated to be 16,049 per year based on questionnaire responses. Therefore, it is estimated that 5,739 cremations occur at non-respondent businesses at an average rate of 480 cremations (2 significant figures) per year per business.

The derived activity data for crematoria is provided in Table 3-65.

Statistic	Value
NSW - number of deaths 2008 a, b	48,020
NSW - number of burials 2008 a, b	18,066
NSW - number of cremations 2008 a, b	29,032
GMR - number of cremations 2008	21,788
Number of cremations from survey respondents	16,049
Remaining cremations from non-respondent crematoria	5,739
Number of non-respondent crematoria	12
Cremations per non-respondent facility ^c	480

Table 3-65: Activity data used to estimate emissions from crematoria

a NSWBDM (2009)

^b The difference between the total deaths and the sum of burials & cremations is due to some bodies being prepared for burial overseas/interstate and donated to universities for study.

c Expressed to two significant figures

The stack parameters have been estimated based on average stack parameters provided in returned commercial survey questionnaires from respondent businesses. The assumed stack parameters are:

- > Stack height = 8 m
- Stack diameter = 0.7 m
- \blacktriangleright Exit velocity = 15.4 m/s
- ➢ Exit temperature = 635 K

3.8.4 Temporal Variation of Emissions

Emissions are assumed to be constant during normal operating hours for crematoria businesses. Data provided in returned commercial survey questionnaires have been used to estimate temporal variation of emissions. Typical operating hours of crematoria have been assumed to be weekdays from 7 am to 5 pm and 9 am to 1 pm on Saturday. No monthly variations in emissions have been assumed to occur during the year.

3.8.5 Emission Estimates

Estimated emissions from crematoria within the GMR, Sydney, Newcastle, Wollongong and Non Urban regions are provided in Table 3-66.

Substance	Estimated Emissions (kg/year)				
Substance	Sydney	Newcastle	Wollongong	Non Urban	GMR a
1,3 BUTADIENE	0	0	0	0	0
ACETALDEHYDE	11.6	2.28	0.704	3.75	18.4
BENZENE	0	0	0	0	0
CARBON MONOXIDE	1,950	381	118	627	3,070
FORMALDEHYDE	41.9	8.19	2.53	13.5	66
ISOMERS OF XYLENE	0	0	0	0	0
LEAD & COMPOUNDS	0.000257	0.0000503	0.0000155	0.0000827	0.000405
OXIDES OF NITROGEN	4,270	835	258	1,370	6,730
PARTICULATE MATTER ≤ 10 µm	60.5	11.8	3.66	19.5	95.5

Table 3-66: Estimated emissions from crematoria

Air Emissions Inventory for the Greater Metropolitan Region of New South Wales 3. Data Sources and Results

Substance	Estimated Emissions (kg/year)				
Substance	Sydney	Newcastle	Wollongong	Non Urban	GMR a
PARTICULATE MATTER $\leq 2.5 \ \mu m$	40.3	7.89	2.44	13	63.6
PERCHLOROETHYLENE	0	0	0	0	0
POLYCYCLIC AROMATIC HYDROCARBONS	0.000000142	2.78x10-08	8.6x10-09	4.58x10-08	0.00000224
SULFUR DIOXIDE	7,510	1,470	454	2,420	11,900
TOLUENE	0	0	0	0	0
TOTAL SUSPENDED PARTICULATE	202	39.4	12.2	64.9	318
TOTAL VOLATILE ORGANIC COMPOUNDS	180	35.1	10.9	57.8	283
TRICHLOROETHYLENE	0	0	0	0	0

Totals may not appear additive due to rounding

3.8.6 Emission Projection Methodology

Projection factors for funeral directors, crematoria and cemeteries have been derived based on population projections for the GMR published by TDC (TDC, 2009).

Derived projection factors are provided in Table 3-33 and illustrated in Figure 3-9.

3.9 Printing, Publishing and Recorded Media

3.9.1 Emission Sources and Associated Releases to Air

Printing, publishing and recorded media businesses have been identified using the following sources:

- > NSW WorkCover database for hazardous materials; and
- > NSW telephone directory.

A total of 70 commercial businesses have been identified to be within the GMR.

The emission sources and associated releases to air for printing and graphical arts are outlined in Table 3-67.

Emission Source	Emissions to Air
Boiler (natural gas)	Combustion products
Dust - direct measure	PM
Fugitive emissions - VOC	VOC
Internal combustion engine (diesel, P<450kW)	Combustion products
Internal combustion engine (natural gas, 2-	
Stroke lean-burn)	Combustion products
Printing (heat set)	VOC
Printing (non-heat set)	VOC
Surface coating (adhesive)	VOC
Surface coating (paint - solvent based)	VOC
Surface coating (thinner)	VOC
Wastewater treatment	VOC, ammonia

Table 3-67: Printing and graphical arts – emission sources

The locations of printing businesses within the GMR are shown in Figure 3-25.

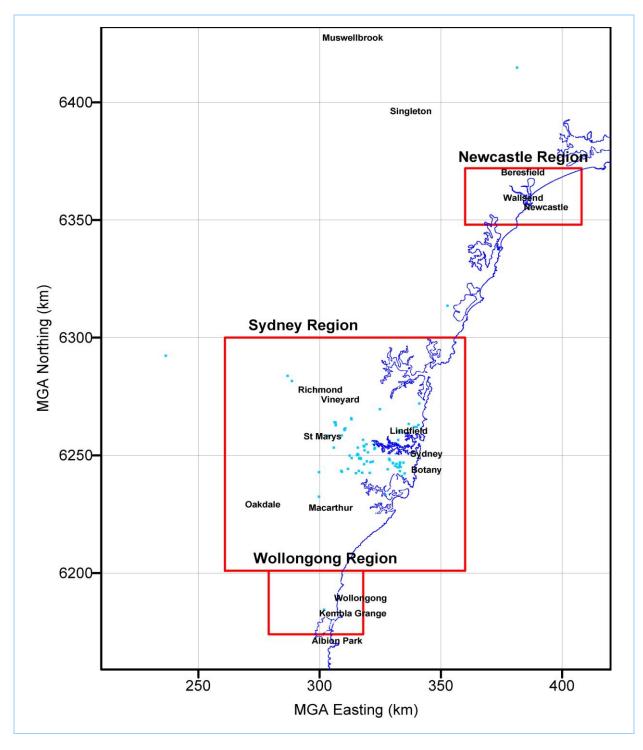


Figure 3-25: Commercial printing businesses within the GMR

3.9.2 Emission Estimation Methodology

Data sources for emission and speciation factors used to estimate emissions from printing businesses are provided in Table 3-68.

Substance	Emission Source	Emission Factor Source
CO, NO_x^1, SO_2	Boiler (natural gas)	AP42 Chapter 1.4 Natural Gas Combustion (USEPA,
&		1998b)
VOC	Fugitive emissions - VOC	Site specific emission estimates
	Internal combustion engine	AP42 Chapter 3.3 Gasoline and Diesel Industrial Engines
	(diesel, P<450kW)	(USEPA, 1996a)
	Internal combustion engine	AP42 Chapter 3.2 Natural Gas-fired Reciprocating
	(natural gas, 2-stroke lean-	Engines (USEPA, 2000)
	burn)	
	Printing (heat set)	NPI EET Manual for Aggregated Emissions from Printing
	Printing (non-heat set)	and Graphic Arts (EA, 1999b)
	Surface coating (adhesive)	VOCs from Surface Coatings Final Report (ENVIRON,
	Surface coating (paint - solvent	2009)
	based)	
	Surface coating (thinner)	
	Wastewater treatment	NGGIC Workbook for Waste (NGGIC, 1996)
PM _{2.5} , PM ₁₀ &		AP42 Chapter 1.4 Natural Gas Combustion (USEPA,
TSP	Boiler (natural gas)	1998b)
	Dust - direct measure	Site specific emission estimates
	Internal combustion engine	AP42 Chapter 3.3 Gasoline and Diesel Industrial Engines
	(diesel, P<450kW)	(USEPA, 1996a)
	Internal combustion engine	AP42 Chapter 3.2 Natural Gas-fired Reciprocating
	(natural gas, 2-stroke lean-	Engines (USEPA, 2000)
	burn)	
Speciated	Boiler (natural gas)	SPECIATEv4.2 (Profile ID=0003) (USEPA, 2008c)
organics	Fugitive emissions - VOC	SPECIATEv4.2 (Profile ID=1191) (USEPA, 2008c)
(including	Internal combustion engine	SPECIATEv4.2 (Profile ID=0008) (USEPA, 2008c)
methane)	(diesel, P<450kW)	
	Internal combustion engine	SPECIATEv4.2 (Profile ID=1001) (USEPA, 2008c)
	(natural gas, 2-stroke lean-	
	burn)	
	Printing (heat set)	SPECIATEv4.2 (Profile ID=1191) (USEPA, 2008c)
	Printing (non-heat set)	1
	Surface coating (adhesive)	SPECIATEv4.2 (Profile ID=1020) (USEPA, 2008c)
	Surface coating (paint - solvent	SPECIATEv4.2 (Profile ID=1003) (USEPA, 2008c)
	based)	
	Surface coating (thinner)	SPECIATEv4.2 (Profile ID=1016) (USEPA, 2008c)
		CEIDARS Organic Gas Speciation Profiles (Profile
		ID=1402) (assuming that unidentified portion is methane)
	Wastewater treatment	(CARB, 2005)
Speciated		AP42 Chapter 1.4 Natural Gas Combustion (USEPA,
particulate matter	Boiler (natural gas)	1998b)
	Internal combustion engine	AP42 Chapter 3.3 Gasoline and Diesel Industrial Engines
	(diesel, P<450kW)	(USEPA, 1996a)
Ammonia	Boiler (natural gas)	Estimating Ammonia Emissions from Anthropogenic
	Internal combustion engine	Non-agricultural Sources - Draft Final Report (Pechan,
	(diesel, P<450kW)	2004)
	Internal combustion engine	1
	. ÷	1

Table 3-68: Emission and speciation factors for all substances from printing, publishing and recorded media

2008 Calendar Year Commercial Emissions: Results 3. Data Sources and Results

Substance	Emission Source	Emission Factor Source
	(natural gas, 2-stroke lean-	
	burn)	
	Wastewater treatment	
Sulfuric or	NA	NA
hydrochloric acid		
РАН	Boiler (natural gas)	AP42 Chapter 1.4 Natural Gas Combustion (USEPA,
		1998b)
	Internal combustion engine	AP42 Chapter 3.3 Gasoline and Diesel Industrial Engines
	(diesel, P<450kW)	(USEPA, 1996a)
	Internal combustion engine	AP42 Chapter 3.2 Natural Gas-fired Reciprocating
	(natural gas, 2-stroke lean-	Engines (USEPA, 2000)
	burn)	
PCDD/PCDF	Boiler (natural gas)	Technical Report Number 3, Inventory of Dioxin
		Emissions in Australia, 2004 (Bawden et al, 2004)
Greenhouse gases	Boiler (natural gas)	National Greenhouse Accounts (NGA) Factors June 2009,
(CO ₂ and N ₂ O)	Internal combustion engine	(DCC, 2009)
	(diesel, P<450kW)	
	Internal combustion engine	1
	(natural gas, 2-stroke lean-	
	burn)	

3.9.3 Activity Data

Data received in returned commercial survey questionnaires performed for the 2003 air emissions inventory were used to estimate emissions from these businesses. Emissions reported to the NPI for the 2007/2008 period have also been included in the emissions inventory.

Emissions from non-respondent businesses have been included in the inventory using the following methodology:

- VOC emissions from the printing and graphical arts sector have been estimated using the emission factor presented in the NPI EET Manual for Aggregated Emissions from Printing and Graphic Arts (EA, 1999b) of 169 kg VOC per employee per year;
- A total of 21,885 full time persons are employed in NSW in the printing, publishing and recorded media sector for 2006/2007 (ABS, 2008b);
- It is assumed that 85% of employees in NSW are employed within the GMR. This proportion is slightly higher than the population ratio of 75% as it is assumed that a slighter higher proportion of printing occurs in urban centres than indicated by the population ratio. Therefore, it is estimated that 18,602 persons are employed in the GMR by the printing, publishing and recorded media industries;
- Using the employee based emission factor of 169 kg VOC per employee per year provides an estimated VOC emission of 3,143,780 kg per year for the entire printing industry. However, emissions from printing already included in the industrial emissions inventory account for 1,828,606 kg VOC per year from the printing and recorded media sector. Therefore, emissions from commercial businesses involved in printing, publishing and recorded media have been estimated to be 1,315,175 kg VOC per year;

- Emissions from respondent commercial printing businesses account for 956,357 kg per year. Therefore, emissions from non-respondent printing businesses have been estimated to account for 358,817 kg VOC per year; and
- Emissions have been spatially allocated to each business in proportion to the population in each local government area (LGA) compared with the total population in the GMR. The total emissions in each LGA have been divided by the total number of printing businesses in each LGA to estimate the site specific emissions.

Other assumptions included in the estimation of emissions from the printing industry are outlined as follows:

- All emissions from proofing presses, cleaning, ink storage and ink mixing for non-respondent businesses are assumed to be accounted for in the employee based EET;
- All VOC contained in inks are assumed to escape to the atmosphere and no emission control technologies are used by from non-respondent businesses; and
- Non-heat set inks are assumed to be used by respondent businesses that did not provide the ink type used in the returned commercial survey questionnaire. Non-heat set inks have the highest emission rate, therefore, this technique is a worst case approach to emissions estimation.

3.9.4 Temporal Variation of Emissions

VOC emissions from the use of ink and solvent emitted during the application, clean up and drying phases have been assumed to be constant throughout the operating hours of the business from 6 am to 6 pm from Monday to Saturday.

3.9.5 Emission Estimates

Estimated emissions from printing, publishing and recorded media within the GMR, Sydney, Newcastle, Wollongong and Non Urban regions are provided in Table 3-69.

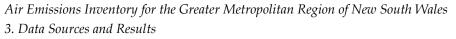
Table 5-05. Estimated emissions from printing, publishing of recorded media						
Substance	Estimated Emissions (kg/year)					
Substance	Sydney	Newcastle	Wollongong	Non Urban	GMR a	
1,3 BUTADIENE	0.42	0	0	0	0.42	
ACETALDEHYDE	0.455	0	0	0	0.455	
BENZENE	85.2	0	0	0.000208	85.2	
CARBON MONOXIDE	14,900	0	0	0.0349	14,900	
FORMALDEHYDE	42,500	0	0	175	42,700	
ISOMERS OF XYLENE	11,200	0	0	0	11,200	
LEAD & COMPOUNDS	0.0922	0	0	2.08x10-07	0.0922	
OXIDES OF NITROGEN	26,000	0	0	0.0416	26,000	
PARTICULATE MATTER ≤ 10 µm	1,460	0	0	0.00316	1,460	
PARTICULATE MATTER ≤ 2.5 μm	1,460	0	0	0.00316	1,460	
PERCHLOROETHYLENE	4,960	0	0	0	4,960	
POLYCYCLIC AROMATIC HYDROCARBONS	0.511	0	0	2.86x10-07	0.511	
SULFUR DIOXIDE	93.3	0	0	0.000217	93.3	
TOLUENE	20,200	0	0	0.000104	20,200	

Table 3-69: Estimated emissions from printing, publishing or recorded media

Substance	Estimated Emissions (kg/year)				
Substance	Sydney	Newcastle	Wollongong	Non Urban	GMR a
TOTAL SUSPENDED PARTICULATE	1,460	0	0	0.00316	1,460
TOTAL VOLATILE ORGANIC COMPOUNDS	1,300,000	0	6,190	13,000	1,320,000
TRICHLOROETHYLENE	0.0804	0	0	0	0.0804
a Totals may not appear additive due to rounding					

Totals may not appear additive due to rounding

3.9.6 **Emission Projection Methodology**


Projection factors for printing, publishing and recorded media have been derived based on final energy consumption projections for wood, paper and printing in NSW published by ABARE (ABARE, 2006).

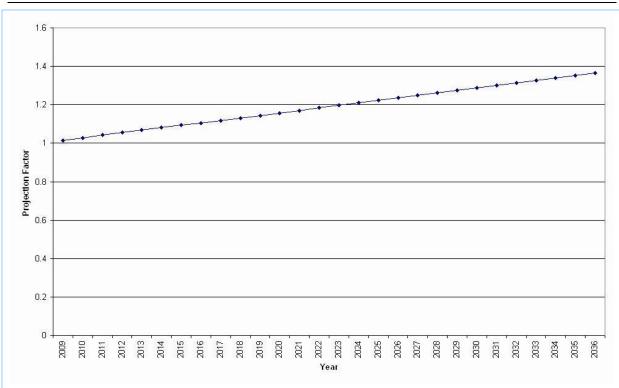

Derived projection factors are provided in Table 3-70 and illustrated in Figure 3-26.

Table 3-70: Projection factors for wood, paper and printing related sources

Year	Projection Factor	Year	Projection Factor
2009	1.0143	2023	1.1965
2010	1.0282	2024	1.2096
2011	1.0419	2025	1.2225
2012	1.0548	2026	1.2355
2013	1.0676	2027	1.2487
2014	1.0804	2028	1.2620
2015	1.0930	2029	1.2755
2016	1.1056	2030	1.2882
2017	1.1183	2031	1.3006
2018	1.1310	2032	1.3135
2019	1.1440	2033	1.3265
2020	1.1570	2034	1.3395
2021	1.1701	2035	1.3525
2022	1.1833	2036	1.3655

Source: ABARE (2006)

Figure 3-26: Projection factors for wood, paper and printing related sources

3.10 Plastic Product Rigid Fibre Manufacturing

3.10.1 Emission Sources and Associated Releases to Air

Plastic product rigid fibre reinforced manufacturing (fibreglass) businesses have been identified using the following sources:

- > NSW WorkCover database for hazardous materials; and
- > NSW telephone directory.

A total of 87 commercial businesses have been identified to be within the GMR.

The emission sources and associated releases to air for fibreglass manufacturing are summarised in Table 3-71.

Emission Source	Emissions to Air
Boiler (natural gas)	Combustion products
Fibreglass (gel coat application)	VOC
Fibreglass (manual resin application)	VOC
Fibreglass (mechanical resin application)	VOC
Fugitive emissions - VOC	VOC
Solvent usage (acetone)	VOC
Surface coating (adhesive)	VOC
Surface coating (paint - solvent based)	VOC
Surface coating (primer)	VOC

Table 3-71: Plastic product rigid fibre reinforced manufacturing – emission sources

2008 Calendar Year Commercial Emissions: Results 3. Data Sources and Results

Emission Source	Emissions to Air
Surface coating (thinner)	VOC
Wheel generated dust (paved roads)	PM
Wheel generated dust (unpaved roads)	PM

The locations of fibreglass manufacturing businesses are shown in Figure 3-27.

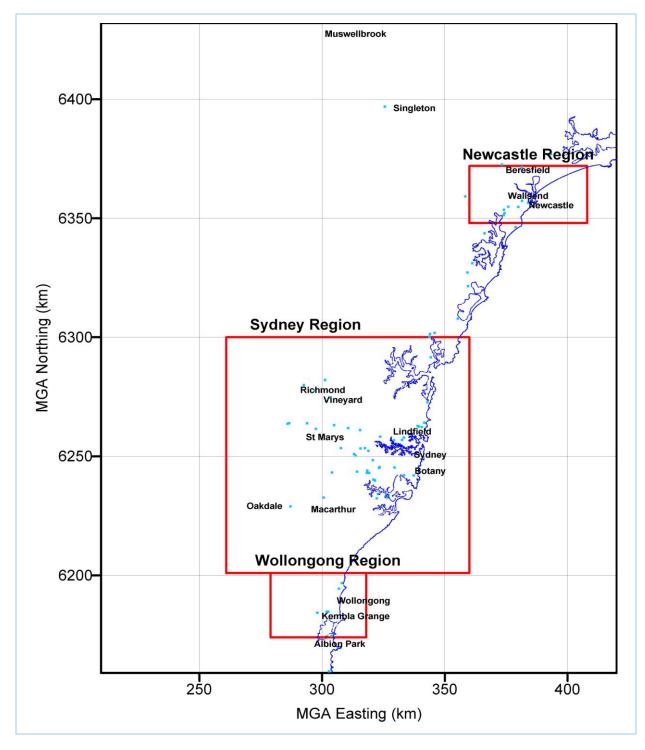


Figure 3-27: Fibreglass manufacturers within the GMR

3.10.2 Emission Estimation Methodology

Data sources for emission and speciation factors used to estimate emissions from plastic product rigid fibre manufacturing businesses are provided in Table 3-68.

manufacturing				
Substance	Emission Source	Emission Factor Source		
CO, NO _x ¹ , SO ₂	Boiler (natural gas)	AP42 Chapter 1.4 Natural Gas Combustion (USEPA,		
&		1998b)		
VOC	Fibreglass (gel coat application)	NPI EET Manual for Fibreglass Product Manufacturing		
	Fibreglass (manual resin	(EA, 1999e)		
	application)			
	Fibreglass (mechanical resin			
	application)			
	Fugitive emissions - VOC	Site specific emission estimates		
	Solvent usage (acetone)	Mass balance		
	Surface coating (adhesive)	VOCs from Surface Coatings Final Report (ENVIRON,		
	Surface coating (paint - solvent	2009)		
	based)			
	Surface coating (primer)			
	Surface coating (thinner)			
PM _{2.5} , PM ₁₀ &	Boiler (natural gas)	AP42 Chapter 1.4 Natural Gas Combustion (USEPA,		
TSP		1998b)		
	Wheel generated dust (paved	AP42 Chapter 13.2.1 Paved Roads (USEPA, 2011)		
	roads)			
	Wheel generated dust	AP42 Chapter 13.2.2 Unpaved Roads (USEPA, 2006c)		
	(unpaved roads)			
Speciated	Boiler (natural gas)	SPECIATEv4.2 (Profile ID=0003) (USEPA, 2008c)		
organics	Fibreglass (gel coat application)	CEIDARS Organic Gas Speciation Profiles (Profile		
(including	Fibreglass (manual resin	ID=9014) Rubber/Misc. Plastics Production (CARB, 2005)		
methane)	application)			
	Fibreglass (mechanical resin			
	application)			
	Fugitive emissions - VOC			
	Solvent usage (acetone)	Mass balance (100% acetone)		
	Surface coating (adhesive)	SPECIATEv4.2 (Profile ID=1020) (USEPA, 2008c)		
	Surface coating (paint - solvent	SPECIATEv4.2 (Profile ID=1003) (USEPA, 2008c)		
	based)			
	Surface coating (primer)	SPECIATEv4.2 (Profile ID=1019) (USEPA, 2008c)		
	Surface coating (thinner)	SPECIATEv4.2 (Profile ID=1016) (USEPA, 2008c)		
Speciated	Boiler (natural gas)	AP42 Chapter 1.4 Natural Gas Combustion (USEPA,		
particulate matter		1998b)		
	Wheel generated dust (paved	California Emissions Inventory and Reporting System -		
	roads)	Paved Road Dust, 1997 (CARB, 2007)		
	Wheel generated dust	California Emissions Inventory and Reporting System -		
	(unpaved roads)	Unpaved Road Dust, 1997 (CARB, 2007)		
Ammonia	Boiler (natural gas)	Estimating Ammonia Emissions from Anthropogenic		
		Non-agricultural Sources - Draft Final Report (Pechan,		
		2004)		

Table 3-72: Emission and speciation factors for all substances from plastic product rigid fibre manufacturing

2008 Calendar Year Commercial Emissions: Results 3. Data Sources and Results

Substance	Emission Source	Emission Factor Source
Sulfuric or	NA	NA
hydrochloric acid		
PAH	Boiler (natural gas)	AP42 Chapter 1.4 Natural Gas Combustion (USEPA,
		1998b)
PCDD/PCDF	Boiler (natural gas)	Technical Report Number 3, Inventory of Dioxin
		Emissions in Australia, 2004 (Bawden et al, 2004)
Greenhouse gases	Boiler (natural gas)	National Greenhouse Accounts (NGA) Factors June 2009,
(CO ₂ and N ₂ O)		(DCC, 2009)

3.10.3 Activity Data

The methodology to estimate emissions from commercial construction material mining facilities has not changed from the 2003 air emissions inventory. Emissions reported to the NPI for the 2007/2008 period have also been included in the emissions inventory. Also, emissions from wheel generated dust have been included in the commercial emissions module based on information provided in returned questionnaires.

For the 2003 air emissions inventory survey questionnaires were sent to all fibreglass businesses to collect activity data and responses were received from 8 businesses (i.e. representing a response rate of 9%). Data provided in returned commercial survey questionnaires was quite similar indicating that the emission sources and estimation data for fibreglass manufacturing businesses that did not respond to the commercial survey questionnaire would likely be similar to the businesses that provided a response. Therefore, emissions from non-respondent businesses were estimated based on data provided by a medium size fibreglass manufacturing business identified within the returned commercial survey questionnaires.

The estimated activity data for facilities that did not respond to the inventory questionnaire or report to the NPI is provided in Table 3-73.

Tuble 5 75. Abbuilled delivity data for hom respondent inbregiuss manufacturing busillesses			
Emission Source	Input data for Emissions Estimation		
Solvent usage (acetone)	220 L/year		
Fibreglass manual resin application (non-vapour suppressed)	440 kg/year		
Fibreglass gel coat application	120 kg/year		
Surface coating (adhesive)	10 L/year		

Table 3-73: Assumed activity data for non-respondent fibreglass manufacturing businesses

3.10.4 Temporal Variation of Emissions

VOC emissions from the use of ink and solvent emitted during the application, clean up and drying phases have been assumed to be constant throughout the operating hours of the business from 6 am to 6 pm from Monday to Saturday.

3.10.5 Emission Estimates

Estimated emissions from plastic product rigid fibre manufacturing within the GMR, Sydney, Newcastle, Wollongong and Non Urban regions are provided in Table 3-74.

Culture	Estimated Emissions (kg/year)				
Substance	Sydney	Newcastle	Wollongong	Non Urban	GMR a
1,3 BUTADIENE	1,330	202	63.7	319	1,920
ACETALDEHYDE	0	0	0	0	0
BENZENE	242	35.3	11.1	55.9	344
CARBON MONOXIDE	1,400	0	0	0	1,400
FORMALDEHYDE	16.6	0	0	0	16.6
ISOMERS OF XYLENE	80.9	0	93.8	0	175
LEAD & COMPOUNDS	0.0205	0	0	0.0264	0.0469
OXIDES OF NITROGEN	1,660	0	0	0	1,660
PARTICULATE MATTER $\leq 10 \ \mu m$	153	0	0	40.9	194
PARTICULATE MATTER $\leq 2.5 \ \mu m$	129	0	0	9.9	139
PERCHLOROETHYLENE	0	0	0	0	0
POLYCYCLIC AROMATIC HYDROCARBONS	0.0114	0	0	0	0.0114
SULFUR DIOXIDE	8.69	0	0	0	8.69
TOLUENE	515	3.12	34	4.78	557
TOTAL SUSPENDED PARTICULATE	220	0	0	213	433
TOTAL VOLATILE ORGANIC COMPOUNDS	20,400	5,310	13,400	4,350	43,400
TRICHLOROETHYLENE	0	0	0	0	0

Table 3-74: Estimated emissions from plastic product rigid fibre manufacturing

3.10.6 Emission Projection Methodology

Projection factors for plastic product rigid fibre manufacturing have been derived based on final energy consumption projections for other (manufacturing) industry in NSW published by ABARE (ABARE, 2006).

Derived projection factors are provided in Table 3-75 and illustrated in Figure 3-28.

Year	Projection Factor	Year	Projection Factor
2009	1.0054	2023	1.0921
2010	1.0111	2024	1.0981
2011	1.0177	2025	1.1038
2012	1.0242	2026	1.1096
2013	1.0306	2027	1.1153
2014	1.0370	2028	1.1212
2015	1.0433	2029	1.1270
2016	1.0495	2030	1.1336
2017	1.0556	2031	1.1403
2018	1.0617	2032	1.1464
2019	1.0679	2033	1.1525
2020	1.0740	2034	1.1586
2021	1.0801	2035	1.1647
2022	1.0861	2036	1.1707

Table 2.75: Projection factors for other (manufacturing) industry related sources

Source: ABARE (2006)

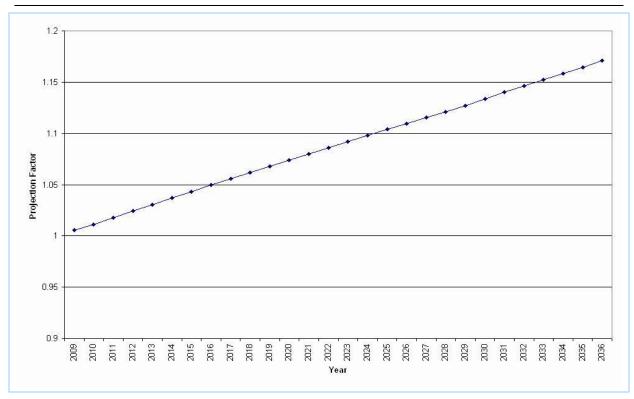


Figure 3-28: Projection factors for other (manufacturing) industry related sources

3.11 Concrete Product Manufacturing

3.11.1 Emission Sources and Associated Releases to Air

Concrete product manufacturing businesses have been identified using the following sources:

- > NSW WorkCover database for hazardous materials; and
- NSW telephone directory.

A total of 58 commercial businesses have been identified to be within the GMR.

The emission sources and associated releases to air for concrete manufacturing businesses are outlined in Table 3-76.

Emission Source	Emissions to Air
Aggregate transfer to conveyor	PM
Aggregate transfer to ground	PM
Cement unloading	PM
Conveyor transfer of aggregate to elevated	
storage	PM
Conveyor transfer of sand to elevated storage	PM
Flyash transfer (cement supplement)	PM
Fuel storage (diesel)	VOC
Mixer loading (central mix)	PM
Sand transfer to conveyor	PM
Sand transfer to ground	PM
Wheel generated dust (paved roads)	PM

Table 3-76: Concrete batching – emission sources

The locations of commercial concrete product manufacturing businesses are shown in Figure 3-29.

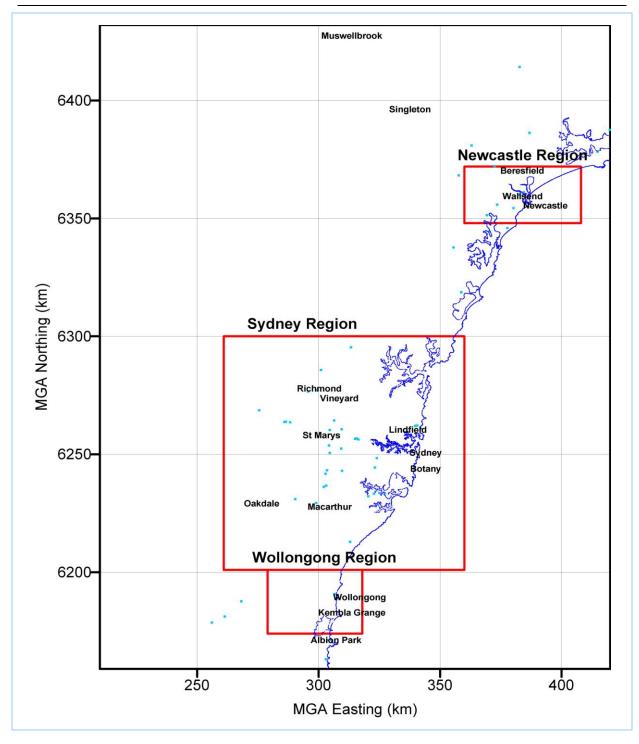


Figure 3-29: Commercial concrete product manufacturing businesses within the GMR

3.11.2 Emission Estimation Methodology

Data sources for emission and speciation factors used to estimate emissions from concrete product manufacturing businesses are provided in Table 3-77.

Substance	Emission Source	Emission Factor Source
CO, NO _x ¹ , SO ₂	Fuel storage (diesel)	TANKS 4.09D software (USEPA, 2006d)
&		
VOC		
PM _{2.5} , PM ₁₀ &	Aggregate transfer to conveyor	AP-42, Chapter 11.12 Concrete Batching (USEPA, 2006b)
TSP	Aggregate transfer to ground	
	Cement unloading	
	Conveyor transfer of aggregate	
	to elevated storage	
	Conveyor transfer of sand to	
	elevated storage	
	Flyash transfer (cement	
	supplement)	
	Mixer loading (central mix)	
	Sand transfer to conveyor	
	Sand transfer to ground	
	Wheel generated dust (paved	AP42 Chapter 13.2.1 Paved Roads (USEPA, 2011)
	roads)	
Speciated	Fuel storage (diesel)	Average diesel vapour concentration from diesel
organics		produced at BP refineries around Australia (BP, 2001a)
(including		
methane)		
Speciated	Cement unloading	AP-42, Chapter 11.12 Concrete Batching (USEPA, 2006b)
particulate matter	Mixer loading (central mix)	
	Wheel generated dust (paved	California Emissions Inventory and Reporting System -
	roads)	Paved Road Dust, 1997 (CARB, 2007)
Ammonia	NA	NA
Sulfuric or	NA	NA
hydrochloric acid		
РАН	NA	NA
PCDD/PCDF	NA	NA
Greenhouse gases	NA	NA
(CO ₂ and N_2O)		

Table 2 77 Emission and a	aciation factors for all substances	from concrete product manufacturing
Table 5-77. Emission and S	ectation factors for all substances	fioni concrete product manufacturing

3.11.3 Activity Data

The total concrete produced in the NSW GMR, obtained from ABS is 5,134,100 m³ for 2008 (ABS, 2009). This was derived as the sum of the amounts produced by major regions in the GMR as presented in Table 3-78.

Tuble o vor timoune of concrete produced in the online by importegions				
Region in the GMR	Amount of Concrete Produced (m³/year)	Amount of Concrete Produced ^a (tonne/year)		
Sydney	3,753	9,006,720		
Gosford/Wyong	211	506,880		
Hunter	699	1,677,360		
Illawarra	471	1,130,640		
Total	5,134	12,321,600		

Table 3-78: Amount of concrete produced in the GMR by major regions	Table 3-78:	Amount of c	oncrete pr	oduced in	the GMR b	v major regions
---	-------------	-------------	------------	-----------	-----------	-----------------

a Density of concrete was assumed to be 2.4 tonne/ m^3

Industrial survey questionnaire responses indicate that 11,833,654 tonne of concrete are produced in the NSW GMR by industrial businesses. Therefore, the estimated concrete production rate from commercial facilities is 487,946 tonne per year which equates to 4% of all concrete produced in the GMR.

One concrete product manufacturing business that was included in the 2003 industrial air emissions inventory has been de-scheduled. Therefore, the facility is included in the 2008 commercial air emissions inventory. Production data collected for this business in the 2003 inventory survey indicates that this business produces approximately 168,000 tonne of concrete per year. Therefore, the remaining concrete production not accounted for by the remaining 57 commercial concrete product manufacturing facilities is 319,946 tonne per year. Therefore, it was estimated that each business produced 5,613 tonne of concrete in 2008 (equivalent to 2,339 m³ of concrete).

The amount of other raw materials used, required for emission estimation calculations, have been estimated based on proportions of raw materials used that have been provided in completed industrial survey questionnaires. The proportions of raw materials used to estimate activity data are provided in Table 3-79.

Material Type	Proportion Usage Factor (tonne raw material/m ³ concrete produced)	Estimated Commercial Business Usage (tonne/year)
Cement	0.24	561
Fly ash	0.75	1,754
Aggregate	1	2,339
Sand	0.78	1,824

Table 3-79: Proportions of raw materials for non-respondent businesses

It was further assumed that the businesses are equipped with standard emissions controls. The emission sources and control methods and efficiencies assumed for concrete product manufacturing are presented in Table 3-80.

Table 3-80: Emission sources and estimation data used for non-respondent concrete product manufacturing businesses

Emission Source	Control Technologies Utilised	Particulate Control Efficiency
Cement unloading to elevated storage	Baghouse	98%
Conveyor transfer to elevated storage (aggregate)	Wind breaks equipped on conveyors	30%
Conveyor transfer to elevated storage (sand)	Wind breaks equipped on conveyor	30%
Fly ash transfer to elevated storage	Baghouse	98%

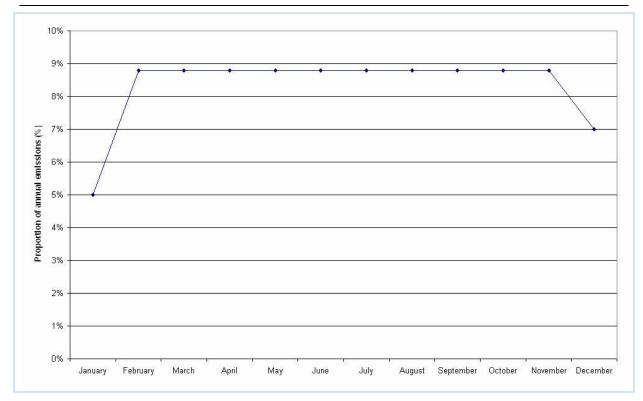
Air Emissions Inventory for the Greater Metropolitan Region of New South Wales 3. *Data Sources and Results*

Emission Source	Control Technologies Utilised	Particulate Control Efficiency
Mixer loading (central mix)	Enclosed bins	90%
Transfer from bins to conveyor (aggregate)	Enclosed bins	90%
Transfer from bins to conveyor (sand)	Enclosed bins	90%
Transfer to weigh bins (aggregate)	Enclosed bins	90%
Transfer to weigh bins (sand)	Enclosed bins	90%
Truck delivery to ground storage (aggregate)	No control	0%
Truck delivery to ground storage (sand)	No control	0%
Wind erosion (stockpiles) ^{a,b,c}	Stockpiles enclosed on three sides	75%

a Silt content was assumed to be 10%

b Number of rainfall days was assumed to be 138 days provided by the Bureau of Meteorology for Sydney

c Frequency of wind speed that exceeds 5.4 m/s was approximately 30%


It should be noted that estimated emissions from concrete slurry manufacturing takes account of all emissions emitted from concrete pipe and box culvert manufacturing.

3.11.4 Temporal Variation of Emissions

Since most commercial concrete batching businesses are small concrete batching plants, it was assumed that they operate only on weekdays for 9 hours a day. Emissions have been assumed to be constant between 9 am to 6 pm with monthly variation of emissions provided in Table 3-81 and Figure 3-30.

5 I	1 8			
Monthly	Proportion			
January	5.0			
February	8.8			
March	8.8			
April	8.8			
May	8.8			
June	8.8			
July	8.8			
August	8.8			
September	8.8			
October	8.8			
November	8.8			
December	7.0			

Table 3-81: Monthly temporal variation of emission for concrete product manufacturing

Figure 3-30: Monthly temporal variation for concrete product manufacturing

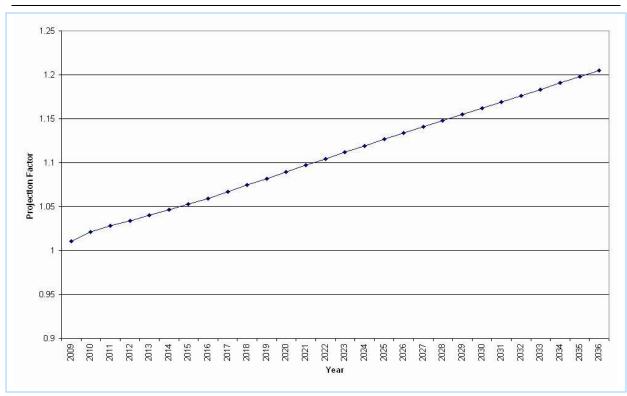
3.11.5 Emission Estimates

Estimated emissions from concrete product manufacturing within the GMR, Sydney, Newcastle, Wollongong and Non Urban regions are provided in Table 3-82.

Fable 3-02. Estimated emissions from concrete product manufacturing					
Substance	Estimated Emissions (kg/year)				
	Sydney	Newcastle	Wollongong	Non Urban	GMR a
1,3 BUTADIENE	0	0	0	0	0
ACETALDEHYDE	0	0	0	0	0
BENZENE	0	0	0	0	0
CARBON MONOXIDE	0	0	0	0	0
FORMALDEHYDE	0	0	0	0	0
ISOMERS OF XYLENE	0.00528	0	0	0	0.00528
LEAD & COMPOUNDS	0.609	0.112	0.00937	0.159	0.89
OXIDES OF NITROGEN	0	0	0	0	0
PARTICULATE MATTER $\leq 10 \ \mu m$	4,520	1,030	84	1,430	7,060
PARTICULATE MATTER $\leq 2.5 \ \mu m$	716	161	13.4	228	1,120
PERCHLOROETHYLENE	0	0	0	0	0
POLYCYCLIC AROMATIC HYDROCARBONS	0	0	0	0	0
SULFUR DIOXIDE	0	0	0	0	0
TOLUENE	0.00162	0	0	0	0.00162
TOTAL SUSPENDED PARTICULATE	13,200	2,810	236	4,010	20,200
TOTAL VOLATILE ORGANIC COMPOUNDS	0.0585	0	0	0	0.0585
TRICHLOROETHYLENE	0	0	0	0	0
a Totals may not appear additive due to rounding					

Table 3-82: Estimated emissions from concrete product manufacturing

3.11.6 Emission Projection Methodology


Projection factors for concrete product manufacturing have been derived based on final energy consumption projections for non-metallic minerals in NSW published by ABARE (ABARE, 2006).

Derived projection factors are provided in Table 3-83 and illustrated in Figure 3-31.

Table 5-85: Projection factors for non-metallic minerals related sources				
Year	Projection Factor	Year	Projection Factor	
2009	1.0108	2023	1.1119	
2010	1.0210	2024	1.1193	
2011	1.0282	2025	1.1265	
2012	1.0337	2026	1.1335	
2013	1.0400	2027	1.1407	
2014	1.0464	2028	1.1479	
2015	1.0527	2029	1.1552	
2016	1.0595	2030	1.1622	
2017	1.0670	2031	1.1691	
2018	1.0745	2032	1.1762	
2019	1.0819	2033	1.1834	
2020	1.0895	2034	1.1906	
2021	1.0970	2035	1.1978	
2022	1.1045	2036	1.2050	

Table 3-83: Projection factors for non-metallic minerals related sources

Source: ABARE (2006)

Figure 3-31: Projection factors for non-metallic minerals related sources

3.12 Basic Iron and Steel Manufacturing

3.12.1 Emission Sources and Associated Releases to Air

Basic iron and steel manufacturing businesses have been identified using the NSW WorkCover database for hazardous materials and the telephone directory for NSW. A total of eleven commercial basic iron and steel manufacturing businesses have been identified from these sources to be within the GMR.

Commercial businesses within the GMR that are included in the emissions inventory under this category are outlined in Table 3-84.

Business	Business	Business	Business	Business
Dusiness	ID	Street	Suburb	Post Code
BISALLOY STEELS PTY LTD	3571	LOT 14 RESOLUTION DR	UNANDERRA	2526
FLAME-CUT P/L	3572	68 ELIZABETH ST	WETHERILL PARK	2164
SERVICE POWDER COATING P/L	3575	30 HARLEY CR	CONDELL PARK	2200
QUALITY CASTINGS P/L	3576	42 VIOLET ST	REVESBY	2212
ONESTEEL OIL & GAS KEMBLA GRANGE	3580	WEST DAPTO ROAD	KEMBLA GRANGE	2530
ONESTEEL REINFORCING VILLAWOOD	3581	33 SHADDOCK AVENUE	VILLAWOOD	2163
JOHN HEINE & SON PTY LTD	7016	273 EDGAR STREET	BANKSTOWN	2200

Table 3-84: Commercial businesses included in the emissions inventory

The emission sources and associated releases to air from basic iron and steel manufacturing are outlined in Table 3-85.

Emission Source	Emissions to Air
Boiler (natural gas)	Combustion products
Casting (hot metal transfer)	PM
Direct entry - PM measurement	РМ
Fuel storage (diesel)	VOC
Iron making (blast furnace)	PM
Iron production (furnace, electric induction	
furnace)	PM, PCDD/F
Iron production (pouring and cooling)	PM
Iron production (sand handling)	PM
Iron production (scrap and charge handling)	PM
Metal cutting (mild steel, 8 mm)	NO _x , magnesium oxide fume
Steel production (furnace, electric induction)	PM, PCDD/F
Steel production (sand handling)	PM
Surface coating (enamel)	VOC
Surface coating (lacquer)	VOC
Surface coating (paint - solvent based)	VOC
Surface coating (thinner)	VOC
Welding	PM
Wheel generated dust (paved roads)	PM

Table 3-85: Basic iron and steel manufacturing – emission sources

The locations of commercial basic iron and steel manufacturing businesses are shown in Figure 3-32.

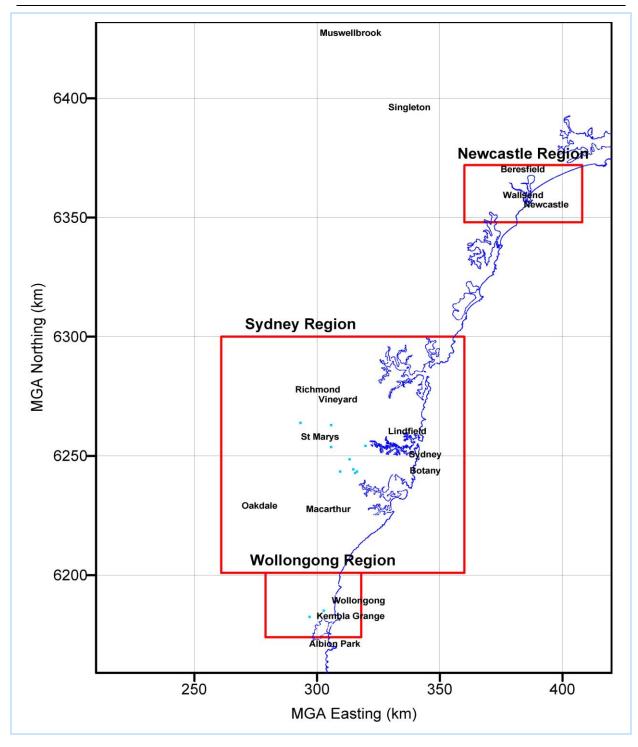


Figure 3-32: Basic iron and steel manufacturers within the GMR

3.12.2 Emission Estimation Methodology

Data sources for emission and speciation factors used to estimate emissions from basic iron and steel manufacturing businesses are provided in Table 3-86.

Substance	Emission Source	Emission Factor Source
CO, NO _x ¹ , SO ₂	Boiler (natural gas)	AP42 Chapter 1.4 Natural Gas Combustion (USEPA,
&		1998b)
VOC	Fuel storage (diesel)	TANKS 4.09D software (USEPA, 2006d)
	Metal cutting (mild steel, 8	NPI EET Manual for Structural and Fabricated Metal
	mm)	Product Manufacture (EA, 1999i)
	Surface coating (enamel)	VOCs from Surface Coatings Final Report (ENVIRON,
	Surface coating (lacquer)	2009)
	Surface coating (paint - solvent	
	based)	
	Surface coating (thinner)	
PM _{2.5} , PM ₁₀ &	Boiler (natural gas)	AP42 Chapter 1.4 Natural Gas Combustion (USEPA,
TSP		1998b)
	Casting (hot metal transfer)	NPI EET Manual for Iron and Steel Production (EA,
		1999g) & CEIDARS Profile 90010 EPA AVG Grey Iron
		Foundries (CARB, 2005)
	Direct entry - PM measurement	Site specific emission estimate
	Iron making (blast furnace)	NPI EET Manual for Iron and Steel Production (EA,
		1999g) & CEIDARS Profile 90010 EPA AVG Grey Iron
		Foundries (CARB, 2005)
	Iron production (furnace,	AP42 Chapter 12.10 Gray Iron Foundries (USEPA, 2003)
	electric induction furnace)	
	Iron production (pouring and	-
	cooling)	
	Iron production (sand	-
	handling)	
	Iron production (scrap and	-
	charge handling)	
	Steel production (furnace,	AP42 Chapter 12.13 Steel Foundries (USEPA, 1995d)
	electric induction)	
	Steel production (sand	-
	Handling)	
	Welding	NPI EET Manual for Fugitive Emissions (assuming
	0	manual metal arc welding and electrode type 14Mn-4Cr)
		(EA, 1999f)
	Wheel generated dust (paved	AP42 Chapter 13.2.1 Paved Roads (USEPA, 2011)
	roads)	
Speciated	Boiler (natural gas)	SPECIATEv4.2 (Profile ID=0003) (USEPA, 2008c)
organics	Fuel storage (diesel)	Average diesel vapour concentration from diesel
(including		produced at BP refineries around Australia (BP, 2001a)
methane)	Surface coating (enamel)	SPECIATEv4.2 (Profile ID=1018) (USEPA, 2008c)
	Surface coating (lacquer)	SPECIATEv4.2 (Profile ID=1017) (USEPA, 2008c)
	Surface coating (paint - solvent	SPECIATEv4.2 (Profile ID=1003) (USEPA, 2008c)
	based)	
	Surface coating (thinner)	SPECIATEv4.2 (Profile ID=1016) (USEPA, 2008c)
		· · · · · · · · · · · · · · · · · · ·
Speciated	Boiler (natural gas)	SPECIATEv4.2 (Profile ID=0003) (USEPA. 2008c)
Speciated particulate matter	Boiler (natural gas) Direct entry - PM measurement	SPECIATEv4.2 (Profile ID=0003) (USEPA, 2008c) Site specific emission estimate
Speciated particulate matter	Boiler (natural gas) Direct entry - PM measurement Iron production (furnace,	SPECIATEv4.2 (Profile ID=0003) (USEPA, 2008c) Site specific emission estimate AP42 Chapter 12.10 Gray Iron Foundries (USEPA, 2003b)

Table 3-86: Emission and speciation factors for all substances from basic iron and steelmanufacturing

Substance	Emission Source	Emission Factor Source
	Welding	NPI EET Manual for Fugitive Emissions (assuming
		manual metal arc welding and electrode type 14Mn-4Cr)
		(EA, 1999f)
	Wheel generated dust (paved	California Emissions Inventory and Reporting System -
	roads)	Paved Road Dust, 1997 (CARB, 2007)
Ammonia	Boiler (natural gas)	Estimating Ammonia Emissions from Anthropogenic
		Non-agricultural Sources - Draft Final Report (Pechan,
		2004)
Sulfuric or	NA	NA
hydrochloric acid		
РАН	Boiler (natural gas)	AP42 Chapter 1.4 Natural Gas Combustion (USEPA,
		1998b)
PCDD/PCDF	Boiler (natural gas)	Technical Report Number 3, Inventory of Dioxin
	Iron production (furnace,	Emissions in Australia, 2004 (Bawden et al, 2004)
	electric induction furnace)	
	Steel production (furnace,	
	electric induction)	
Greenhouse gases	Boiler (natural gas)	National Greenhouse Accounts (NGA) Factors June 2009,
(CO ₂ and N ₂ O)		(DCC, 2009)

3.12.3 Activity Data

Site specific data supplied in the returned commercial survey questionnaires for the 2003 air emissions inventory have been used to estimate emissions for the 2008 calendar year. One non-respondent business that reported emissions to the NPI but did not respond to the commercial survey has also been included in the emissions inventory.

The number of respondent and non-respondent businesses in the GMR is provided in Table 3-87.

	Number	Number	Number
ANTRIC Class	of	of	of
ANZSIC Class	Businesses	Businesses	Non-Respondent
	Identified	Responded	NPI Businesses
Basic Iron and Steel Manufacturing	11	6	1

Table 3-87: Number of basic iron and steel manufacturing businesses in the GMR

3.12.4 Temporal Variation of Emissions

Data provided in returned commercial survey questionnaires have been used to estimate temporal variation of emissions. Monthly variations have been accounted for if data have been provided. It has been assumed that emissions remain constant throughout the operating hours of the business. Businesses with emissions estimated using reported NPI emissions have been assumed to operate 24 hours a day.

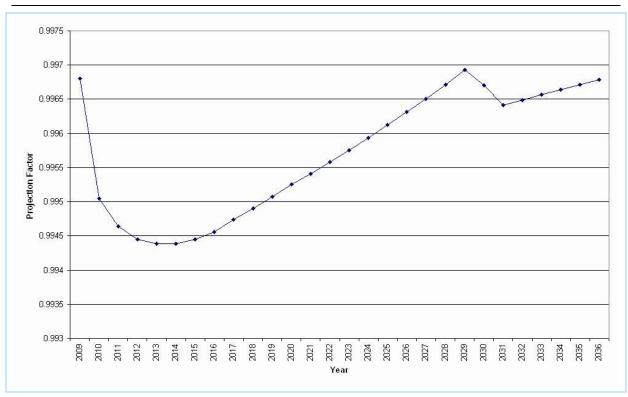
3.12.5 Emission Estimates

Estimated emissions from basic iron and steel manufacturing within the GMR, Sydney, Newcastle, Wollongong and Non Urban regions are provided in Table 3-88.

Substance	Sydney 0 0	Newcastle 0	Wollongong 0	Non Urban	GMR a
	, , , , , , , , , , , , , , , , , , ,	0	0	0	
ACETALDEHYDE	0			0	0
		0	0	0	0
BENZENE	5.07	0	27.2	0	32.3
CARBON MONOXIDE	853	0	4,570	0	5,420
FORMALDEHYDE	10.1	0	54.4	0	64.5
ISOMERS OF XYLENE	414	0	2.89	0	417
LEAD & COMPOUNDS	31.7	0	0.0272	0	31.7
OXIDES OF NITROGEN	3,160	0	5,440	0	8,600
PARTICULATE MATTER ≤ 10 µm	9,450	0	457	0	9,910
PARTICULATE MATTER \leq 2.5 μ m	7,860	0	457	0	8,320
PERCHLOROETHYLENE	0	0	0	0	0
POLYCYCLIC AROMATIC HYDROCARBONS	0.00698	0	0.0374	0	0.0444
SULFUR DIOXIDE	5.3	0	28.4	0	33.7
TOLUENE	2,050	0	27	0	2,080
TOTAL SUSPENDED PARTICULATE	14,400	0	457	0	14,900
TOTAL VOLATILE ORGANIC COMPOUNDS	12,000	0	334	0	12,300
TRICHLOROETHYLENE	0	0	0	0	0

Table 3-88: Estimated emissions from basic iron and steel manufacturing

3.12.6 Emission Projection Methodology


Projection factors for basic iron and steel manufacturing have been derived based on primary energy consumption projections for iron and steel in NSW published by ABARE (ABARE, 2006).

Derived projection factors are provided in Table 3-89 and illustrated in Figure 3-33.

Table 3-89: Projection factors for from and steel (primary energy) related sources					
Year	Projection Factor	Year	Projection Factor		
2009	0.9968	2023	0.9958		
2010	0.9950	2024	0.9959		
2011	0.9946	2025	0.9961		
2012	0.9944	2026	0.9963		
2013	0.9944	2027	0.9965		
2014	0.9944	2028	0.9967		
2015	0.9944	2029	0.9969		
2016	0.9946	2030	0.9967		
2017	0.9947	2031	0.9964		
2018	0.9949	2032	0.9965		
2019	0.9951	2033	0.9966		
2020	0.9953	2034	0.9966		
2021	0.9954	2035	0.9967		
2022	0.9956	2036	0.9968		

Table 3-89: Projection factors for iron and steel (primary energy) related sources

Source: ABARE (2006)

Figure 3-33: Projection factors for iron and steel (primary energy) related sources

3.13 Bread Manufacturing

3.13.1 Emission Sources and Associated Releases to Air

Bread manufacturing businesses have been identified using the NSW WorkCover database for hazardous materials and the telephone directory for NSW. A total of eight commercial bread manufacturing businesses have been identified from these sources to be within the GMR.

Commercial businesses within the GMR that are included in the emissions inventory under this category are outlined in Table 3-90.

Business	Business ID	Business Street	Business Suburb	Business Post Code
TIP TOP BAKERIES NEWCASTLE	2720	31 OAKDALE RD	GATESHEAD	2290
FRESH START BAKERIES LIVERPOOL	2722	GATE 2, HOMEPRIDE	LIVERPOOL	2170
		AVENUE		
QUALITY BAKERS AUSTRALIA	2723	MOOREBANK	MOOREBANK	2170
MOOREBANK PLANT		AVENUE		
TIP TOP BAKERIES CHULLORA	7137	9 MUIR ROAD	CHULLORA	2109
TIP TOP BAKERIES FAIRFIELD	7138	311 THE HORSLEY	FAIRFIELD	2165
		DRIVE		

Table 3-90: Commercial businesses included in the emissions inventory

The emission sources and associated releases to air for bread manufacturing are outlined in Table 3-91.

Table 5-51. blead manufacturing - emission sources				
Emission Source	Emissions to Air			
Baking (fermentation)	VOC			
Boiler (natural gas)	Combustion products			
Direct entry - PM measurement	PM			
Fuel storage (diesel)	VOC			
Fuel storage (petrol)	VOC			
Fugitive emissions - VOC	VOC			
Wastewater treatment	VOC, ammonia			
Wheel generated dust (paved roads)	PM			

Table 3-91: Bread manufacturing – emission sources

The locations of commercial bread manufacturing businesses are shown in Figure 3-34.

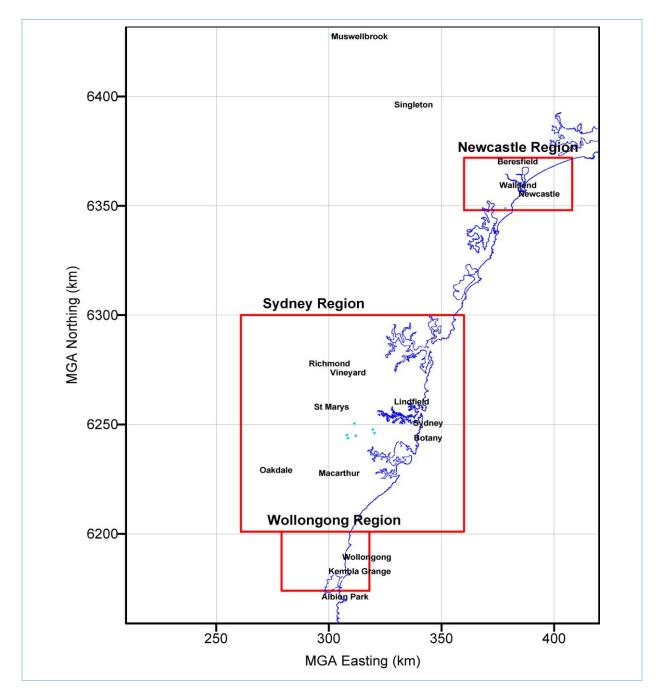


Figure 3-34: Locations of bread manufacturers within the GMR

3.13.2 Emission Estimation Methodology

Data sources for emission and speciation factors used to estimate emissions from basic iron and steel manufacturing businesses are provided in Table 3-92.

manufacturing					
Substance	Emission Source	Emission Factor Source			
CO, NO _x ¹ , SO ₂	Baking (fermentation)	NPI EET Manual for Bread Manufacturing v1.1 (EA,			
&		2003a)			
VOC	Boiler (natural gas)	AP42 Chapter 1.4 Natural Gas Combustion (USEPA,			
		1998b)			
	Fuel storage (diesel)	TANKS 4.09D software (USEPA, 2006d)			
	Fuel storage (petrol)				
	Fugitive emissions - VOC	Site specific emission estimate			
	Wastewater treatment	NGGIC Workbook for Waste (NGGIC, 1996)			
PM _{2.5} , PM ₁₀ &	Boiler (natural gas)	AP42 Chapter 1.4 Natural Gas Combustion (USEPA,			
TSP		1998b)			
	Direct entry - PM measurement	Site specific emission estimate			
	Wheel generated dust (paved	AP42 Chapter 13.2.1 Paved Roads (USEPA, 2011)			
	roads)				
Speciated	Baking (fermentation)	SPECIATEv4.2 (Profile ID=1188) (USEPA, 2008c)			
organics	Boiler (natural gas)	SPECIATEv4.2 (Profile ID=0003) (USEPA, 2008c)			
(including	Fuel storage (diesel)	Average diesel vapour concentration from diesel			
methane)		produced at BP refineries around Australia (BP, 2001b)			
	Fuel storage (petrol)	Average petrol concentration from petrol produced at BP			
		refineries around Australia (BP, 2001a)			
	Fugitive emissions - VOC	SPECIATEv4.2 (Profile ID=1188) (USEPA, 2008c)			
	Wastewater treatment	CEIDARS Organic Gas Speciation Profiles (Profile			
		ID=1402) (assuming that unidentified portion is methane)			
		(CARB, 2005)			
Speciated	Boiler (natural gas)	SPECIATEv4.2 (Profile ID=0003) (USEPA, 2008c)			
particulate matter	Wheel generated dust (paved	California Emissions Inventory and Reporting System -			
	roads)	Paved Road Dust, 1997 (CARB, 2007)			
Ammonia	Boiler (natural gas)	Estimating Ammonia Emissions from Anthropogenic			
	Wastewater treatment	Non-agricultural Sources - Draft Final Report (Pechan,			
		2004)			
Sulfuric or	NA	NA			
hydrochloric acid					
PAH	Boiler (natural gas)	AP42 Chapter 1.4 Natural Gas Combustion (USEPA, 1998)			
PCDD/PCDF	Boiler (natural gas)	Technical Report Number 3, Inventory of Dioxin			
		Emissions in Australia, 2004 (Bawden et al, 2004)			
Greenhouse gases	Boiler (natural gas)	National Greenhouse Accounts (NGA) Factors June 2009,			
$(CO_2 and N_2O)$		(DCC, 2009)			

Table 3-92: Emission and speciation factors for all substances from basic iron and steel manufacturing

3.13.3 Activity Data

Site specific data supplied from one respondent business are available in the returned commercial survey questionnaires for the 2003 air emissions inventory. This data has been used to estimate emissions from this business for the 2008 calendar year. Four non-respondent businesses reported

emissions to the NPI and have also been included in the emissions inventory. The number of bread manufacturing businesses is provided in Table 3-93.

Table 5-55. Number of bread manufacturing businesses in the Givik					
	Number	Number	Number		
ANZSIC Class	of	of	of		
ANZSIC Class	Businesses	Businesses	Non-Respondent		
	Identified	Responded	NPI Businesses		
Bread Manufacturing	8	1	4		

Table 3-93: Number of bread manufacturing businesses in the GMR

No emission estimates have been performed for non-respondent businesses that do not report to the NPI as there are no relevant sources of estimation data available in the public arena.

3.13.4 Temporal Variation of Emissions

Data provided in returned commercial survey questionnaires have been used to estimate temporal variation of emissions for respondent businesses. Process emissions have been assumed to vary in direct proportion to the change in production rates over a typical year which was supplied in the returned commercial survey questionnaire. Businesses with emissions estimated using reported NPI emissions have been assumed to operate 24 hours a day.

3.13.5 Emission Estimates

Estimated emissions from bread manufacturing within the GMR, Sydney, Newcastle, Wollongong and Non Urban regions are provided in Table 3-94.

Table 5-54. Estimated emissions from bread manufacturing					
Substance	Estimated Emissions (kg/year)				
Substance	Sydney	Newcastle	Wollongong	Non Urban	GMR a
1,3 BUTADIENE	0	0	0	0	0
ACETALDEHYDE	0	0	0	0	0
BENZENE	69	10.4	0	0	79.4
CARBON MONOXIDE	11,600	1,680	0	0	13,300
FORMALDEHYDE	138	20	0	0	158
ISOMERS OF XYLENE	0	0.472	0	0	0.472
LEAD & COMPOUNDS	0.069	0.122	0	0	0.191
OXIDES OF NITROGEN	13,800	2,000	0	0	15,800
PARTICULATE MATTER ≤ 10 µm	1,050	477	0	0	1530
PARTICULATE MATTER ≤ 2.5 μm	1,050	346	0	0	1390
PERCHLOROETHYLENE	0	0.0197	0	0	0.0197
POLYCYCLIC AROMATIC HYDROCARBONS	0.0949	0.0138	0	0	0.109
SULFUR DIOXIDE	72.1	10.5	0	0	82.6
TOLUENE	34.5	6.12	0	0	40.6
TOTAL SUSPENDED PARTICULATE	1,050	1,200	0	0	2,250
TOTAL VOLATILE ORGANIC COMPOUNDS	132,000	10,300	0	0	143,000
TRICHLOROETHYLENE	0	0.00282	0	0	0.00282
a Tatala may not annoar additive due to rounding			-		

Table 3-94: Estimated emissions from bread manufacturing

a Totals may not appear additive due to rounding

3.13.6 Emission Projection Methodology

Projection factors for bread manufacturing have been derived based on final energy consumption projections for other (manufacturing) industry in NSW published by ABARE (ABARE, 2006).

Derived projection factors are provided in Table 3-75 and illustrated in Figure 3-28.

3.14 Ceramic Product Manufacturing

CAROMA INDUSTRIES WETHERILL

PARK

3.14.1 Emission Sources and Associated Releases to Air

Ceramic product manufacturing businesses have been identified using the NSW WorkCover database for hazardous materials and the telephone directory for NSW. A total of five commercial ceramic product manufacturing businesses have been identified from these sources to be within the GMR.

Commercial businesses within the GMR that are included in the emissions inventory under this category are outlined in Table 3-95.

Table 5-55. Commercial businesses included in the emissions inventory						
Business	Business ID	Business Street	Business Suburb	Busines Post Coo		
SHINAGAWA THERMAL CERAMICS BERKELEY ROAD	3402	231-235 BERKELEY ROAD	UNANDERRA	2526		
SHINAGAWA THERMAL CERAMICS GLASTONBURY AVENUE	3403	23 GLASTONBURY AVENUE	UNANDERRA	2526		

7132

Table 3-95: Commercial businesses included in the emissions inventory

The emission sources and associated releases to air for ceramic product manufacturing (excluding glass) processes are outlined in Table 3-96.

26-32 WALTER STREET

WETHERILL

PARK

2164

Emission Source	Emissions to Air
Ceramic - Firing-natural gas fired kiln	Combustion products
Direct entry - PM measurement	PM
Direct entry - VOC measurement	VOC

The locations of commercial ceramic product manufacturing businesses are shown in Figure 3-35.

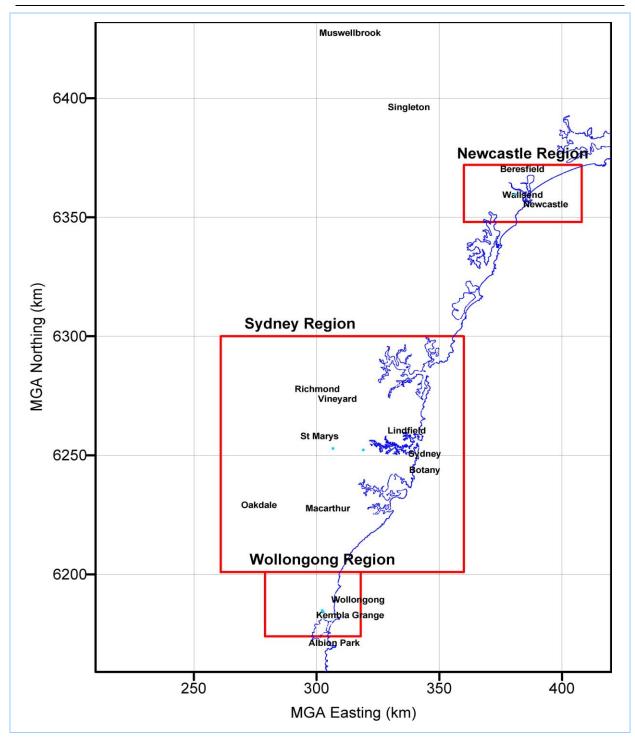


Figure 3-35: Ceramic product manufacturers within the GMR

3.14.2 Emission Estimation Methodology

Data sources for emission and speciation factors used to estimate emissions from ceramic product manufacturing businesses are provided in Table 3-97.

Substance	Emission Source	Emission Factor Source
CO, NO _x ¹ , SO ₂	Ceramic - firing-natural gas	AP42 Chapter 11.7 Ceramic Product Manufacturing
&	fired kiln	(USEPA, 1996b)
VOC	Direct entry - VOC	Site specific emission estimates
	measurement	
PM _{2.5} , PM ₁₀ &	Ceramic - firing-natural gas	AP42 Chapter 11.7 Ceramic Product Manufacturing
TSP	fired kiln	(USEPA, 1996b)
	Direct entry – PM measurement	Site specific emission estimates
Speciated	Ceramic - firing-natural gas	SPECIATEv4.2 (Profile ID=0003) (USEPA, 2008c)
organics	fired kiln	
(including	Direct entry - VOC	Site specific emission estimates
methane)	measurement	
Speciated	Ceramic - firing-natural gas	AP42 Chapter 11.7 Ceramic Product Manufacturing
particulate matter	fired kiln	(USEPA, 1996b)
	Direct entry – PM measurement	Site specific emission estimates
Ammonia	NA	NA
Sulfuric or	NA	NA
hydrochloric acid		
РАН	NA	NA
PCDD/PCDF	Ceramic - firing-natural gas	Technical Report Number 3, Inventory of Dioxin
	fired kiln	Emissions in Australia, 2004 (Bawden et al, 2004)
Greenhouse gases	Ceramic - firing-natural gas	Mass balance
(CO ₂ and N ₂ O)	fired kiln	

Table 3-97: Emission and speciation factors for all substances from ceramic product manufacturing

3.14.3 Activity Data

Commercial survey questionnaires were sent to four ceramic product manufacturing businesses during the compilation of the 2003 air emissions inventory, however none were returned. Three non-respondent businesses that reported emissions to the NPI have been included in the 2008 commercial air emissions inventory. The number of businesses identified and included in the emissions inventory is provided in Table 3-98.

Table 3-98: Number of ceramic product manufacturing businesses within the GMR

	Number	Number	Number
ANZSIC Class	of	of	of
	Businesses	Businesses	Non-Respondent
	Identified	Responded	NPI Businesses
Ceramic Product Manufacturing	5	0	3

No emission estimates have been performed for non-respondent businesses that do not report to the NPI as there are no relevant sources of estimation data available in the public arena.

3.14.4 Temporal Variation of Emissions

Businesses with emissions estimated using reported NPI emissions have been assumed to operate 24 hours a day.

3.14.5 Emission Estimates

Estimated emissions from ceramic product manufacturing within the GMR, Sydney, Newcastle, Wollongong and Non Urban regions are provided in Table 3-99.

Carlosterree	Estimated Emissions (kg/year)				
Substance	Sydney	Newcastle	Wollongong	Non Urban	GMR a
1,3 BUTADIENE	0	0	0	0	0
ACETALDEHYDE	0	0	0	0	0
BENZENE	13.9	0	43	0	56.9
CARBON MONOXIDE	15,700	0	12,900	0	28,600
FORMALDEHYDE	27.9	0	86	0	114
ISOMERS OF XYLENE	0	0	0	0	0
LEAD & COMPOUNDS	0.74	0	0.03	0	0.77
OXIDES OF NITROGEN	2,570	0	3,870	0	6440
PARTICULATE MATTER $\leq 10 \ \mu m$	23,300	0	7,540	0	30,800
PARTICULATE MATTER ≤ 2.5 μm	21,300	0	1,900	0	23,200
PERCHLOROETHYLENE	0	0	0	0	0
POLYCYCLIC AROMATIC HYDROCARBONS	0	0	0.17	0	0.17
SULFUR DIOXIDE	47,500	0	220	0	47,700
TOLUENE	6.96	0	21.5	0	28.5
TOTAL SUSPENDED PARTICULATE	41,600	0	7,960	0	49,600
TOTAL VOLATILE ORGANIC COMPOUNDS	153	0	477	0	630
TRICHLOROETHYLENE	0	0	0	0	0

Table 3-99: Estimated	emissions from	ceramic product	manufacturing
		· · · · · · · · · · · · · · · · · · ·	

a Totals may not appear additive due to rounding

3.14.6 Emission Projection Methodology

Projection factors for ceramic product manufacturing have been derived based on final energy consumption projections for non-metallic minerals in NSW published by ABARE (ABARE, 2006).

Derived projection factors are provided in Table 3-83 and illustrated in Figure 3-31.

3.15 Chemical Product Manufacturing

3.15.1 Emission Sources and Associated Releases to Air

Commercial chemical product manufacturing businesses have been identified using the NSW WorkCover database for hazardous materials and the telephone directory for NSW. A total of 72 commercial chemical product manufacturing businesses have been identified from these sources to be within the GMR.

Commercial businesses within the GMR that are included in the emissions inventory under this category are outlined in Table 3-100.

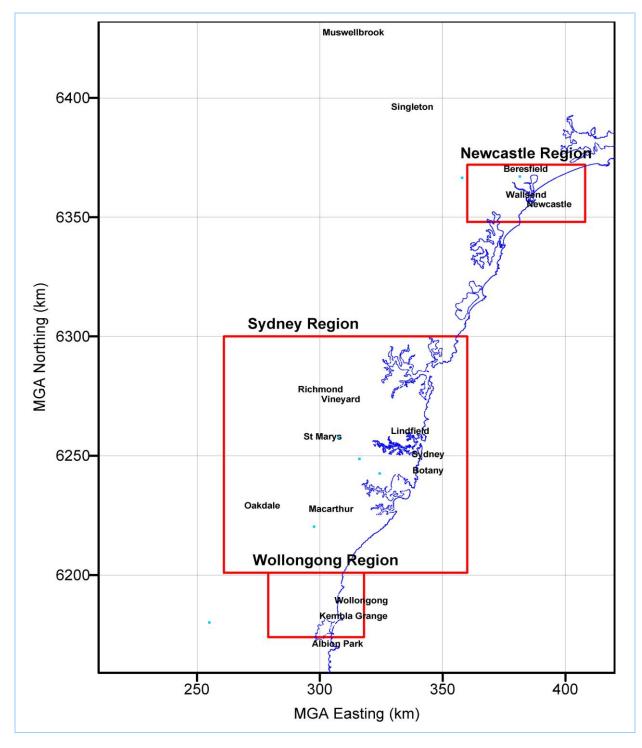

Table 3-100: Commercial businesses included in the emissions inventory						
Business	Business ID	Business Street	Business Suburb	Business Post Code		
RUAKURA PTY LIMITED	3018	UNIT 2/12	NARELLAN	2567		
		BLACKMORE RD				
INTERNATIONAL ANIMAL	3031	18 HEALEY CCT	HUNTINGWOOD	2148		
HEALTH PRODUCTS PTY LTD						
HURST AUSTRALIA PTY LTD	3050	10 BELLONA AVE	REGENTS PARK	2143		
LO-CHLOR CHEMICALS	3061	86 MEEKS RD	MARRICKVILLE	2204		
A J BLACKWOOD PTY LTD	3066	53-55 RALPH ST	ALEXANDRIA	2015		
DEGUSSA CATALYSTS &	3075	20-22	BANKSMEADOW	2019		
INITIATORS PTY LIMITED		MCPHERSON ST				
BOTANY INDUSTRIAL PARK	3076	MCPHERSON ST	BANKSMEADOW	2019		
PTY LTD						
CARSON ADHESIVES P/L	3078	57 MITCHELL RD	BROOKVALE	2100		
GLASON GROUP CLEANING	3081	UNIT 4 16-17	GOSFORD WEST	2250		
PRODUCTS		MERINEE RD				
APPLIED PRODUCTS	3085	11 GAMMA CL	BERESFIELD	2322		
AUSTRALIA						
ALUMINATES (NSW) PTY LTD	3091	PO BOX 241	WYONG	2259		
MAURI YEAST AUSTRALIA	3093	15 GRAND	CAMELLIA	2142		
		AVENUE				
ZENECA PHARMACEUTICALS	3096	CHRISTINA	VILLAWOOD	2163		
AUST PTY LTD		ROAD				
TOWN & COUNTRY	4098	UNIT 5 / 6	BERKELEY VALE	2261		
CHEMICALS PTY LTD		CATAMARAN				
		DR				
F.I.P. PTY LIMITED	7009	6 WENBAN	WETHERILL	2164		
		PLACE	PARK			
PYLON COATINGS PTY	7065	6 MARGATE	BOTANY	2019		
LIMITED		STREET				
GREENCORP MAGNETICS PTY	7068	80 PERRY STREET	MATRAVILLE	2036		
LTD						

Table 3-100: Commercial businesses included in the emissions inventory

The emission sources and associated releases to air for commercial chemical product manufacturing are outlined in Table 3-101.

Emission Source	Emissions to Air
Acid storage	HCl
Boiler (natural gas)	Combustion products
Direct entry - SO ₂ and VOC measurement	SO ₂ , VOC
Direct entry - PM measurement	PM
Grain milling	PM
Fuel storage (ethanol)	VOC
Fuel storage (petrol)	VOC
Direct entry - VOC measurement	VOC
Wheel generated dust (paved roads)	PM
Wheel generated dust (unpaved roads)	PM

Table 3-101: Emission sources from chemical product manufacturing

The locations of commercial chemical product manufacturing businesses are shown in Figure 3-36.

Figure 3-36: Commercial chemical product manufacturers within the GMR

3.15.2 Emission Estimation Methodology

Data sources for emission and speciation factors used to estimate emissions from commercial chemical product manufacturing businesses are provided in Table 3-97.

Substance	Emission Source	Emission Factor Source
CO, NO _x ¹ , SO ₂	Boiler (natural gas)	AP42 Chapter 1.4 Natural Gas Combustion (USEPA, 1998b)
&	Direct entry - SO ₂ and VOC	Site specific emission estimates
VOC	measurement	
	Fuel storage (ethanol)	TANKS 4.09D software (USEPA, 2006d)
	Fuel storage (petrol)	
	Direct entry - VOC	Site specific emission estimates
	measurement	
PM _{2.5} , PM ₁₀ &	Boiler (natural gas)	AP42 Chapter 1.4 Natural Gas Combustion (USEPA, 1998b)
TSP	Direct entry - PM	Site specific emission estimates
	measurement	
		AP42 Chapter 9.9.1 Grain Elevators &
	Grain milling	Processes (USEPA, 2003a)
	Wheel generated dust	AP42 Chapter 13.2.1 Paved Roads (USEPA, 2011)
	(paved roads)	
	Wheel generated dust	AP42 Chapter 13.2.2 Unpaved Roads (USEPA, 2006c)
	(unpaved roads)	
Speciated	Boiler (natural gas)	SPECIATEv4.2 (Profile ID=0003) (USEPA, 2008c)
organics	Direct entry - SO ₂ and VOC	Site specific emission estimates
(including	measurement	
methane)	Fuel storage (ethanol)	Mass balance (100% ethanol)
		Average petrol vapour concentration from petrol produced
	Fuel storage (petrol)	at BP refineries around Australia (BP, 2001a)
	Direct entry - VOC	Site specific emission estimates
	measurement	
Speciated	Boiler (natural gas)	AP42 Chapter 1.4 Natural Gas Combustion (USEPA, 1998b)
particulate matter	Wheel generated dust	California Emissions Inventory and Reporting System -
	(paved roads)	Paved Road Dust, 1997 (CARB, 2007)
	Wheel generated dust	California Emissions Inventory and Reporting System -
	(unpaved roads)	Unpaved Road Dust, 1997 (CARB, 2007)
Ammonia	Boiler (natural gas)	Estimating Ammonia Emissions from Anthropogenic Non-
		agricultural Sources - Draft Final Report (Pechan, 2004)
Sulfuric or	Acid storage	Raoult's law (Raoult, M, 1882a; 1882b, 1887a; 1887b), using
hydrochloric acid		chemical properties from Perry and Green (1997)
РАН	Boiler (natural gas)	AP42 Chapter 1.4 Natural Gas Combustion (USEPA, 1998b)
PCDD/PCDF	Boiler (natural gas)	Technical Report Number 3, Inventory of Dioxin Emissions
		in Australia, 2004 (Bawden et al, 2004)
Greenhouse gases	Boiler (natural gas)	National Greenhouse Accounts (NGA) Factors June 2009,
$(CO_2 and N_2O)$		(DCC, 2009)

Table 3-102: Emission and speciation factors for all substances from chemical product manufacturing

3.15.3 Activity Data

Site specific data supplied in the returned commercial survey questionnaires for the 2003 air emissions inventory have been used to estimate emissions for the 2008 calendar year. Two non-respondent businesses that reported emissions to the NPI but did not respond to the commercial survey have also been included in the emissions inventory. No emission estimates have been performed for non-respondent businesses that do not report to the NPI as there are no relevant sources of estimation data available in the public arena.

The number of businesses identified and included in the emissions inventory is provided in Table 3-103.

Tuble 5 1001 (tubber of chemical provace managerating buomeoses in the Office					
	Number	Number	Number		
ANZSIC Class	of	of	of		
	Businesses	Businesses	Non-Respondent		
	Identified	Responded	NPI Businesses		
Chemical Product Manufacturing n.e.c.	72	15	2		

Table 3-103: Number of chemical product manufacturing businesses in the GMR

It should be noted that in processing the returned commercial survey questionnaires, seven businesses have been determined to have no emission sources in the operation of the business. Hence, these businesses have been estimated to emit zero air emissions.

3.15.4 Temporal Variation of Emissions

Data provided in returned commercial survey questionnaires have been used to estimate temporal variation of emissions. Monthly variations have been accounted for if data have been provided. It was assumed that emissions remain constant throughout the operating hours of the business. Businesses with emissions estimated using reported NPI emissions have been assumed to operate 24 hours a day.

3.15.5 Emission Estimates

Estimated emissions from commercial chemical product manufacturing businesses within the GMR, Sydney, Newcastle, Wollongong and Non Urban regions are provided in Table 3-104.

Synhotom og	Estimated Emissions (kg/year)				
Substance	Sydney	Newcastle	Wollongong	Non Urban	GMR a
1,3 BUTADIENE	0	0	0	0	0
ACETALDEHYDE	5.25	0	0	0	5.25
BENZENE	52	0	0	0	52
CARBON MONOXIDE	4,540	0	0	0	4,540
FORMALDEHYDE	55.6	0	0	0	55.6
ISOMERS OF XYLENE	125	0	0	33.5	158
LEAD & COMPOUNDS	3.89	0	0	0.00185	3.89
OXIDES OF NITROGEN	5,540	0	0	0	5,540
PARTICULATE MATTER ≤ 10 µm	9,510	0	0	7.86	9,520
PARTICULATE MATTER ≤ 2.5 µm	1,910	0	0	5.69	1,920
PERCHLOROETHYLENE	0	0	0	0	0
POLYCYCLIC AROMATIC HYDROCARBONS	0.0382	0	0	0	0.0382
SULFUR DIOXIDE	29,600	0	0	0	29,600
TOLUENE	138,000	0	0	71.9	138,000
TOTAL SUSPENDED PARTICULATE	30,800	0	0	19.9	30,800
TOTAL VOLATILE ORGANIC COMPOUNDS	510,000	6,340	0	4,060	520,000
TRICHLOROETHYLENE	3,500	0	0	0	3,500

Table 3-104: Estimated emissions from commercial chemical product manufacturing

a Totals may not appear additive due to rounding

3.15.6 Emission Projection Methodology

Projection factors for chemical product manufacturing have been derived based on final energy consumption projections for basic chemicals in NSW published by ABARE (ABARE, 2006).

Derived projection factors are provided in Table 3-105 and illustrated in Figure 3-37.

Table 5-105: Projection factors for basic chemicals related sources						
Year	Projection Factor	Year	Projection Factor			
2009	1.0082	2023	1.1320			
2010	1.0162	2024	1.1416			
2011	1.0245	2025	1.1510			
2012	1.0329	2026	1.1604			
2013	1.0415	2027	1.1700			
2014	1.0501	2028	1.1798			
2015	1.0587	2029	1.1898			
2016	1.0675	2030	1.1979			
2017	1.0764	2031	1.2055			
2018	1.0854	2032	1.2146			
2019	1.0945	2033	1.2237			
2020	1.1038	2034	1.2328			
2021	1.1131	2035	1.2419			
2022	1.1225	2036	1.2510			

Table 3-105: Projection factors for basic chemicals related sources

Source: ABARE (2006)

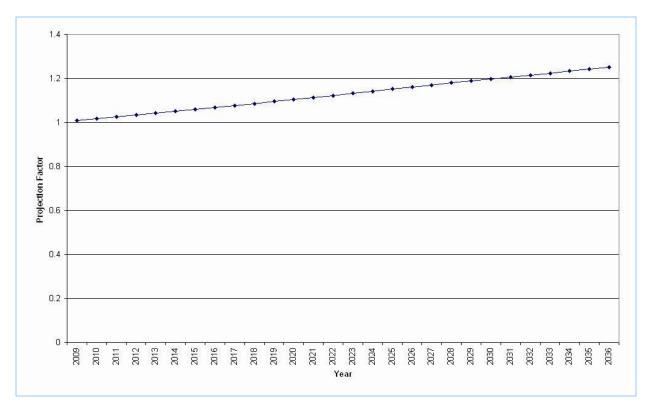


Figure 3-37: Projection factors for basic chemicals related sources

3.16 Food Manufacturing

3.16.1 Emission Sources and Associated Releases to Air

Food manufacturing businesses have been identified using the NSW WorkCover database for hazardous materials and the telephone directory for NSW. A total of 59 commercial food manufacturing businesses have been identified from these sources to be within the GMR.

Commercial businesses within the GMR that are included in the emissions inventory under this category are outlined in Table 3-106.

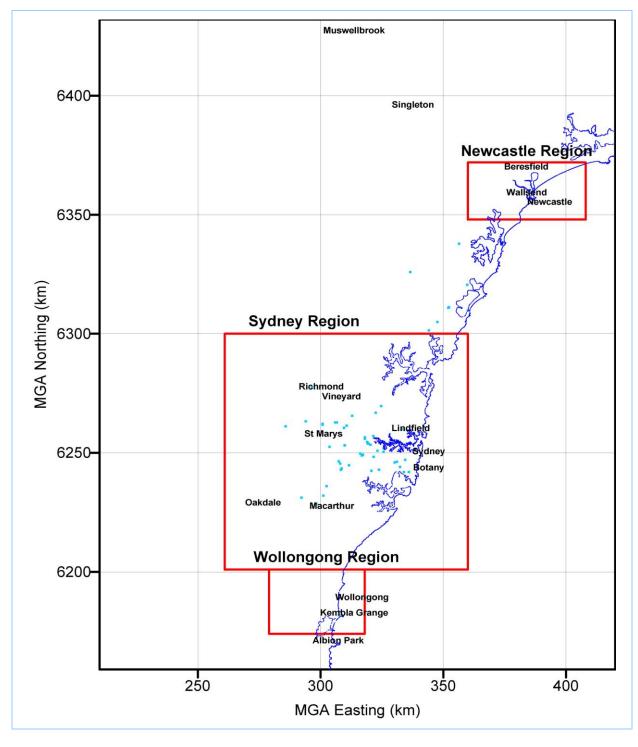

Business Business Business Business								
Business								
	ID	Street	Suburb	Post Code				
GENERAL MILLS AUSTRALIA PTY	2746	16 KELLOGG RD	ROOTY HILL	2766				
LIMITED								
ARNOTTS SNACK FOODS	2760	15-21 BRITTON ST	SMITHFIELD	2164				
GIVAUDAN AUSTRALIA PTY LTD	2771	9 CAROLYN ST	SILVERWATER	2141				
FROZEN FOOD PACKERS P/L	2772	59-61 DERBY ST	SILVERWATER	2128				
BIG SISTER FOODS PTY LTD	2778	44A WHARF RD	ERMINGTON	2115				
SARA LEE COFFEE & TEA (AUSTRALIA)	2782	18 FORRESTER ST	KINGSGROVE	2208				
PTY LTD								
AUSTRALIAN HEALTH & NUTRITION	2797	LOT 13 2	BERKELEY	2261				
ASSOCIATION LTD		SANITARIUM DR	VALE					
EFFEM FOODS WYONG	2801	4 CORELLA CLOSE	WYONG	2259				
SANITARIUM HEALTH FOOD COMPANY	6981	FREEMANS DR	COORANBONG	2265				
CAMELLIA VINEGAR	7120	15 GRAND AVENUE	CAMELLIA	2142				
MARS FOOD BERKELEY VALE	7124	4 CORELLA CLOSE	BERKELEY	2261				
			VALE					

Table 3-106: Commercial businesses included in the emissions inventory

The emission sources and associated releases to air from food manufacturing outlined in Table 3-107.

Table 3-107: Food manufacturing – emission sources

Emission Source	Emissions to Air
Boiler (coal)	Combustion products
Boiler (diesel)	Combustion products
Boiler (LPG)	Combustion products
Boiler (natural gas)	Combustion products
Fuel storage (diesel)	VOC
Fugitive emissions - VOC	VOC
Snack chip deep fat frying (other chips)	VOC
Wastewater treatment	VOC, ammonia
Wheel generated dust (paved roads)	PM

The locations of commercial food manufacturing n.e.c. businesses are shown in Figure 3-38.

Figure 3-38: Food manufacturing n.e.c. businesses within the GMR

3.16.2 Emission Estimation Methodology

Data sources for emission and speciation factors used to estimate emissions from chemical product manufacturing businesses are provided in Table 3-97.

Substance	Emission Source	Emission Factor Source
CO, NO _x ¹ , SO ₂	Boiler (coal)	AP42 Chapter 1.1 Bituminous and Subbituminous Coal
&		Combustion (USEPA, 1998a)
VOC	Boiler (diesel)	AP42 Chapter 1.3 Fuel Oil Combustion (USEPA, 1999)
	Boiler (LPG)	AP42 Chapter 1.5 LPG Combustion (USEPA, 2008a)
	Boiler (natural gas)	AP42 Chapter 1.4 Natural Gas Combustion (USEPA,
		1998b)
	Fuel storage (diesel)	TANKS 4.09D software (USEPA, 2006d)
	Fugitive emissions - VOC	Site specific emission estimates
	Snack chip deep fat frying	AP42 Chapter 9.13.3 Snack Chip Deep Fat Frying (USEPA,
	(other chips)	1995c)
	Wastewater treatment	NGGIC Workbook for Waste (NGGIC, 1996)
PM _{2.5} , PM ₁₀ &	Boiler (coal)	AP42 Chapter 1.1 Bituminous and Subbituminous Coal
TSP		Combustion (USEPA, 1998a)
	Boiler (diesel)	AP42 Chapter 1.3 Fuel Oil Combustion (USEPA, 1999)
	Boiler (LPG)	AP42 Chapter 1.5 LPG Combustion (USEPA, 2008a)
	Boiler (natural gas)	AP42 Chapter 1.4 Natural Gas Combustion (USEPA,
		1998b)
	Wheel generated dust (paved	AP42 Chapter 13.2.1 Paved Roads (USEPA, 2011)
	roads)	
Speciated	Boiler (coal)	SPECIATEv4.2 (Profile ID=1178) (USEPA, 2008c)
organics	Boiler (diesel)	SPECIATEv4.2 (Profile ID=0002) (USEPA, 2008c)
(including	Boiler (LPG)	AP42 Chapter 1.5 LPG Combustion (USEPA, 2008a)
methane)	Boiler (natural gas)	SPECIATEv4.2 (Profile ID=0003) (USEPA, 2008c)
,	Fuel storage (diesel)	Average diesel vapour concentration from diesel
		produced at BP refineries around Australia (BP, 2001b)
	Fugitive emissions - VOC	Site specific emission estimates
	Snack chip deep fat frying	SPECIATEv4.2 (Profile ID=0003) (USEPA, 2008c)
	(other chips)	
	Wastewater treatment	CEIDARS Organic Gas Speciation Profiles (Profile
		ID=1402) (assuming that unidentified portion is methane)
		(CARB, 2005)
Speciated	Boiler (coal)	AP42 Chapter 1.1 Bituminous and Subbituminous Coal
particulate matter		Combustion (USEPA, 1998a)
•	Boiler (diesel)	CEIDARS PM profile 114 for speciated metals (CARB,
		2007)
	Boiler (LPG)	AP-42 Chapter 1.4, Natural Gas Combustion (USEPA,
		1998b) (assuming the same emissions per joule combusted
		as natural gas)
	Boiler (natural gas)	AP42 Chapter 1.4 Natural Gas Combustion (USEPA,
		1998b)
	Wheel generated dust (paved	California Emissions Inventory and Reporting System -
	roads)	Paved Road Dust, 1997 (CARB, 2007)
Ammonia	Boiler (coal)	NPI EET Manual for Fossil Fuel Electric Power
		Generation v2.4 (DEH, 2005)
	Boiler (diesel)	Estimating Ammonia Emissions from Anthropogenic
	Boiler (LPG)	Non-agricultural Sources - Draft Final Report (Pechan,
	Boiler (natural gas)	2004)
	Wastewater treatment	1

Table 3-108: Emission and speciation factors for all substances from food manufacturing

2008 Calendar Year Commercial Emissions: Results 3. Data Sources and Results

Substance	Emission Source	Emission Factor Source
Sulfuric or	Boiler (coal)	NPI EET Manual for Fossil Fuel Electric Power
hydrochloric acid		Generation v2.4 (DEH, 2005)
РАН	Boiler (coal)	AP42 Chapter 1.1 Bituminous and Subbituminous Coal
		Combustion (USEPA, 1998a)
	Boiler (diesel)	AP42 Chapter 1.3 Fuel Oil Combustion (USEPA, 1999)
	Boiler (LPG)	AP-42 Chapter 1.4, Natural Gas Combustion (USEPA,
		1998b) (assuming the same emissions per joule combusted
		as natural gas)
	Boiler (natural gas)	AP-42 Chapter 1.4, Natural Gas Combustion (USEPA,
		1998b)
PCDD/PCDF	Boiler (coal)	Technical Report Number 3, Inventory of Dioxin
	Boiler (diesel)	Emissions in Australia, 2004 (Bawden et al, 2004)
	Boiler (LPG)	
	Boiler (natural gas)	
Greenhouse gases	Boiler (coal)	National Greenhouse Accounts (NGA) Factors June 2009,
(CO ₂ and N ₂ O)	Boiler (diesel)	(DCC, 2009)
	Boiler (LPG)	
	Boiler (natural gas)	

3.16.3 Activity Data

Site specific data supplied in the returned commercial survey questionnaires for the 2003 air emissions inventory have been used to estimate emissions for the 2008 calendar year. Five non-respondent businesses that reported emissions to the NPI but did not respond to the commercial survey have also been included in the emissions inventory. No emission estimates have been performed for non-respondent businesses that do not report to the NPI as there are no relevant sources of estimation data available in the public arena.

The number of businesses identified and included in the emissions inventory is provided in Table 3-109.

		-	
	Number	Number	Number
ANZSIC Class	of	of	of
	Businesses	Businesses	Non-Respondent
	Identified	Responded	NPI Businesses
Food manufacturing n.e.c.	59	6	5

Table 3-109: Number of food manufacturing businesses in the GMR

3.16.4 Temporal Variation of Emissions

Data provided in returned commercial survey questionnaires have been used to estimate temporal variation of emissions for respondent businesses. Process emissions have been assumed to vary in direct proportion to the change in production rates over a typical year which was supplied in returned commercial survey questionnaires. Businesses with emissions estimated using reported NPI emissions have been assumed to operate 24 hours a day.

3.16.5 Emission Estimates

Estimated emissions from food manufacturing businesses within the GMR, Sydney, Newcastle, Wollongong and Non Urban regions are provided in Table 3-110.

			ed Emissions (0	
Substance	Sydney	Newcastle	Wollongong	Non Urban	GMR a
1,3 BUTADIENE	0	0	0	0	0
ACETALDEHYDE	0	0	0	0	0
BENZENE	52	0	0	51.8	104
CARBON MONOXIDE	6,900	0	0	6,050	13,000
FORMALDEHYDE	114	0	0	106	220
ISOMERS OF XYLENE	62.1	0	0	28.5	90.6
LEAD & COMPOUNDS	0.0522	0	0	0.444	0.497
OXIDES OF NITROGEN	8,220	0	0	21,000	29,200
PARTICULATE MATTER $\leq 10 \ \mu m$	642	0	0	1,010	1,650
PARTICULATE MATTER ≤ 2.5 μm	629	0	0	738	1,370
PERCHLOROETHYLENE	72.5	0	0	1.96	74.5
POLYCYCLIC AROMATIC HYDROCARBONS	0.0565	0	0	0.0772	0.134
SULFUR DIOXIDE	42.9	0	0	17,800	17,800
TOLUENE	67.4	0	0	30.2	97.6
TOTAL SUSPENDED PARTICULATE	714	0	0	1,650	2,370
TOTAL VOLATILE ORGANIC COMPOUNDS	5,720	0	0	489	6,210
TRICHLOROETHYLENE	10.4	0	0	0.28	10.6

Table 3-110: Estimated emissions from food manufacturing

Totals may not appear additive due to rounding

3.16.6 Emission Projection Methodology

Projection factors for food manufacturing have been derived based on final energy consumption projections for other (manufacturing) industry in NSW published by ABARE (ABARE, 2006).

Derived projection factors are provided in Table 3-75 and illustrated in Figure 3-28.

3.17 Port Operators

3.17.1 Emission Sources and Associated Releases to Air

One commercial port operating business has been identified within the GMR using the NSW WorkCover database for hazardous materials and the telephone directory for NSW.

The commercial business within the GMR that is included in the emissions inventory under this category is outlined in Table 3-111.

Table 3-111: Commercial businesses included in the emissions inventory					
Business	Business	Business	Business	Business	
Dusiness	ID	Street	Suburb	Post Code	
P&O PORTS PORT BOTANY TERMINAL	5430	42 FRIENDSHIP ROAD	MATRAVILLE	2036	

The emission sources and associated releases to air from port operators are outlined in Table 3-112.

Table 3-112: Port operator – emission sources

Source	Emissions to Air
Combustion	Combustion products

The location of commercial port operator is shown in Figure 3-39.

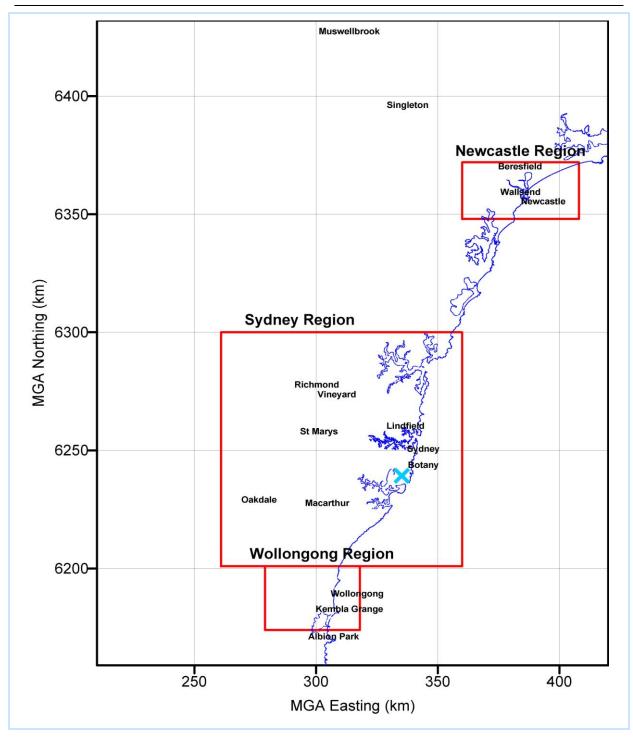


Figure 3-39: Commercial port operators within the GMR

3.17.2 Emission Estimation Methodology

Emissions from the commercial port operating business have been estimated using information published on the NPI and data supplied in the commercial survey questionnaire.

3.17.3 Activity Data

Site specific data supplied in the returned commercial survey questionnaire from the respondent business has been used for emissions estimation.

3.17.4 Temporal Variation of Emissions

Data provided in the returned commercial survey questionnaire was used to estimate temporal variation of the emissions. It was assumed that emissions remain constant throughout the operating hours of the business.

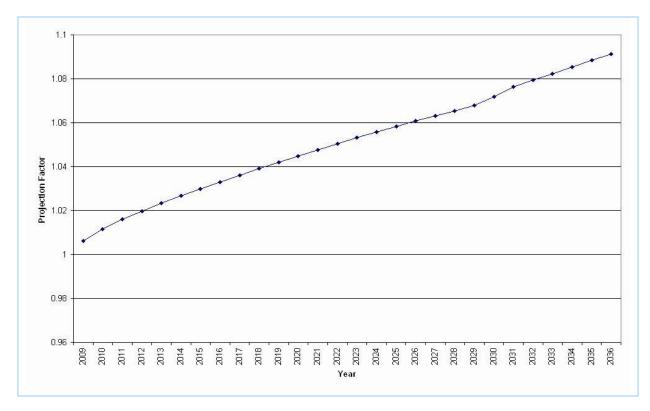
3.17.5 Emission Estimates

Estimated emissions from port operators within the GMR, Sydney, Newcastle, Wollongong and Non Urban regions are provided in Table 3-113.

Table 5-115: Estimated emissions from port operators					
Substance	Estimated Emissions (kg/year)				
Substatice	Sydney	Newcastle	Wollongong	Non Urban	GMR a
1,3 BUTADIENE	0	0	0	0	0
ACETALDEHYDE	0	0	0	0	0
BENZENE	1,250	0	0	0	1,250
CARBON MONOXIDE	31,300	0	0	0	31,300
FORMALDEHYDE	2,500	0	0	0	2,500
ISOMERS OF XYLENE	0	0	0	0	0
LEAD & COMPOUNDS	0.4	0	0	0	0.4
OXIDES OF NITROGEN	102,000	0	0	0	102,000
PARTICULATE MATTER ≤ 10 µm	8,950	0	0	0	8,950
PARTICULATE MATTER ≤ 2.5 μm	8,950	0	0	0	8,950
PERCHLOROETHYLENE	0	0	0	0	0
POLYCYCLIC AROMATIC HYDROCARBONS	0.38	0	0	0	0.38
SULFUR DIOXIDE	9,940	0	0	0	9,940
TOLUENE	624	0	0	0	624
TOTAL SUSPENDED PARTICULATE	8,950	0	0	0	8,950
TOTAL VOLATILE ORGANIC COMPOUNDS	13,700	0	0	0	13,700
TRICHLOROETHYLENE	0	0	0	0	0
^a Totals may not appear additive due to rounding					

Table 3-113: Estimated emissions from port operators

3.17.6 Emission Projection Methodology


Projection factors for port operators have been derived based on final energy consumption projections for water transport in NSW published by ABARE (ABARE, 2006).

Derived projection factors are provided in Table 3-114 and illustrated in Figure 3-40.

Tuble 5 114. Hojection factors for water transport related sources				
Year	Projection Factor	Year	Projection Factor	
2009	1.0062	2023	1.0532	
2010	1.0115	2024	1.0559	
2011	1.0160	2025	1.0584	
2012	1.0198	2026	1.0607	
2013	1.0233	2027	1.0631	
2014	1.0268	2028	1.0655	
2015	1.0300	2029	1.0678	
2016	1.0330	2030	1.0719	
2017	1.0361	2031	1.0763	
2018	1.0390	2032	1.0793	
2019	1.0419	2033	1.0823	
2020	1.0448	2034	1.0853	
2021	1.0477	2035	1.0883	
2022	1.0505	2036	1.0913	

Table 3-114: Projection factors for water transport related sources

Source: ABARE (2006)

Figure 3-40: Projection factors for water transport related sources

3.18 Plaster Product Manufacturing

3.18.1 Emission Sources and Associated Releases to Air

Plaster product manufacturing businesses have been identified using the NSW WorkCover database for hazardous materials and the telephone directory for NSW. A total of two commercial plaster product manufacturing businesses have been identified from these sources to be within the GMR.

The commercial business within the GMR that is included in the emissions inventory under this category is outlined in Table 3-115.

Table 3-115: Commercial business included in the emissions inventory

Business	Business	Business	Business	Business
	ID	Street	Suburb	Post Code
CSR GYPROCK & FIBRE CEMENT	3416	376-394 VICTORIA ST	WETHERILL PARK	2164

The emission sources and associated releases to air from plaster product manufacturing activities are outlined in Table 3-116.

Table 3-116: Emission sources of plaster product manufacturing

Source	Emissions to Air
Boiler (natural gas)	Combustion products
Plaster product manufacturing (gypsum	Combustion products
processing plant)	
Wind erosion	PM

The location of the commercial plaster product manufacturing business is shown in Figure 3-41.

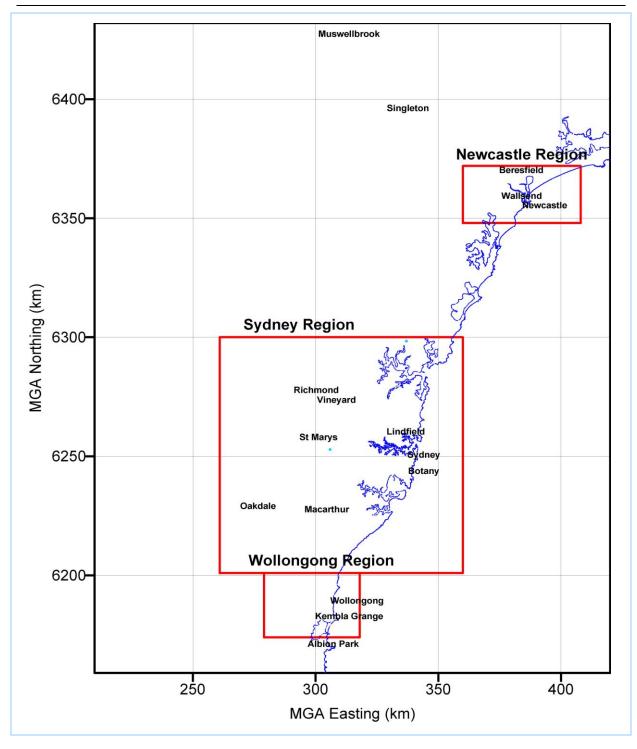


Figure 3-41: Plaster product manufacturers within the GMR

3.18.2 Emission Estimation Methodology

Data sources for emission and speciation factors used to estimate emissions from plaster product manufacturing businesses are provided in Table 3-117.

Substance	Emission Source	Emission Factor Source
CO, NO _x ¹ , SO ₂	Boiler (natural gas)	AP42 Chapter 1.4 Natural Gas Combustion (USEPA, 1998b)
&	Plaster product	NPI EET Manual for Plasterboard and Plaster Manufacturing
VOC	manufacturing (gypsum	v1.2 (DEH, 2004b)
	processing plant)	
PM _{2.5} , PM ₁₀ &	Boiler (natural gas)	AP42 Chapter 1.4 Natural Gas Combustion (USEPA, 1998b)
TSP	Plaster product	NPI EET Manual for Plasterboard and Plaster Manufacturing
	manufacturing (gypsum	v1.2 (DEH, 2004b)
	processing plant)	
	Wind erosion	NPI EET Manual for Mining v2.3 (EA, 2003b)
Speciated	Boiler (natural gas)	SPECIATEv4.2 (Profile ID=0003) (USEPA, 2008c)
organics	Plaster product	
(including	manufacturing (gypsum	
methane)	processing plant)	
Speciated	Boiler (natural gas)	AP42 Chapter 1.4 Natural Gas Combustion (USEPA, 1998b)
particulate matter	Plaster product	NPI EET Manual for Plasterboard and Plaster Manufacturing
	manufacturing (gypsum	v1.2 (DEH, 2004b)
	processing plant)	
Ammonia	Boiler (natural gas)	Estimating Ammonia Emissions from Anthropogenic Non-
		agricultural Sources - Draft Final Report (Pechan, 2004)
	Plaster product	NPI EET Manual for Plasterboard and Plaster Manufacturing
	manufacturing (gypsum	v1.2 (DEH, 2004b)
	processing plant)	
Sulfuric or	NA	NA
hydrochloric acid		
PAH	Boiler (natural gas)	AP42 Chapter 1.4 Natural Gas Combustion (USEPA, 1998b)
	Plaster product	NPI EET Manual for Plasterboard and Plaster Manufacturing
	manufacturing (gypsum	v1.2 (DEH, 2004b)
	processing plant)	
PCDD/PCDF	Boiler (natural gas)	Technical Report Number 3, Inventory of Dioxin Emissions in
		Australia, 2004 (Bawden et al, 2004)
	Plaster product	NPI EET Manual for Plasterboard and Plaster Manufacturing
	manufacturing (gypsum	v1.1 (EA, 2002b)
	processing plant)	
Greenhouse gases	Boiler (natural gas)	National Greenhouse Accounts (NGA) Factors June 2009,
(CO ₂ and N ₂ O)	Plaster product	(DCC, 2009)
	manufacturing (gypsum	
	processing plant)	

Table 3-117: Emission and speciation factors for all substances from	m plaster product manufacturing
--	---------------------------------

3.18.3 Activity Data

Site specific data supplied in the returned commercial survey questionnaire from one business for the 2003 air emissions inventory has been used to estimate emissions for the 2008 calendar year. No emission estimates have been performed for non-respondent businesses as there are no relevant sources of estimation data available in the public arena.

The number of respondent businesses is provided in Table 3-118.

		0	
	Number	Number	Number
	of	of	of
ANZSIC Class	Businesses	Businesses	Non-Respondent
	Identified	Responded	NPI Businesses
Plaster product manufacturing	2	1	0

Table 3-118: Number of plaster product manufacturing businesses in the GMR

3.18.4 Temporal Variation of Emissions

Data provided in the returned commercial survey questionnaire have been used to estimate temporal variation of emissions. Monthly variations have been accounted for if data have been provided. It has been assumed that emissions remain constant throughout the operating hours of the business.

3.18.5 *Emission Estimates*

Estimated emissions from plaster product manufacturing businesses within the GMR, Sydney, Newcastle, Wollongong and Non Urban regions are provided in Table 3-119.

Substance	Estimated Emissions (kg/year)				
Substance	Sydney	Newcastle	Wollongong	Non Urban	GMR a
1,3 BUTADIENE	0	0	0	0	0
ACETALDEHYDE	0	0	0	0	0
BENZENE	229	0	0	0	229
CARBON MONOXIDE	138,000	0	0	0	138,000
FORMALDEHYDE	1,150	0	0	0	1,150
ISOMERS OF XYLENE	0	0	0	0	0
LEAD & COMPOUNDS	12.6	0	0	0	12.6
OXIDES OF NITROGEN	37,300	0	0	0	37,300
PARTICULATE MATTER ≤ 10 µm	13,600	0	0	0	13,600
PARTICULATE MATTER ≤ 2.5 μm	7,810	0	0	0	7,810
PERCHLOROETHYLENE	0	0	0	0	0
POLYCYCLIC AROMATIC HYDROCARBONS	10.2	0	0	0	10.2
SULFUR DIOXIDE	3,400	0	0	0	3,400
TOLUENE	114	0	0	0	114
TOTAL SUSPENDED PARTICULATE	16,100	0	0	0	16,100
TOTAL VOLATILE ORGANIC COMPOUNDS	3,410	0	0	0	3,410
TRICHLOROETHYLENE	0	0	0	0	0

Table 3-119: Estimated emissions from plaster product manufacturing

a Totals may not appear additive due to rounding

3.18.6 Emission Projection Methodology

Projection factors for plaster product manufacturing have been derived based on final energy consumption projections for other (manufacturing) industry in NSW published by ABARE (ABARE, 2006).

Derived projection factors are provided in Table 3-75 and illustrated in Figure 3-28.

3.19 Glass and Glass Product Manufacturing

3.19.1 Emission Sources and Associated Releases to Air

Glass and glass product manufacturing businesses have been identified using the NSW WorkCover database for hazardous materials and the telephone directory for NSW. A total of six commercial glass and glass product manufacturing businesses have been identified from these sources to be within the GMR.

Commercial businesses within the GMR that are included in the emissions inventory under this category are outlined in Table 3-120.

Table 3-120: Commercial businesses included in the emissions inventory
--

Business	Business	Business	Business	Business
Dusmess	ID	Street	Suburb	Post Code
OGISHI CRAFT CENTRE	3394	LOT 2 DP 842313 BRANXTON RD	ROTHBURY	2320
CSR BRADFORD INSULATION	3395	55 STENNETT ROAD	INGLEBURN	2565
PILKINGTON (AUSTRALIA)	7047	133-145 NEWTON ROAD	WETHERILL	2164
LIMITED			PARK	

The emission sources and associated releases to air from glass and glass product manufacturing are outlined in Table 3-121.

Table 3-121: Glass product manufacturing - emission sources

Source	Emissions to Air
Boiler (LPG)	Combustion products
Boiler (natural gas)	Combustion products
Glass production (melting furnace	Combustion products
(container))	
Glass production (pressed and blown)	Combustion products

The locations of commercial glass and glass product manufacturing businesses are shown in Figure 3-42.

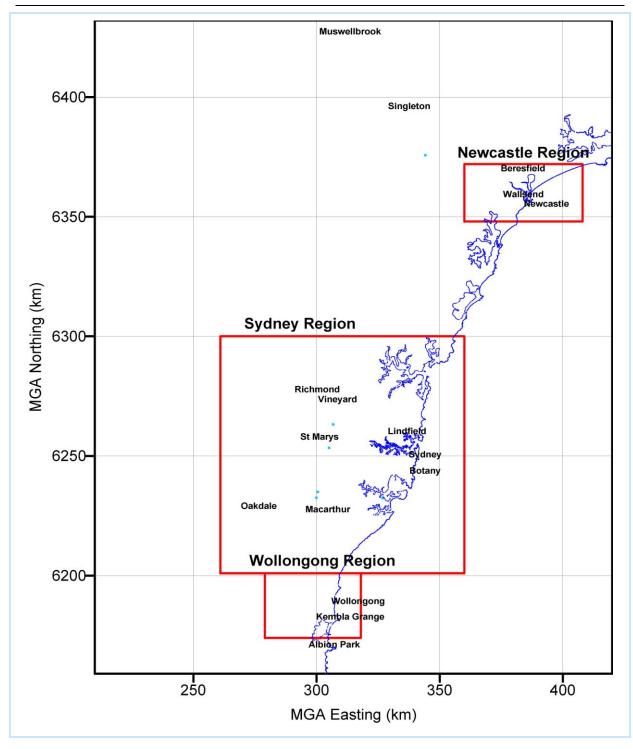


Figure 3-42: Glass and glass product manufacturers within the GMR

3.19.2 Emission Estimation Methodology

Data sources for emission and speciation factors used to estimate emissions from glass product manufacturing businesses are provided in Table 3-117.

manufacturing					
Substance	Emission Source	Emission Factor Source			
CO, NO_x^1, SO_2	Boiler (LPG)	AP42 Chapter 1.5 LPG Combustion (USEPA, 2008a)			
&	Boiler (natural gas)	AP42 Chapter 1.4 Natural Gas Combustion (USEPA, 1998b)			
VOC	Glass production (melting	AP42 Chapter 11.15 Glass Manufacturing (USEPA, 1986a)			
	furnace (container))				
	Glass production (pressed				
	and blown)				
PM _{2.5} , PM ₁₀ &	Boiler (LPG)	AP42 Chapter 1.5 LPG Combustion (USEPA, 2008a)			
TSP	Boiler (natural gas)	AP42 Chapter 1.4 Natural Gas Combustion (USEPA, 1998b)			
	Glass production (melting	AP42 Chapter 11.15 Glass Manufacturing (USEPA, 1986a)			
	furnace (container))				
	Glass production (pressed				
	and blown)				
Speciated	Boiler (LPG)	AP42 Chapter 1.5 LPG Combustion (USEPA, 2008a)			
organics	Boiler (natural gas)	SPECIATEv4.2 (Profile ID=0003) (USEPA, 2008c)			
(including	Glass production (melting	SPECIATEv4.2 (Profile ID=9011) (USEPA, 2008c)			
methane)	furnace (container))				
	Glass production (pressed				
	and blown)				
Speciated		AP-42 Chapter 1.4, Natural Gas Combustion (USEPA, 1998b)			
particulate matter		(assuming the same emissions per joule combusted as			
	Boiler (LPG)	natural gas)			
	Boiler (natural gas)	AP42 Chapter 1.4 Natural Gas Combustion (USEPA, 1998b)			
	Glass production (melting	NPI EET Manual for Glass and Glass Fibre Manufacturing			
	furnace (container))	(DEH, 2004a)			
	Glass production (pressed				
	and blown)				
Ammonia	Boiler (LPG)	Estimating Ammonia Emissions from Anthropogenic Non-			
	Boiler (natural gas)	agricultural Sources - Draft Final Report (Pechan, 2004)			
Sulfuric or	NA	NA			
hydrochloric acid					
PAH		AP-42 Chapter 1.4, Natural Gas Combustion (USEPA, 1998b)			
		(assuming the same emissions per joule combusted as			
	Boiler (LPG)	natural gas)			
	Boiler (natural gas)	AP42 Chapter 1.4 Natural Gas Combustion (USEPA, 1998b)			
PCDD/PCDF	Boiler (LPG)	Technical Report Number 3, Inventory of Dioxin Emissions			
	Boiler (natural gas)	in Australia, 2004 (Bawden et al, 2004)			
	Glass production (melting				
	furnace (container))				
	Glass production (pressed	1			
	and blown)				
Greenhouse gases	Boiler (LPG)	National Greenhouse Accounts (NGA) Factors June 2009,			
(CO ₂ and N ₂ O)	Boiler (natural gas)	(DCC, 2009) and mass balance			
	Glass production (melting	1			
	furnace (container))				
	Glass production (pressed	1			
	and blown)				
	1	1			

Table 3-122: Emission and speciation factors for all substances from glass and glass product manufacturing

3.19.3 Activity Data

Site specific data supplied in the returned commercial survey questionnaire from two businesses for the 2003 air emissions inventory have been used to estimate emissions for the 2008 calendar year. One non-respondent business that reported emissions to the NPI but did not respond to the commercial survey has also been included in the emissions inventory. The number of respondent businesses is provided in Table 3-123.

Table 3-123: Number of glass and	glass product manufacturing	businesses in the GMR
----------------------------------	-----------------------------	-----------------------

	Number	Number	Number
ANTRIC Class	of	of	of
ANZSIC Class	Businesses	Businesses	Non-Respondent
	Identified	Responded	NPI Businesses
Glass & glass product manufacturing	6	2	1

No emission estimates have been performed for non-respondent businesses that do not report to the NPI as there are no relevant sources of estimation data available in the public arena.

3.19.4 Temporal Variation of Emissions

Data provided in the returned commercial survey questionnaire have been used to estimate temporal variation of emissions. Monthly variations have been accounted for where data has been provided. The business with emissions estimated using reported NPI emissions has been assumed to operate 24 hours a day. It has been assumed that emissions remain constant throughout the operating hours of the business.

3.19.5 Emission Estimates

Estimated emissions from glass and glass product manufacturing businesses within the GMR, Sydney, Newcastle, Wollongong and Non Urban regions are provided in Table 3-124.

Colorana a	Estimated Emissions (kg/year)				
Substance	Sydney	Newcastle	Wollongong	Non Urban	GMR a
1,3 BUTADIENE	0	0	0	0	0
ACETALDEHYDE	0	0	0	0	0
BENZENE	104	0	0	0.196	104
CARBON MONOXIDE	3,710	0	0	4.42	3,720
FORMALDEHYDE	65.9	0	0	0.382	66.3
ISOMERS OF XYLENE	0	0	0	0	0
LEAD & COMPOUNDS	151	0	0	0.0121	151
OXIDES OF NITROGEN	3,880	0	0	35.6	3,920
PARTICULATE MATTER ≤ 10 µm	8,400	0	0	8.95	8,410
PARTICULATE MATTER ≤ 2.5 μm	8,250	0	0	1.96	8,260
PERCHLOROETHYLENE	0	0	0	0	0
POLYCYCLIC AROMATIC HYDROCARBONS	0.00746	0	0	0.000134	0.00759
SULFUR DIOXIDE	174	0	0	2.8	176
TOLUENE	29.5	0	0	0.0963	29.6

Table 3-124: Estimated emissions from glass and glass product manufacturing

Substance	Estimated Emissions (kg/year)				
Substance	Sydney	Newcastle	Wollongong	Non Urban	GMR a
TOTAL SUSPENDED PARTICULATE	8,570	0	0	9.14	8,580
TOTAL VOLATILE ORGANIC COMPOUNDS	2,860	0	0	0.956	2,860
TRICHLOROETHYLENE	0	0	0	0	0

Totals may not appear additive due to rounding

3.19.6 Emission Projection Methodology

Projection factors for glass and glass product manufacturing have been derived based on final energy consumption projections for non-metallic minerals in NSW published by ABARE (ABARE, 2006).

Derived projection factors are provided in Table 3-83 and illustrated in Figure 3-31.

3.20 Paint Manufacturing

3.20.1 Emission Sources and Associated Releases to Air

Commercial paint manufacturing businesses have been identified using the NSW WorkCover database for hazardous materials and the telephone directory for NSW. A total of 24 commercial paint manufacturing businesses have been identified from these sources to be within the GMR.

Commercial businesses within the GMR that are included in the emissions inventory under this category are outlined in Table 3-125.

Business	Business	Business	Business	Business				
Dusiness	ID	Street	Suburb	Post Code				
ROBERTSON'S PAINTS	2964	6 CHRISTIE ST & POWER	ST MARYS	2760				
		ST						
LACNAM PAINTS AUST	2970	78-80 MANDOON RD	GIRRAWEEN	2145				
BARLOWORLD COATINGS (AUST)	2971	11-13 POWERS RD	SEVEN HILLS	2147				
PTY LTD								
AUSTRALIAN PRINTERS SUPPLIES	2972	77 GOVERNOR	CHIPPING	2170				
PTY LTD		MACQUARIE DR	NORTON					
AMERON COATINGS	2985	183 PROSPECT HIGHWAY	SEVEN HILLS	2147				
HANNAH ZEV HOLDINGS PTY	7073	44 ORCHARD ROAD	BROOKVALE	2100				
LIMITED								

Table 3-125: Commercial businesses included in the emissions inventory

The emission sources and associated releases to air from commercial paint manufacturing are outlined in Table 3-126.

Source	Emissions to Air
Direct entry - PM measurement	PM
Direct entry - VOC measurement	VOC
Fuel storage (diesel)	VOC
Fuel storage (jet fuel)	VOC
Fuel storage (light fuel oil)	VOC
Paint production (paint grinding & mixing)	PM, VOC
Paint production (varnish grinding & mixing)	VOC
Printing ink manufacturing	PM, VOC
Surface coating (enamel)	VOC
Surface coating (paint - solvent based)	VOC
Wheel generated dust (paved roads)	PM
Wheel generated dust (unpaved roads)	PM

Table 3-126: Paint manufacturing - emission sources

The locations of commercial paint manufacturing businesses are shown in Figure 3-43.

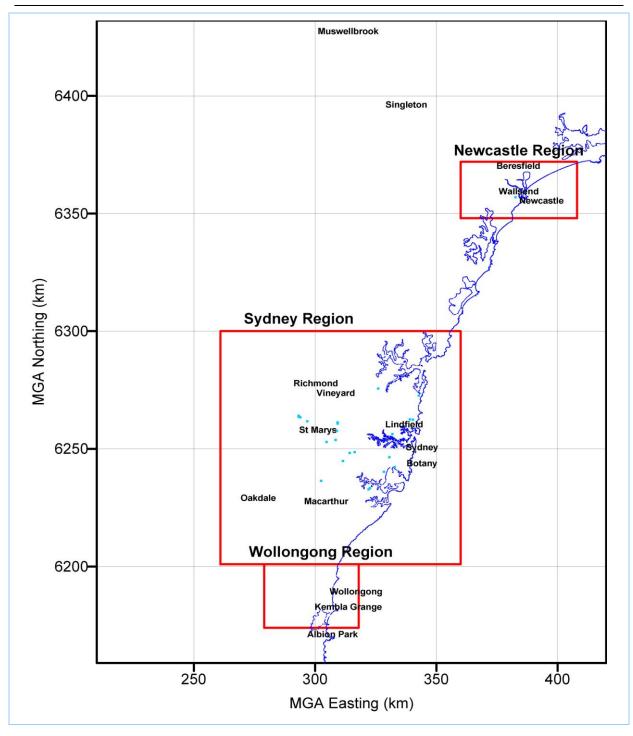


Figure 3-43: Paint manufacturers within the GMR

3.20.2 Emission Estimation Methodology

Data sources for emission and speciation factors used to estimate emissions from paint manufacturing businesses are provided in Table 3-127.

Substance	Emission Source	Emission Factor Source
CO, NO _x ¹ , SO ₂	Direct entry - VOC	Site specific emission estimates
&	measurement	
VOC	Fuel storage (diesel)	TANKS 4.09D software (USEPA, 2006d)
	Fuel storage (jet fuel)	
	Fuel storage (light fuel oil)	
	Paint production (paint	AP42 Chapter 6.4 Paint and Varnish (USEPA, 1983)
	grinding & mixing)	
	Paint production (varnish	
	grinding & mixing)	
	Printing ink manufacturing	
	Surface coating (enamel)	VOCs from Surface Coatings Final Report (ENVIRON,
	Surface coating (paint - solvent	2009)
	based)	
PM _{2.5} , PM ₁₀ &	Direct entry - PM measurement	Site specific emission estimates
TSP	Paint production (paint	AP42 Chapter 6.4 Paint and Varnish (USEPA, 1983)
	grinding & mixing)	
	Printing ink manufacturing	
	Wheel generated dust (paved	AP42 Chapter 13.2.1 Paved Roads (USEPA, 2011)
	roads)	
	Wheel generated dust	AP42 Chapter 13.2.2 Unpaved Roads (USEPA, 2006c)
	(unpaved roads)	
Speciated	Direct entry - VOC	Site specific emission estimates
organics	measurement	
(including		Average diesel vapour concentration from diesel
methane)	Fuel storage (diesel)	produced at BP refineries around Australia (BP, 2001)
	Fuel storage (jet fuel)	SPECIATEv4.2 (Profile ID=0100) (USEPA, 2008c)
		Average diesel vapour concentration from diesel
	Fuel storage (light fuel oil)	produced at BP refineries around Australia (BP, 2001b)
	Paint production (paint	SPECIATEv4.2 (Profile ID=1094) (USEPA, 2008c)
	grinding & mixing)	
	Paint production (varnish	
	grinding & mixing)	
	Printing ink manufacturing	
	Surface coating (enamel)	SPECIATEv4.2 (Profile ID=1018) (USEPA, 2008c)
	Surface coating (paint - solvent	SPECIATEv4.2 (Profile ID=1003) (USEPA, 2008c)
	based)	
Speciated	Wheel generated dust (paved	California Emissions Inventory and Reporting System -
particulate matter	roads)	Paved Road Dust, 1997 (CARB, 2007)
	Wheel generated dust	California Emissions Inventory and Reporting System -
	(unpaved roads)	Unpaved Road Dust, 1997 (CARB, 2007)
Ammonia	NA	NA
Sulfuric or	NA	NA
hydrochloric acid		
PAH	NA	NA
PCDD/PCDF	NA	NA
Greenhouse gases	NA	NA
(CO ₂ and N ₂ O)		

Table 3-127: Emission and speciation factors for all substances from paint manufacturing

3.20.3 Activity Data

Site specific data supplied in the returned commercial survey questionnaire from six businesses for the 2003 air emissions inventory have been used to estimate emissions for the 2008 calendar year. The number of respondent businesses is provided in Table 3-123.

Table 3-128: Number of paint manufacturing businesses in the GMR				
	Number	Number	Number	
ANZSIC Class	of	of	of	
	Businesses	Businesses	Non-Respondent	
	Identified	Responded	NPI Businesses	
Paint manufacturing	24	6	0	

No emission estimates have been performed for non-respondent businesses as there are no relevant sources of estimation data available in the public arena.

3.20.4 Temporal Variation of Emissions

Data provided in returned commercial survey questionnaires have been used to estimate temporal variation of emissions. Monthly variations have been accounted for if data have been provided. It has been assumed that emissions remain constant throughout the operating hours of the business.

3.20.5 Emission Estimates

Estimated emissions from commercial paint manufacturing businesses within the GMR, Sydney, Newcastle, Wollongong and Non Urban regions are provided in Table 3-129.

Substance	Estimated Emissions (kg/year)					
Substance	Sydney	Newcastle	Wollongong	Non Urban	GMR a	
1,3 BUTADIENE	0	0	0	0	0	
ACETALDEHYDE	0	0	0	0	0	
BENZENE	0	0	0	0	0	
CARBON MONOXIDE	0	0	0	0	0	
FORMALDEHYDE	0	0	0	0	0	
ISOMERS OF XYLENE	4,490	0	0	0	4,490	
LEAD & COMPOUNDS	138	0	0	0	138	
OXIDES OF NITROGEN	0	0	0	0	0	
PARTICULATE MATTER ≤ 10 µm	29,300	0	0	0	29,300	
PARTICULATE MATTER ≤ 2.5 µm	28,300	0	0	0	28,300	
PERCHLOROETHYLENE	0	0	0	0	0	
POLYCYCLIC AROMATIC HYDROCARBONS	0	0	0	0	0	
SULFUR DIOXIDE	0	0	0	0	0	
TOLUENE	41,000	0	0	0	41,000	
TOTAL SUSPENDED PARTICULATE	34,300	0	0	0	34,300	
TOTAL VOLATILE ORGANIC COMPOUNDS	124,000	0	0	0	124,000	
TRICHLOROETHYLENE	0	0	0	0	0	
^a Totals may not appear additive due to rounding						

Table 3-129: Estimated emissions from paint manufacturing

Totals may not appear additive due to rounding

3.20.6 Emission Projection Methodology

Projection factors for paint manufacturing have been derived based on final energy consumption projections for other (manufacturing) industry in NSW published by ABARE (ABARE, 2006).

Derived projection factors are provided in Table 3-75 and illustrated in Figure 3-28.

3.21 Steel Pipe and Tube Manufacturing

3.21.1 Emission Sources and Associated Releases to Air

Commercial steel pipe and tube manufacturing businesses have been identified using the NSW WorkCover database for hazardous materials and the telephone directory for NSW. A total of seven commercial steel pipe and tube manufacturing businesses have been identified from these sources to be within the GMR.

Commercial businesses within the GMR that are included in the emissions inventory under this category are outlined in Table 3-130.

Business	Business ID	Business Street	Business Suburb	Business Post Code
ONESTEEL TRADING PTY LIMITED	3586	WEST DAPTO RD	KEMBLA GRANGE	2526
ROLADUCT SPIRAL TUBING PL	3587	1820-1880 ELIZABETH DRIVE	KEMPS CREEK	2171
AAP DISTRIBUTORS P/L	3591	31 MONRO AVE	SUTHERLAND	2232

Table 3-130: Commercial businesses included in the emissions inventory

The emission sources and associated releases to air from commercial steel pipe and tube manufacturing are outlined in Table 3-131.

	0
Source	Emissions to Air
Metal cutting (mild steel, 8 mm)	NO _x , magnesium oxide fume
Steel production (furnace, electric induction)	PM, PCDD/F
Wastewater treatment	VOC, ammonia
Welding	PM
Wheel generated dust (paved roads)	PM
Wheel generated dust (unpaved roads)	PM

Table 3-131: Steel pipe and tube manufacturing - emission sources

The locations of commercial steel pipe and tube manufacturing businesses are shown in Figure 3-44.

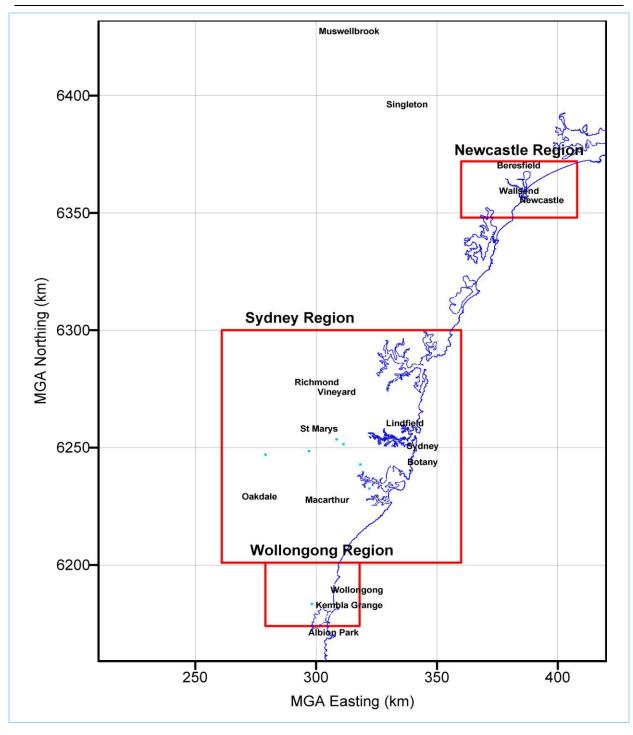


Figure 3-44: Steel pipe and tube manufacturers within the GMR

3.21.2 Emission Estimation Methodology

Data sources for emission and speciation factors used to estimate emissions from steel pipe and tube manufacturing businesses are provided in Table 3-132.

Substance	Emission Source	Emission Factor Source
CO, NO _x ¹ , SO ₂	Metal cutting (mild steel, 8	NPI EET Manual for Structural and Fabricated Metal
&	mm)	Product Manufacture (EA, 1999i)
VOC	Wastewater treatment	NGGIC Workbook for Waste (NGGIC, 1996)
PM _{2.5} , PM ₁₀ &	Steel production (furnace,	AP42 Chapter 12.5 Iron and Steel Production (USEPA,
TSP	electric induction)	1986b)
	Welding	NPI EET Manual for Fugitive Emissions (assuming
		manual metal arc welding and electrode type 14Mn-4Cr) (EA, 1999f)
	Wheel generated dust (paved roads)	AP42 Chapter 13.2.1 Paved Roads (USEPA, 2011)
	Wheel generated dust (unpaved roads)	AP42 Chapter 13.2.2 Unpaved Roads (USEPA, 2006c)
Speciated	Wastewater treatment	CEIDARS Organic Gas Speciation Profiles (Profile
organics		ID=9016) (assuming that unidentified portion is methane)
(including		(CARB, 2005)
methane)		
Speciated	Wheel generated dust - paved	California Emissions Inventory and Reporting System -
particulate matter	roads	Paved Road Dust, 1997 (CARB, 2007)
	Wheel generated dust – unpaved roads	California Emissions Inventory and Reporting System - Unpaved Road Dust, 1997 (CARB, 2007)
Ammonia	Wastewater treatment	Estimating Ammonia Emissions from Anthropogenic
		Nonagricultural Sources - Draft Final Report (Pechan,
		2004)
Sulfuric or	NA	NA
hydrochloric acid		
РАН	NA	NA
PCDD/PCDF	Steel production (furnace,	Technical Report Number 3, Inventory of Dioxin
	electric induction)	Emissions in Australia, 2004 (Bawden et al, 2004)
Greenhouse gases	NA	NA
(CO ₂ and N_2O)		

Table 3-132: Emission and speciation factors for all substances from steel pipe and tube manufacturing

3.21.3 Activity Data

Site specific data supplied in the returned commercial survey questionnaire from six businesses for the 2003 air emissions inventory have been used to estimate emissions for the 2008 calendar year. No emission estimates have been performed for non-respondent businesses as there are no relevant sources of estimation data available in the public arena.

The number of respondent businesses is provided in Table 3-133.

Tuble o 100. Humber of non-une steer manufacturing buomesses in the Orint						
	Number	Number	Number			
ANZSIC Class	of	of	of			
	Businesses	Businesses	Non-Respondent			
	Identified	Responded	NPI Businesses			
Steel pipe and tube manufacturing	7	3	0			

Table 3-133: Number of iron and steel manufacturing businesses in the GMR

3.21.4 Temporal Variation of Emissions

Data provided in returned commercial survey questionnaires have been used to estimate temporal variation of emissions. Monthly variations have been accounted for if data has been provided. It has been assumed that emissions remain constant throughout the operating hours of the business.

3.21.5 Emission Estimates

Estimated emissions from commercial steel pipe and tube manufacturing businesses within the GMR, Sydney, Newcastle, Wollongong and Non Urban regions are provided in Table 3-134.

Table 5-154. Estimated emissions from steer pipe and tube manufacturing						
Substance	Estimated Emissions (kg/year)					
Substance	Sydney	Newcastle	Wollongong	Non Urban	GMR a	
1,3 BUTADIENE	0	0	0	0	0	
ACETALDEHYDE	0	0	0	0	0	
BENZENE	0	0	0	0	0	
CARBON MONOXIDE	0	0	0	0	0	
FORMALDEHYDE	0.0286	0	0	0	0.0286	
ISOMERS OF XYLENE	0.171	0	0	0	0.171	
LEAD & COMPOUNDS	0.115	0	0	0	0.115	
OXIDES OF NITROGEN	744	0	0	0	744	
PARTICULATE MATTER ≤ 10 µm	1,270	0	3,510	0	4,780	
PARTICULATE MATTER ≤ 2.5 μm	1,050	0	3,510	0	4,560	
PERCHLOROETHYLENE	0.2	0	0	0	0.2	
POLYCYCLIC AROMATIC HYDROCARBONS	0	0	0	0	0	
SULFUR DIOXIDE	0	0	0	0	0	
TOLUENE	0.114	0	0	0	0.114	
TOTAL SUSPENDED PARTICULATE	1,910	0	3,900	0	5,810	
TOTAL VOLATILE ORGANIC COMPOUNDS	1.23	0	0	0	1.23	
TRICHLOROETHYLENE	0.0286	0	0	0	0.0286	

Table 3-134: Estimated emissions from steel pipe and tube manufacturing

Totals may not appear additive due to rounding

3.21.6 Emission Projection Methodology

Projection factors for steel pipe and tube manufacturing have been derived based on final energy consumption projections for other (manufacturing) industry in NSW published by ABARE (ABARE, 2006).

Derived projection factors are provided in Table 3-75 and illustrated in Figure 3-28.

3.22 Metal Coating and Finishing

3.22.1 Emission Sources and Associated Releases to Air

Commercial metal coating and finishing businesses have been identified using the NSW WorkCover database for hazardous materials and the telephone directory for NSW. A total of 111 commercial metal coating and finishing businesses have been identified from these sources to be within the GMR.

Commercial businesses within the GMR that are included in the emissions inventory under this category are outlined in Table 3-135.

Business	Business	Business	Business	Business
Dusiness	ID	Street	Suburb	Post Code
N/A	3630	LYTTON RD &	MOSS VALE	2577
		LACKEY RD		
THE BRONZING STUDIO	3644	UNIT 40 / 5 ANELLA	CASTLE HILL	2154
		AVENUE		
GOWS HEAT TREATMENT P/L	3646	18 DAISY ST	REVESBY	2212
URETHANE COATINGS P/L	3658	10 POWELLS RD	BROOKVALE	2100
SANKEY AUSTRALIA P/L	3663	INGALL ST	MAYFIELD	2304
A-1 HARD CHROME PTY LTD	3665	14 WETHERILL ST	LIDCOMBE	2141
BLU-CHROME PTY LTD	3676	137 ELDRIDGE RD	BANKSTOWN	2200
CAPRAL ALUMINIUM MILPERRA	3680	61 ASHFORD	MILPERRA	2214
		AVENUE		
CHROME FACTORY	3687	64 WOODFIELD BLV	CARINGBAH	2229
DIAMOND HARD CHROME PTY	3691	27 COSGROVE RD	ENFIELD	2136
LTD				
GONINAN PLATERS	3702	2 GEORGETOWN RD	GEORGETOWN	2298
GONINAN PLATERS PTY LTD	3703	7 COORABAN RD	MILPERRA	2214
HUNTER GALVANIZING PTY LTD	3705	13 OLD PUNT RD	TOMAGO	2322
INDUSTRIAL GALVANIZERS	3709	312 PACIFIC HWY	HEXHAM	2322
INDUSTRIAL HARDCHROME PTY	3712	41 EGERTON ST	SILVERWATER	2128
LTD				
RACK ZINC PLATING PTY LTD	3720	113 WOODPARK RD	SMITHFIELD	2164
ROLL SURFACE TECHNOLOGIES	3723	SPRINGHILL RD	WOLLONGONG	2500
PTY LIMITED				
SEC PLATING PTY LTD	3724	105 LAKEMBA ST	BELMORE	2192
SWIFT ELECTROPLATERS	3732	53 VORE ST	SILVERWATER	2128
SYDNEY GALVANIZING PTY LTD	3733	2/12 ASH RD	PRESTONS	2170
ANZPAC SERVICES	7031	32 BRITTON STREET	SMITHFIELD	2164
VULKAN INDUSTRIES	7040	3 GARNET STREET	ROCKDALE	2216
DIAMOND HARD CHROME PTY	7046	27 COSGROVE ROAD	ENFIELD	2136
LTD				
A1 HARD CHROME	7052	14 WETHERILL	LIDCOMBE	2141
		STREET		
INDUSTRIAL & DECORATIVE	7062	79-81 MARS ROAD	LANE COVE	2066
GOLD PLATING				
ALEXANDRIA PLATING PTY LTD	7063	74 PRINCESS AVE	ROSEBERRY	2018
REGENTS PARK ELECTROPLATING	7076	41 CARLINGFORD	REGENTS PARK	2143
PTY LTD		STREET		
BLU-CHROME PTY LIMITED	7077	137 ELDRIDGE ROAD	BANKSTOWN	2200
R.E. BATGER PTY LTD	7078	200 RAILWAY	GUILDFORD	2161
		TERRACE		
APPAREL FITTINGS AUSTRALASIA	7087	67 JOHN STREET	LEICHHARDT	2040
PTY LTD				
EATON ELECTRIC SYSTEMS PTY	7092	10 KENT ROAD	MASCOT	2020
LTD				

Table 3-135: Commercial	businesses	included in	the emissions	inventorv
rable 5 100. Commercial	Dubinesses	menuacu m	the chilosions	In ventor y

2008 Calendar Year Commercial Emissions: Results 3. Data Sources and Results

Business	Business ID	Business Street	Business Suburb	Business Post Code
ALL PAINT POWDER COATERS	7095	131 ELDRIDGE ROAD	CONDELL	2200
			PARK	
LACHLAN ELECTROPLATERS AND	7098	39-41 FITZPATRICK	REVESBY	2212
DIECASTERS		STREET		
ASTOR BASE METALS	7106	512 PUNCHBOWL	LAKEMBA	2195
		ROAD		
PIONEER PLATING	7107	1 MITCHELL ROAD	MOOREBANK	2170

The emission sources and associated releases to air from metal coating and finishing are outlined in Table 3-136.

Table 3-136: Metal coating and finishing – emission sources

Source	Emissions to Air
Acid storage (hydrochloric)	Hydrochloric acid
Acid storage (sulfuric)	Sulfuric acid
Boiler (LPG)	Combustion products
Boiler (natural gas)	Combustion products
Chromic acid anodising	PM
Electroplating (copper sulphate)	PM
Electroplating (hard chromium)	PM
Fuel storage (diesel)	VOC
Fuel storage (ethanol)	VOC
Fugitive emissions (VOC)	VOC
Galvanising	PM
Internal combustion engine (natural gas, 4-stroke lean-	Combustion products
burn)	
Metal cutting (mild steel, 8 mm)	Magnesium oxide fume, NO _x
Steel production (furnace, electric induction)	PM, PCDD/F
Surface coating (enamel)	VOC
Surface coating (lacquer)	VOC
Surface coating (paint - solvent based)	VOC
Surface coating (primer)	VOC
Surface coating (thinner)	VOC
Wastewater treatment	VOC, ammonia
Welding	PM
Wheel generated dust (paved roads)	PM
Wheel generated dust (unpaved roads)	PM
Zinc production (crucible melting furnace, fugitive)	PM
Zinc production (kettle pot melting furnace, fugitive)	PM
Zinc production (kettle pot melting furnace, point)	PM, PCDD/F, SO ₂ , NO _x

The locations of commercial metal coating and finishing businesses are shown in Figure 3-44.

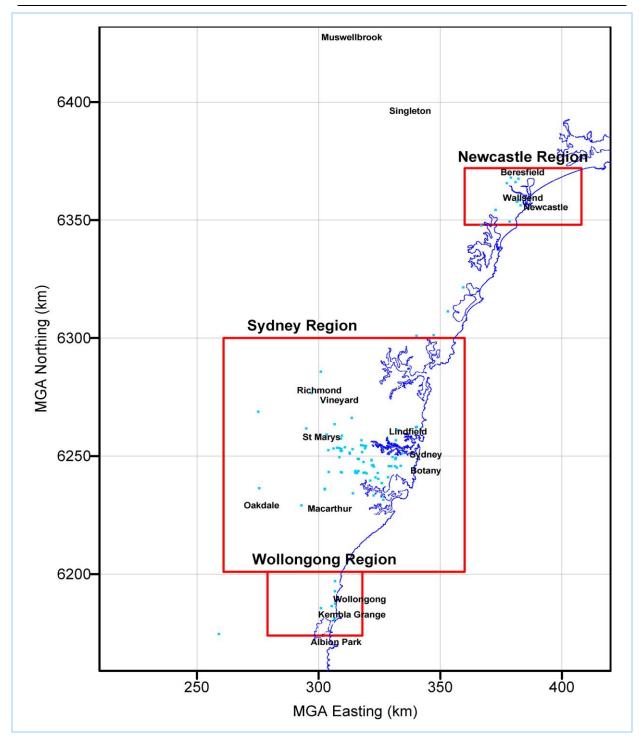


Figure 3-45: Metal coating and finishing businesses within the GMR

3.22.2 Emission Estimation Methodology

Data sources for emission and speciation factors used to estimate emissions from metal coating and finishing businesses are provided in Table 3-137.

Substance	Emission Source	Emission Factor Source
CO, NO _x ¹ , SO ₂	Boiler (LPG)	AP42 Chapter 1.5 LPG Combustion (USEPA, 2008a)
&	Boiler (natural gas)	AP42 Chapter 1.4 Natural Gas Combustion (USEPA, 1998b)
VOC	Fuel storage (diesel)	TANKS 4.09D software (USEPA, 2006d)
	Fuel storage (ethanol)	
	Fugitive emissions (VOC)	Site specific emission estimates
	Internal combustion engine	NPI EET Manual for Combustion Engines v3.0 (DEWHA,
	(natural gas, 4-stroke lean-	2008)
	burn)	
	Metal cutting (mild steel, 8	NPI EET Manual for Structural and Fabricated Metal Product
	mm)	Manufacture (EA, 1999i)
	Surface coating (enamel)	VOCs from Surface Coatings Final Report (ENVIRON, 2009)
	Surface coating (lacquer)	
	Surface coating (paint -	
	solvent based)	
	Surface coating (primer)	
	Surface coating (thinner)	
	Wastewater treatment	NGGIC Workbook for Waste (NGGIC, 1996)
	Zinc production (kettle pot	NPI EET Manual for Non-Ferrous Foundries, v1.0 (EA,
	melting furnace, point)	1999h)
PM _{2.5} , PM ₁₀ &	Boiler (LPG)	AP42 Chapter 1.5 LPG Combustion (USEPA, 2008a)
TSP	Boiler (natural gas)	AP42 Chapter 1.4 Natural Gas Combustion (USEPA, 1998b)
	Chromic acid anodising	AP42 Chapter 12.20 Electroplating (USEPA, 1996c)
	Electroplating (copper	
	sulphate)	
	Electroplating (hard	
	chromium)	
	Galvanising	NPI EET Manual for Galvanising v1.1 (EA, 2001a)
	Internal combustion engine	NPI EET Manual for Combustion Engines v3.0 (DEWHA,
	(natural gas, 4-stroke lean-	2008)
	burn)	
	Steel production (furnace,	AP42 Chapter 12.13 Steel Foundries (USEPA, 1995d)
	electric induction)	
	Welding	NPI EET Manual for Fugitive Emissions (assuming manual
	TATh and more than devot	metal arc welding and electrode type 14Mn-4Cr) (EA, 1999f)
	Wheel generated dust (paved roads)	AP42 Chapter 13.2.1 Paved Roads (USEPA, 2011)
	Wheel generated dust	AP42 Chapter 13.2.2 Unpaved Roads (USEPA, 2006c)
	(unpaved roads)	AI 42 Chapter 15.2.2 Onpaved Roads (USEI A, 2000C)
	Zinc production (crucible	NPI EET Manual for Non-Ferrous Foundries, v1.0 (EA,
	melting furnace, fugitive)	1999h)
	Zinc production (kettle pot	
	melting furnace, fugitive)	
	Zinc production (kettle pot	
	melting furnace, point)	
Speciated	Boiler (LPG)	AP42 Chapter 1.5 LPG Combustion (USEPA, 2008a)
organics	Boiler (natural gas)	SPECIATEv4.2 (Profile ID=0003) (USEPA, 2008c)
(including	Fuel storage (diesel)	Average diesel vapour concentration from diesel produced at
methane)		BP refineries around Australia (BP, 2001b)
ŕ	Fuel storage (ethanol)	Mass balance (100% ethanol)

Table 3-137: Emission and speciation factors for all substances from metal coating and finishing

Air Emissions Inventory for the Greater Metropolitan Region of New South Wales 3. *Data Sources and Results*

Substance	Emission Source	Emission Factor Source
	Fugitive emissions (VOC)	Mass balance
	Internal combustion engine	SPECIATEv4.2 (Profile ID=1001) (USEPA, 2008c)
	(natural gas, 4-stroke lean-	
	burn)	
	Surface coating (enamel)	SPECIATEv4.2 (Profile ID=1018) (USEPA, 2008c)
	Surface coating (lacquer)	SPECIATEv4.2 (Profile ID=1017) (USEPA, 2008c)
	Surface coating (paint -	SPECIATEv4.2 (Profile ID=1003) (USEPA, 2008c)
	solvent based)	
	Surface coating (primer)	SPECIATEv4.2 (Profile ID=1019) (USEPA, 2008c)
	Surface coating (thinner)	SPECIATEv4.2 (Profile ID=1016) (USEPA, 2008c)
	Wastewater treatment	CEIDARS Organic Gas Speciation Profiles (Profile ID=1402)
		(assuming that unidentified portion is methane) (CARB,
		2005)
Speciated	Boiler (LPG)	AP-42 Chapter 1.4, Natural Gas Combustion (USEPA, 1998b)
particulate matter		(assuming the same emissions per joule combusted as
		natural gas)
	Boiler (natural gas)	AP42 Chapter 1.4 Natural Gas Combustion (USEPA, 1998b)
	Chromic acid anodising	AP42 Chapter 12.20 Electroplating (USEPA, 1996c)
	Electroplating (copper	
	sulphate)	
	Electroplating (hard	
	chromium)	
	Galvanising	NPI EET Manual for Galvanising v1.1 (EA, 2001a)
	Internal combustion engine	CEIDARS PM Profile 123 for speciated metals (CARB, 2007)
	(natural gas, 4-stroke lean-	
	burn)	
	Welding	NPI EET Manual for Fugitive Emissions (assuming manual
		metal arc welding and electrode type 14Mn-4Cr) (EA, 1999f)
	Wheel generated dust	California Emissions Inventory and Reporting System -
	(paved roads)	Paved Road Dust, 1997 (CARB, 2007)
	Wheel generated dust	California Emissions Inventory and Reporting System -
	(unpaved roads)	Unpaved Road Dust, 1997 (CARB, 2007)
Ammonia	Boiler (LPG)	Estimating Ammonia Emissions from Anthropogenic
	Boiler (natural gas)	Nonagricultural Sources - Draft Final Report (Pechan, 2004)
	Internal combustion engine	
	(natural gas, 4-stroke lean-	
	burn)	
	Wastewater treatment	
Sulfuric or	Acid storage	Raoult's law (Raoult, M, 1882a; 1882b, 1887a; 1887b), using
hydrochloric acid	(hydrochloric)	chemical properties from Perry and Green (1997)
	Acid storage (sulfuric)	
PAH	Boiler (LPG)	AP-42 Chapter 1.4, Natural Gas Combustion (USEPA, 1998b)
		(assuming the same emissions per joule combusted as
		natural gas)
	Boiler (natural gas)	AP-42 Chapter 1.4, Natural Gas Combustion (USEPA, 1998b)
	Internal combustion engine	AP-42 Chapter 3.2, Natural Gas-fired Reciprocating Engines
	(natural gas, 4-stroke lean-	(USEPA, 2000)
	(initiatian gus, i stroke lean	
	burn)	
PCDD/PCDF		Technical Report Number 3, Inventory of Dioxin Emissions in Australia, 2004 (Bawden et al, 2004)

2008 Calendar Year Commercial Emissions: Results 3. Data Sources and Results

Substance	Emission Source	Emission Factor Source
	Steel production (furnace,	
	electric induction)	
	Zinc production (kettle pot	
	melting furnace, point)	
Greenhouse gases	Boiler (LPG)	National Greenhouse Accounts (NGA) Factors June 2009,
(CO ₂ and N ₂ O)	Boiler (natural gas)	(DCC, 2009)
	Internal combustion engine	
	(natural gas, 4-stroke lean-	
	burn)	

3.22.3 Activity Data

Site specific data supplied in the returned commercial survey questionnaire from 34 businesses for the 2003 air emissions inventory have been used to estimate emissions for the 2008 calendar year. One non-respondent business that reported emissions to the NPI but did not respond to the commercial survey has also been included in the emissions inventory. The number of respondent businesses is provided in Table 3-123.

Table 3-138: Number of metal coating and finishing businesses in the GMR

	Number	Number	Number
ANZSIC Class	of	of	of
AINZSIC Class	Businesses	Businesses	Non-Respondent
	Identified	Responded	NPI Businesses
Metal coating and finishing	111	34	1

No emission estimates have been performed for non-respondent businesses that do not report to the NPI as there are no relevant sources of estimation data available in the public arena.

3.22.4 Temporal Variation of Emissions

Data provided in the returned commercial survey questionnaire have been used to estimate temporal variation of emissions. Monthly variations have been accounted for where data has been provided. The business with emissions estimated using reported NPI emissions has been assumed to operate 24 hours a day. It has been assumed that emissions remain constant throughout the operating hours of the business.

3.22.5 Emission Estimates

Estimated emissions from commercial metal coating and finishing businesses within the GMR, Sydney, Newcastle, Wollongong and Non Urban regions are provided in Table 3-139.

Estimated Emissions (kg/year)								
Substance								
	Sydney	Newcastle	Wollongong	Non Urban	GMR a			
1,3 BUTADIENE	0	0	0	0	0			
ACETALDEHYDE	0	0	0	0	0			
BENZENE	16.1	14.6	0	0	30.7			
CARBON MONOXIDE	2,700	2,460	0	0	5,160			
FORMALDEHYDE	53.6	29.3	0	0	82.9			
ISOMERS OF XYLENE	1,670	77.8	0	0	1,750			
LEAD & COMPOUNDS	0.211	1.37	0	0	1.58			
OXIDES OF NITROGEN	3,830	28,600	0	0	32,400			
PARTICULATE MATTER ≤ 10 µm	9,850	4,790	0	0	14,600			
PARTICULATE MATTER ≤ 2.5 μm	9,280	3,190	0	0	12,500			
PERCHLOROETHYLENE	150	0.00488	0	0	150			
POLYCYCLIC AROMATIC HYDROCARBONS	0.0221	0.0201	0	0	0.0422			
SULFUR DIOXIDE	16.8	15.3	0	0	32.1			
TOLUENE	7,190	94.2	0	0	7,280			
TOTAL SUSPENDED PARTICULATE	11,300	13,700	0	0	25,000			
TOTAL VOLATILE ORGANIC COMPOUNDS	20,900	590	0	0	21,500			
TRICHLOROETHYLENE	21.4	0.000697	0	0	21.4			
a Totals may not appear additive due to rounding		•	•	•				

Table 3-139: Estimated emissions from metal coating and finishing

3.22.6 Emission Projection Methodology

Projection factors for metal coating and finishing have been derived based on final energy consumption projections for other (manufacturing) industry in NSW published by ABARE (ABARE, 2006).

Derived projection factors are provided in Table 3-75 and illustrated in Figure 3-28.

3.23 Other ANZSIC Classes

3.23.1 Emission Sources and Associated Releases to Air

Businesses were identified using the following sources (DECC, 2007):

- NSW WorkCover database for hazardous materials; and \geq
- ≻ NSW telephone directory.

Summary statistics for each ANZSIC Class included in this section are presented in Table 3-140.

3. Data Sources and Results

Table 3-140: Summary statistics for commercial businesses included in 'Other ANZSIC' classes									
ANZSIC Class	Number of Businesses Identified ^a	Number of Businesses Surveyed ^b	Number of Businesses Responded ^c	Number of Non- Respondent NPI Businesses ^d	Number of Businesses Included in the Inventory e	Percentage of Businesses Included in the Inventory			
Agricultural machinery manufacturing	1	1	1	0	1	100%			
Aircraft manufacturing	6	6	0	1	1	17%			
Aluminium rolling, drawing, extruding	2	0	0	2	2	100%			
Architectural aluminium product manufacturing	3	3	0	0	0	0%			
Automotive component manufacturing n.e.c.	11	11	4	0	4	36%			
Basic non-ferrous metal manufacturing n.e.c.	6	5	3	0	3	50%			
Battery manufacturing	4	4	1	0	1	25%			
Beer and malt manufacturing	3	0	0	3	3	100%			
Biscuit manufacturing	2	2	0	2	2	100%			
Cake and pastry manufacturing	2	2	1	0	1	50%			
Ceramic product manufacturing n.e.c.	7	7	1	0	1	14%			
Ceramic tile and pipe manufacturing	2	2	0	0	0	0%			
Chemical wholesaling	30	27	6	0	6	20%			
Clay brick manufacturing	4	4	0	0	0	0%			
Clothing manufacturing n.e.c.	4	4	0	0	0	0%			
Confectionery manufacturing	7	5	4	1	5	71%			
Corrugated paperboard container manufacturing	2	1	0	2	2	100%			
Dairy product manufacturing n.e.c.	1	1	0	0	0	0%			
Electric cable and wire manufacturing	2	2	1	0	1	50%			
Electrical and equipment manufacturing n.e.c.	20	20	3	0	3	15%			
Electronic equipment manufacturing n.e.c.	4	4	1	0	1	25%			
Explosive manufacturing	5	3	0	2	2	40%			
Fabricated metal product manufacturing n.e.c.	46	32	22	0	22	48%			
Fabricated wood manufacturing	1	1	0	0	0	0%			
Fertiliser manufacturing	1	1	0	0	0	0%			
Fruit and vegetable processing	3	3	1	0	1	33%			

Air Emissions Inventory for the Greater Metropolitan Region of New South Wales

3. Data Sources and Results

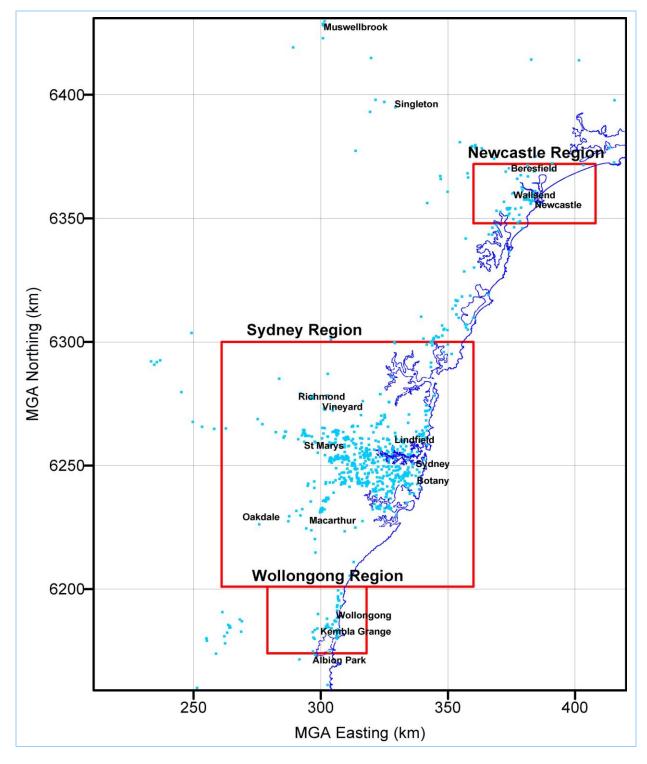
ANZSIC Class	Number of Businesses Identified ^a	Number of Businesses Surveyed ^b	Number of Businesses Responded ^c	Number of Non- Respondent NPI Businesses ^d	Number of Businesses Included in the Inventory ^e	Percentage of Businesses Included in the Inventory
Furniture manufacturing n.e.c.	38	38	4	0	4	11%
Gas supply	6	6	0	6	6	100%
Ice cream manufacturing	1	1	1	0	1	100%
Industrial gas manufacturing	10	10	2	0	2	20%
Ink manufacturing	7	7	2	0	2	29%
Inorganic industrial chemical manufacturing n.e.c.	2	1	0	1	1	50%
Iron and steel casting and forging	1	1	0	0	0	0%
Leather tanning and fur dressing	2	2	0	0	0	0%
Lifting and material handling equipment manufacturing	1	1	1	0	1	100%
Log sawmilling	1	0	1	0	1	100%
Medicinal and pharmaceutical product manufacturing	15	15	3	0	3	20%
Metal container manufacturing	3	3	0	0	0	0%
Milk and cream processing	1	1	1	0	1	100%
Mining and construction machinery manufacturing	9	9	2	0	2	22%
Non-building construction n.e.c.	13	13	2	0	2	15%
Non-ferrous metal casting	1	1	1	0	1	100%
Non-metallic mineral product manufacturing n.e.c.	1	0	1	0	1	100%
Nursing homes	373	0	0	0	0	0%
Oil and fat manufacturing	1	0	1	0	1	100%
Organic industrial chemical manufacturing n.e.c.	2	1	1	0	1	50%
Paper product manufacturing n.e.c.	5	5	2	1	3	60%
Petroleum product wholesaling	86	80	11	20	31	36%
Plastic bag and film manufacturing	10	10	3	0	3	30%
Plastic injection moulded product manufacturing	155	153	13	1	14	9%
Prepared animal and bird feed manufacturing	4	3	1	2	3	75%
Professional and scientific equipment manufacturing n.e.c.	1	0	0	1	1	100%
Rail transport	1	1	1	0	1	100%
Railway equipment manufacturing	1	0	0	1	1	100%

2008 Calendar Year Commercial Emissions: Results

3. Data Sources and Results

ANZSIC Class	Number of Businesses Identified ^a	Number of Businesses Surveyed ^b	Number of Businesses Responded ^c	Number of Non- Respondent NPI Businesses ^d	Number of Businesses Included in the Inventory ^e	Percentage of Businesses Included in the Inventory
Road and bridge construction	26	23	9	0	9	35%
Rubber product manufacturing n.e.c.	8	8	6	0	6	75%
Scientific research	1	0	0	1	1	100%
Services to air transport	1	0	1	0	1	100%
Shipbuilding	1	1	0	0	0	0%
Soap and other detergent manufacturing	7	7	2	0	2	29%
Soft drink, cordial and syrup manufacturing	4	3	1	2	3	75%
Solid paperboard container manufacturing	3	3	2	0	2	67%
Spirit manufacturing	3	3	1	1	2	67%
Spring and wire product manufacturing	13	13	5	1	6	46%
Structural metal product manufacturing n.e.c.	4	3	2	1	3	75%
Structural steel fabricating	1	1	1	0	1	100%
Synthetic resin manufacturing	7	3	5	0	5	71%
Transport equipment manufacturing n.e.c.	1	1	0	0	0	0%
Waste disposal services	23	0	23	0	23	100%
Water supply	3	0	0	3	3	100%
Water transport terminals	2	2	0	0	0	0%
Wood product manufacturing n.e.c.	13	13	2	0	2	15%
Wooden furniture and upholstered seat manufacturing	11	11	1	0	1	9%
Wooden structural component manufacturing	14	14	1	0	1	7%
TOTAL	1,076	622	165	55	220	20%

a The number of businesses identified indicates the number of identified businesses operating in 2008.


b The number of businesses surveyed indicates the number of businesses surveyed for the 2003 air emissions inventory and includes facilities that have been 'de-scheduled' between 2003 and 2008 that were moved from the industrial emissions inventory to the commercial emissions inventory

c Indicates the number of businesses that responded to a questionnaire during the 2003 air emissions inventory. This includes businesses that were included in the 2003 industrial air emissions inventory that have been descheduled between 2003 and 2008 (and hence moved to from the 2003 industrial air emissions inventory to the 2008 commercial air emissions inventory

d Indicates the number of non-respondent NPI businesses based on NPI data published for the 2007/2008 NPI reporting period.

e Includes the number of businesses that were included in the 2003 commercial air emissions inventory based on either (i) response to the 2003 air emissions inventory questionnaire, (ii) reported air emissions to the NPI based on the 2007/2008 NPI reporting period; or (iii) based on a top-down approach detailed in this report (e.g. regional based activity data for the 2008 calendar year was used to estimate activity data for each commercial business).

f Construction material mining includes ANZSIC classes 'Gravel and Sand Quarrying' and 'Construction Material Mining n.e.c.'.

The locations of all businesses included in "Other ANZSIC Classes" are shown in Figure 3-46.

Figure 3-46: Commercial businesses included in "Other ANZSIC Classes" within the GMR

3.23.2 Emission Estimation Methodology

Emissions were estimated by using the broad methodology presented in Section 22.6.77.

3.23.3 Activity Data

Activity data provided in returned commercial survey questionnaires for the 2003 air emissions inventory have been used to estimate emissions from all sources. Businesses that did not respond to the commercial survey questionnaire and that report emissions to the NPI have also been included in the commercial emissions inventory.

3.23.4 Temporal Variation of Emissions

Process emissions have been assumed to vary in direct proportion to the change in production rates over a typical year which was supplied in returned commercial survey questionnaires. Temporal variations of evaporative emissions from fuel tanks have been calculated using the USEPA TANKS program (USEPA, 2006d).

3.23.5 Emission Estimates

Estimated emissions from agricultural machinery manufacturing businesses within the GMR, Sydney, Newcastle, Wollongong and Non Urban regions are provided in Table 3-141.

Table 3-141: Estimated emissions from agricultural machinery manufacturing								
Substance	Estimated Emissions (kg/year)							
Substance	Sydney	Newcastle	Wollongong	Non Urban	GMR a			
1,3 BUTADIENE	0	0	0	0	0			
ACETALDEHYDE	0	0	0	0	0			
BENZENE	0	0	0	0	0			
CARBON MONOXIDE	0	0	0	0	0			
FORMALDEHYDE	0	0	0	0	0			
ISOMERS OF XYLENE	0.0208	0	0	0	0.0208			
LEAD & COMPOUNDS	0	0	0	0	0			
OXIDES OF NITROGEN	0	0	0	0	0			
PARTICULATE MATTER ≤ 10 µm	0	0	0	0	0			
PARTICULATE MATTER ≤ 2.5 μm	0	0	0	0	0			
PERCHLOROETHYLENE	0	0	0	0	0			
POLYCYCLIC AROMATIC HYDROCARBONS	0	0	0	0	0			
SULFUR DIOXIDE	0	0	0	0	0			
TOLUENE	0.00637	0	0	0	0.00637			
TOTAL SUSPENDED PARTICULATE	0	0	0	0	0			
TOTAL VOLATILE ORGANIC COMPOUNDS	0.23	0	0	0	0.23			
TRICHLOROETHYLENE	0	0	0	0	0			

Table 3-141: Estimated emissions from agricultural machinery manufacturing

Totals may not appear additive due to rounding

Estimated emissions from aircraft manufacturing businesses within the GMR, Sydney, Newcastle, Wollongong and Non Urban regions are provided in Table 3-142.

Table 5-142. Estimated emissions from anciart manufacturing								
Substance		Estimat	ed Emissions ((kg/year)				
Substance	Sydney	Newcastle	Wollongong	Non Urban	GMR a			
1,3 BUTADIENE	0	0	0	0	0			
ACETALDEHYDE	0	0	0	0	0			
BENZENE	14	0	0	0	14			
CARBON MONOXIDE	2,350	0	0	0	2,350			
FORMALDEHYDE	28	0	0	0	28			
ISOMERS OF XYLENE	0	0	0	0	0			
LEAD & COMPOUNDS	0.014	0	0	0	0.014			
OXIDES OF NITROGEN	2,800	0	0	0	2,800			
PARTICULATE MATTER ≤ 10 µm	213	0	0	0	213			
PARTICULATE MATTER ≤ 2.5 μm	213	0	0	0	213			
PERCHLOROETHYLENE	0	0	0	0	0			
POLYCYCLIC AROMATIC HYDROCARBONS	0.0193	0	0	0	0.0193			
SULFUR DIOXIDE	14.6	0	0	0	14.6			
TOLUENE	7	0	0	0	7			
TOTAL SUSPENDED PARTICULATE	213	0	0	0	213			
TOTAL VOLATILE ORGANIC COMPOUNDS	154	0	0	0	154			
TRICHLOROETHYLENE	0	0	0	0	0			
a Totals may not appear additive due to rounding			8					

Table 3-142: Estimated emissions from aircraft manufacturing

a Totals may not appear additive due to rounding

Estimated emissions from aluminium rolling, drawing, extruding businesses within the GMR, Sydney, Newcastle, Wollongong and Non Urban regions are provided in Table 3-143.

Substance	Estimated Emissions (kg/year)						
Substance	Sydney	Newcastle	Wollongong	Non Urban	GMR a		
1,3 BUTADIENE	0	0	0	0	0		
ACETALDEHYDE	0	0	0	0	0		
BENZENE	0	0	0	0	0		
CARBON MONOXIDE	0	0	0	0	0		
FORMALDEHYDE	0	0	0	0	0		
ISOMERS OF XYLENE	0	0	0	0	0		
LEAD & COMPOUNDS	0	0	0	0	0		
OXIDES OF NITROGEN	0	0	0	0	0		
PARTICULATE MATTER ≤ 10 µm	0	1.2	69.3	0	70.5		
PARTICULATE MATTER ≤ 2.5 μm	0	1.2	69.3	0	70.5		
PERCHLOROETHYLENE	0	0	0	0	0		
POLYCYCLIC AROMATIC HYDROCARBONS	0	0	0	0	0		
SULFUR DIOXIDE	0	0	0	0	0		
TOLUENE	0	0	0	0	0		
TOTAL SUSPENDED PARTICULATE	0	1.2	69.3	0	70.5		
TOTAL VOLATILE ORGANIC COMPOUNDS	0	0	0	0	0		
TRICHLOROETHYLENE	0	0	0	0	0		

Table 3-143: Estimated emissions from aluminium rolling, drawing, extruding

a Totals may not appear additive due to rounding

Estimated emissions from automotive component manufacturing n.e.c. businesses within the GMR, Sydney, Newcastle, Wollongong and Non Urban regions are provided in Table 3-144.

Calestoneo	Estimated Emissions (kg/year)						
Substance	Sydney	Newcastle	Wollongong	Non Urban	GMR a		
1,3 BUTADIENE	0	0	0	0	0		
ACETALDEHYDE	0	0	0	0	0		
BENZENE	1.24	0	0.016	0	1.25		
CARBON MONOXIDE	208	0	2.69	0	210		
FORMALDEHYDE	2.54	0	0.032	0	2.57		
ISOMERS OF XYLENE	768	0	66.7	29.6	864		
LEAD & COMPOUNDS	0.149	0	0.000016	0	0.149		
OXIDES OF NITROGEN	247	0	3.2	0	251		
PARTICULATE MATTER ≤ 10 µm	250	0	0.243	0	250		
PARTICULATE MATTER $\leq 2.5 \ \mu m$	76.8	0	0.243	0	77.1		
PERCHLOROETHYLENE	0.445	0	0	0	0.445		
POLYCYCLIC AROMATIC HYDROCARBONS	0.0017	0	0.000022	0	0.00172		
SULFUR DIOXIDE	1.29	0	0.0167	0	1.31		
TOLUENE	3,000	0	309	140	3,450		
TOTAL SUSPENDED PARTICULATE	1,210	0	0.243	0	1,210		
TOTAL VOLATILE ORGANIC COMPOUNDS	12,700	0	807	429	14,000		
TRICHLOROETHYLENE	0.0635	0	0	0	0.0635		

m 11 0 4 4 4 m 4 1 1 1 1	e	
Table 3-144: Estimated emissions	from automotive com	ponent manufacturing n.e.c.

Totals may not appear additive due to rounding

Estimated emissions from basic non-ferrous metal manufacturing n.e.c. businesses within the GMR, Sydney, Newcastle, Wollongong and Non Urban regions are provided in Table 3-145.

Substance	Estimated Emissions (kg/year)					
Substance	Sydney	Newcastle	Wollongong	Non Urban	GMR a	
1,3 BUTADIENE	0	0	0	0	0	
ACETALDEHYDE	0	0	0	0	0	
BENZENE	1.24	0	0.016	0	1.25	
CARBON MONOXIDE	208	0	2.69	0	210	
FORMALDEHYDE	2.54	0	0.032	0	2.57	
ISOMERS OF XYLENE	0	0	0	0	0	
LEAD & COMPOUNDS	0.014	0	0	0	0.014	
OXIDES OF NITROGEN	2,800	0	0	0	2,800	
PARTICULATE MATTER ≤ 10 µm	213	0	0	0	213	
PARTICULATE MATTER ≤ 2.5 μm	213	0	0	0	213	
PERCHLOROETHYLENE	0	0	0	0	0	
POLYCYCLIC AROMATIC HYDROCARBONS	0.0193	0	0	0	0.0193	
SULFUR DIOXIDE	14.6	0	0	0	14.6	
TOLUENE	7	0	0	0	7	
TOTAL SUSPENDED PARTICULATE	213	0	0	0	213	

Table 3-145: Estimated emissions from basic non-ferrous metal manufacturing n.e.c.

Substance	Estimated Emissions (kg/year)				
Substance	Sydney	Newcastle	Wollongong	Non Urban	GMR a
TOTAL VOLATILE ORGANIC COMPOUNDS	154	0	0	0	154
TRICHLOROETHYLENE	0	0	0	0	0

a Totals may not appear additive due to rounding

Estimated emissions from beer or malt manufacturing businesses within the GMR, Sydney, Newcastle, Wollongong and Non Urban regions are provided in Table 3-146.

		Estimat	ed Emissions ((kg/year)	
Substance	Sydney	Newcastle	Wollongong	Non Urban	GMR a
1,3 BUTADIENE	153	0	0	0	153
ACETALDEHYDE	192	0	0	0	192
BENZENE	671	0	0	0	671
CARBON MONOXIDE	4,770	0	0	0	4,770
FORMALDEHYDE	410	0	0	0	410
ISOMERS OF XYLENE	545	0	0	0	545
LEAD & COMPOUNDS	0.0284	0	0	0	0.0284
OXIDES OF NITROGEN	5,680	0	0	0	5,680
PARTICULATE MATTER ≤ 10 µm	3,390	0	0	0	3,390
PARTICULATE MATTER ≤ 2.5 µm	3,390	0	0	0	3,390
PERCHLOROETHYLENE	160	0	0	0	160
POLYCYCLIC AROMATIC HYDROCARBONS	0.0391	0	0	0	0.0391
SULFUR DIOXIDE	8,910	0	0	0	8,910
TOLUENE	479	0	0	0	479
TOTAL SUSPENDED PARTICULATE	3,390	0	0	0	3,390
TOTAL VOLATILE ORGANIC COMPOUNDS	21,900	0	0	0	21,900
TRICHLOROETHYLENE	98	0	0	0	98

Table 3-146: Estimated emissions from beer or malt manufacturing

a Totals may not appear additive due to rounding

Estimated emissions from biscuit manufacturing businesses within the GMR, Sydney, Newcastle, Wollongong and Non Urban regions are provided in Table 3-147.

Substance	Estimated Emissions (kg/year)					
Substance	Sydney	Newcastle	Wollongong	Non Urban	GMR a	
1,3 BUTADIENE	0	0	0	0	0	
ACETALDEHYDE	0	0	0	0	0	
BENZENE	41.3	0	0	0	41.3	
CARBON MONOXIDE	6,940	0	0	0	6,940	
FORMALDEHYDE	82.6	0	0	0	82.6	
ISOMERS OF XYLENE	0	0	0	0	0	
LEAD & COMPOUNDS	0.0413	0	0	0	0.0413	
OXIDES OF NITROGEN	8,260	0	0	0	8,260	
PARTICULATE MATTER ≤ 10 µm	628	0	0	0	628	

Table 3-147: Estimated emissions from biscuit manufacturing

2008 Calendar Year Commercial Emissions: Results 3. Data Sources and Results

Substance	Estimated Emissions (kg/year)				
Jubstance	Sydney	Newcastle	Wollongong	Non Urban	GMR a
PARTICULATE MATTER $\leq 2.5 \ \mu m$	628	0	0	0	628
PERCHLOROETHYLENE	0	0	0	0	0
POLYCYCLIC AROMATIC HYDROCARBONS	0.0568	0	0	0	0.0568
SULFUR DIOXIDE	43.2	0	0	0	43.2
TOLUENE	20.7	0	0	0	20.7
TOTAL SUSPENDED PARTICULATE	628	0	0	0	628
TOTAL VOLATILE ORGANIC COMPOUNDS	454	0	0	0	454
TRICHLOROETHYLENE	0	0	0	0	0

a Totals may not appear additive due to rounding

Estimated emissions from cake and pastry manufacturing businesses within the GMR, Sydney, Newcastle, Wollongong and Non Urban regions are provided in Table 3-148.

Substance	Estimated Emissions (kg/year)					
Substance	Sydney	Newcastle	Wollongong	Non Urban	GMR a	
1,3 BUTADIENE	0	0	0	0	0	
ACETALDEHYDE	0	0	0	0	0	
BENZENE	7.96	0	0	0	7.96	
CARBON MONOXIDE	1,340	0	0	0	1,340	
FORMALDEHYDE	17.6	0	0	0	17.6	
ISOMERS OF XYLENE	10.3	0	0	0	10.3	
LEAD & COMPOUNDS	0.00796	0	0	0	0.00796	
OXIDES OF NITROGEN	1,590	0	0	0	1,590	
PARTICULATE MATTER ≤ 10 µm	121	0	0	0	121	
PARTICULATE MATTER ≤ 2.5 μm	121	0	0	0	121	
PERCHLOROETHYLENE	12	0	0	0	12	
POLYCYCLIC AROMATIC HYDROCARBONS	0.0109	0	0	0	0.0109	
SULFUR DIOXIDE	8.32	0	0	0	8.32	
TOLUENE	10.8	0	0	0	10.8	
TOTAL SUSPENDED PARTICULATE	121	0	0	0	121	
TOTAL VOLATILE ORGANIC COMPOUNDS	12,200	0	0	0	12,200	
TRICHLOROETHYLENE	1.71	0	0	0	1.71	

Table 3-148: Estimated emissions from cake and pastry manufacturing

a Totals may not appear additive due to rounding

Estimated emissions from ceramic product manufacturing n.e.c. businesses within the GMR, Sydney, Newcastle, Wollongong and Non Urban regions are provided in Table 3-149.

Calebrane	Estimated Emissions (kg/year)					
Substance	Sydney	Newcastle	Wollongong	Non Urban	GMR a	
1,3 BUTADIENE	0	0	0	0	0	
ACETALDEHYDE	0	0	0	0	0	
BENZENE	0	0.21	0	0	0.21	
CARBON MONOXIDE	0	4.8	0	0	4.8	
FORMALDEHYDE	0	0.421	0	0	0.421	
ISOMERS OF XYLENE	0	0	0	0	0	
LEAD & COMPOUNDS	0	0.000107	0	0	0.000107	
OXIDES OF NITROGEN	0	34.8	0	0	34.8	
PARTICULATE MATTER ≤ 10 µm	0	1.08	0	0	1.08	
PARTICULATE MATTER ≤ 2.5 µm	0	1.07	0	0	1.07	
PERCHLOROETHYLENE	0	0	0	0	0	
POLYCYCLIC AROMATIC HYDROCARBONS	0	0.000149	0	0	0.000149	
SULFUR DIOXIDE	0	0.00018	0	0	0.00018	
TOLUENE	0	0.105	0	0	0.105	
TOTAL SUSPENDED PARTICULATE	0	1.11	0	0	1.11	
TOTAL VOLATILE ORGANIC COMPOUNDS	0	0.84	0	0	0.84	
TRICHLOROETHYLENE	0	0	0	0	0	

Table 3-149: Estimated emissions from ceramic product manufacturing n.e.c.

a Totals may not appear additive due to rounding

Estimated emissions from chemical wholesaling businesses within the GMR, Sydney, Newcastle, Wollongong and Non Urban regions are provided in Table 3-150.

Substance	Estimated Emissions (kg/year)					
Substance	Sydney	Newcastle	Wollongong	Non Urban	GMR a	
1,3 BUTADIENE	0	0	0	0	0	
ACETALDEHYDE	0	0	0	0	0	
BENZENE	0	0	0	0	0	
CARBON MONOXIDE	0	0	0	0	0	
FORMALDEHYDE	0	0	0	0	0	
ISOMERS OF XYLENE	5,680	0	0	0	5,680	
LEAD & COMPOUNDS	0.837	0.143	0	0	0.979	
OXIDES OF NITROGEN	0	0	0	0	0	
PARTICULATE MATTER ≤ 10 µm	1,290	221	0	0	1,520	
PARTICULATE MATTER ≤ 2.5 µm	313	53.4	0	0	367	
PERCHLOROETHYLENE	0	0	0	0	0	
POLYCYCLIC AROMATIC HYDROCARBONS	0	0	0	0	0	
SULFUR DIOXIDE	0	0	0	0	0	
TOLUENE	26,100	0	0	0	26,100	
TOTAL SUSPENDED PARTICULATE	6,750	1150	0	0	7,900	
TOTAL VOLATILE ORGANIC COMPOUNDS	81,400	0	0	0	81,400	
TRICHLOROETHYLENE	0	0	0	0	0	

Table 3-150: Estimated emissions from chemical wholesaling

a Totals may not appear additive due to rounding

Estimated emissions from confectionary manufacturing businesses within the GMR, Sydney, Newcastle, Wollongong and Non Urban regions are provided in Table 3-151.

Estimated Emissions (kg/year)							
Substance							
	Sydney	Newcastle	Wollongong	Non Urban	GMR a		
1,3 BUTADIENE	4.02	0	0	0	4.02		
ACETALDEHYDE	5.04	0	0	0	5.04		
BENZENE	21.5	0	0	0	21.5		
CARBON MONOXIDE	353	0	0	0	353		
FORMALDEHYDE	18.6	0	0	0	18.6		
ISOMERS OF XYLENE	163	0	0	0	163		
LEAD & COMPOUNDS	0.00518	0	0	0	0.00518		
OXIDES OF NITROGEN	1410	0	0	0	1410		
PARTICULATE MATTER ≤ 10 µm	70.8	0	0	0	70.8		
PARTICULATE MATTER ≤ 2.5 μm	70.2	0	0	0	70.2		
PERCHLOROETHYLENE	4.82	0	0	0	4.82		
POLYCYCLIC AROMATIC HYDROCARBONS	0.00633	0	0	0	0.00633		
SULFUR DIOXIDE	4.81	0	0	0	4.81		
TOLUENE	150	0	0	0	150		
TOTAL SUSPENDED PARTICULATE	74.6	0	0	0	74.6		
TOTAL VOLATILE ORGANIC COMPOUNDS	1,350	0	0	0	1,350		
TRICHLOROETHYLENE	2.67	0	0	0	2.67		

Table 3-151: Estimated emissions from confectionary	manufacturing
Table 5-151, Estimated emissions from confectional	y manufacturing

a Totals may not appear additive due to rounding

Estimated emissions from corrugated paperboard container manufacturing businesses within the GMR, Sydney, Newcastle, Wollongong and Non Urban regions are provided in Table 3-152.

Table 3-152: Estimated en	nissions from con	rugated nanerhos	rd container man	ufacturing
Table 5-152. Estimated en		Tugateu paperboa	in comanier man	alacturning

	Estimated Emissions (kg/year)						
Substance	Sydney	Newcastle	Wollongong	Non Urban	GMR a		
1,3 BUTADIENE	0	0	0	0	0		
ACETALDEHYDE	0	0	0	0	0		
BENZENE	28.7	0	0	0	28.7		
CARBON MONOXIDE	4,820	0	0	0	4,820		
FORMALDEHYDE	57.4	0	0	0	57.4		
ISOMERS OF XYLENE	0	0	0	0	0		
LEAD & COMPOUNDS	0.0287	0	0	0	0.0287		
OXIDES OF NITROGEN	5,740	0	0	0	5,740		
PARTICULATE MATTER $\leq 10 \ \mu m$	436	0	0	0	436		
PARTICULATE MATTER $\leq 2.5 \ \mu m$	436	0	0	0	436		
PERCHLOROETHYLENE	0	0	0	0	0		
POLYCYCLIC AROMATIC HYDROCARBONS	0.0395	0	0	0	0.0395		
SULFUR DIOXIDE	30	0	0	0	30		
TOLUENE	14.4	0	0	0	14.4		
TOTAL SUSPENDED PARTICULATE	436	0	0	0	436		

Substance	Estimated Emissions (kg/year)					
	Sydney	Newcastle	Wollongong	Non Urban	GMR a	
TOTAL VOLATILE ORGANIC COMPOUNDS	316	0	0	0	316	
TRICHLOROETHYLENE	0	0	0	0	0	

a Totals may not appear additive due to rounding

Estimated emissions from electric cable and wire manufacturing businesses within the GMR, Sydney, Newcastle, Wollongong and Non Urban regions are provided in Table 3-153.

Table 5-155: Estimated emissions from electric cable and wire manufacturing							
Sydney	Newcastle	Wollongong	Non Urban	GMR a			
0	0	0	0	0			
0	0	0	0	0			
0	0	0	0	0			
0	0	0	0	0			
0	0	0	0	0			
0	0	0	20,500	20,500			
0	0	0	0.249	0.249			
0	0	0	0	0			
0	0	0	1,220	1,220			
0	0	0	722	722			
0	0	0	0	0			
0	0	0	0	0			
0	0	0	0	0			
0	0	0	14,100	14,100			
0	0	0	3,330	3,330			
0	0	0	84,000	84,000			
0	0	0	0	0			
	Sydney 0	Estimat Sydney Newcastle 0 0	Sydney Newcastle Wollongong 0 0 0	Estimate Entissions (kg/year) Sydney Newcastle Wollongong Non Urban 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			

Table 3-153: Estimated emissions from electric cable and wire manufacturing

a Totals may not appear additive due to rounding

Estimated emissions from electric cable and equipment n.e.c. manufacturing businesses within the GMR, Sydney, Newcastle, Wollongong and Non Urban regions are provided in Table 3-154.

Table 3-154: Estimated emissions from electric cable and equipment n.e.c.

Substance		Estimat	ed Emissions	(kg/year)	
Substance	Sydney	Newcastle	Wollongong	Non Urban	GMR a
1,3 BUTADIENE	0	0	0	0	0
ACETALDEHYDE	0	0	0	0	0
BENZENE	0.219	0	0	0	0.219
CARBON MONOXIDE	36.8	0	0	0	36.8
FORMALDEHYDE	0.438	0	0	0	0.438
ISOMERS OF XYLENE	206	0	0	0	206
LEAD & COMPOUNDS	0.000219	0	0	0	0.000219
OXIDES OF NITROGEN	422	0	0	0	422
PARTICULATE MATTER ≤ 10 µm	429	0	0	0	429
PARTICULATE MATTER ≤ 2.5 µm	429	0	0	0	429

2008 Calendar Year Commercial Emissions: Results 3. Data Sources and Results

Substance	Estimated Emissions (kg/year)					
Substance	Sydney	Newcastle	Wollongong	Non Urban	GMR a	
PERCHLOROETHYLENE	0	0	0	0	0	
POLYCYCLIC AROMATIC HYDROCARBONS	0.000301	0	0	0	0.000301	
SULFUR DIOXIDE	0.229	0	0	0	0.229	
TOLUENE	556	0	0	0	556	
TOTAL SUSPENDED PARTICULATE	429	0	0	0	429	
TOTAL VOLATILE ORGANIC COMPOUNDS	4,180	0	0	0	4,180	
TRICHLOROETHYLENE	0	0	0	0	0	

a Totals may not appear additive due to rounding

Estimated emissions from explosive manufacturing businesses within the GMR, Sydney, Newcastle, Wollongong and Non Urban regions are provided in Table 3-155.

C. Astronom	Estimated Emissions (kg/year)						
Substance	Sydney	Newcastle	Wollongong	Non Urban	GMR a		
1,3 BUTADIENE	0	0	0	0	0		
ACETALDEHYDE	0	0	0	0.424	0.424		
BENZENE	0	0	0	1.94	1.94		
CARBON MONOXIDE	0	0	0	0	0		
FORMALDEHYDE	0	0	0	0.00684	0.00684		
ISOMERS OF XYLENE	0	0	0	0.105	0.105		
LEAD & COMPOUNDS	0	0	0	0	0		
OXIDES OF NITROGEN	0	0	0	0	0		
PARTICULATE MATTER $\leq 10 \ \mu m$	0	0	0	0	0		
PARTICULATE MATTER $\leq 2.5 \ \mu m$	0	0	0	0	0		
PERCHLOROETHYLENE	0	0	0	0	0		
POLYCYCLIC AROMATIC HYDROCARBONS	0	0	0	0	0		
SULFUR DIOXIDE	0	0	0	0	0		
TOLUENE	0	0	0	0.411	0.411		
TOTAL SUSPENDED PARTICULATE	0	0	0	0	0		
TOTAL VOLATILE ORGANIC COMPOUNDS	0	0	0	21.3	21.3		
TRICHLOROETHYLENE	0	0	0	0	0		

Table 3-155: Estimated emissions from explosive manufacturing

a Totals may not appear additive due to rounding

Estimated emissions from fabricated metal product n.e.c. manufacturing businesses within the GMR, Sydney, Newcastle, Wollongong and Non Urban regions are provided in Table 3-156.

Table 3-156: Estimated emissions from fabricated metal product n.e.c. manufacturing

Substance	Estimated Emissions (kg/year)					
Substance	Sydney	Newcastle	Wollongong	Non Urban	GMR a	
1,3 BUTADIENE	0	0	0	0	0	
ACETALDEHYDE	0.00995	0	0	0	0.00995	
BENZENE	6.21	0	0	4.56	10.8	
CARBON MONOXIDE	870	0	0	766	1,640	
FORMALDEHYDE	12.3	0	0.0727	9.12	21.5	
ISOMERS OF XYLENE	3,240	0.828	28.4	0	3,270	

Air Emissions Inventory for the Greater Metropolitan Region of New South Wales 3. Data Sources and Results

Substance	Estimated Emissions (kg/year)					
Substance	Sydney	Newcastle	Wollongong	Non Urban	GMR a	
LEAD & COMPOUNDS	1.14	0.0291	0	0.00456	1.17	
OXIDES OF NITROGEN	2,080	413	0	912	3,410	
PARTICULATE MATTER ≤ 10 µm	4,540	237	0	69.3	4,850	
PARTICULATE MATTER ≤ 2.5 μm	3,210	203	0	69.3	3,480	
PERCHLOROETHYLENE	13.5	0	0.509	0	14	
POLYCYCLIC AROMATIC HYDROCARBONS	0.00871	0	0	0.00627	0.015	
SULFUR DIOXIDE	5.32	0	0	4.77	10.1	
TOLUENE	14,700	8.39	313	2.28	15,000	
TOTAL SUSPENDED PARTICULATE	11,900	427	0	69.3	12,400	
TOTAL VOLATILE ORGANIC COMPOUNDS	103,000	24.7	1,390	58.6	105,000	
TRICHLOROETHYLENE	54,800	0	0.0727	8.4	54,800	

Totals may not appear additive due to rounding а

Estimated emissions from fruit and vegetable processing businesses within the GMR, Sydney, Newcastle, Wollongong and Non Urban regions are provided in Table 3-157.

Culture	Estimated Emissions (kg/year)						
Substance	Sydney	Newcastle	Wollongong	Non Urban	GMR a		
1,3 BUTADIENE	0	0	0	0	0		
ACETALDEHYDE	0	0	0	0	0		
BENZENE	14.8	0	0	0	14.8		
CARBON MONOXIDE	2,490	0	0	0	2,490		
FORMALDEHYDE	29.6	0	0	0	29.6		
ISOMERS OF XYLENE	0	0	0	0	0		
LEAD & COMPOUNDS	0.0148	0	0	0	0.0148		
OXIDES OF NITROGEN	1,480	0	0	0	1,480		
PARTICULATE MATTER ≤ 10 µm	225	0	0	0	225		
PARTICULATE MATTER ≤ 2.5 µm	225	0	0	0	225		
PERCHLOROETHYLENE	0	0	0	0	0		
POLYCYCLIC AROMATIC HYDROCARBONS	0.0204	0	0	0	0.0204		
SULFUR DIOXIDE	15.5	0	0	0	15.5		
TOLUENE	7.4	0	0	0	7.4		
TOTAL SUSPENDED PARTICULATE	225	0	0	0	225		
TOTAL VOLATILE ORGANIC COMPOUNDS	163	0	0	0	163		
TRICHLOROETHYLENE	0	0	0	0	0		

Table 3-157: Estimated emissions from fruit and vegetable processing

Estimated emissions from furniture manufacturing businesses within the GMR, Sydney, Newcastle, Wollongong and Non Urban regions are provided in Table 3-158.

C. Internet	Estimated Emissions (kg/year)						
Substance	Sydney	Newcastle	Wollongong	Non Urban	GMR a		
1,3 BUTADIENE	0	0	0	0	0		
ACETALDEHYDE	0	0	0	0	0		
BENZENE	0	0	0	9.49	9.49		
CARBON MONOXIDE	0	0	0	1,590	1,590		
FORMALDEHYDE	0	0	0	19	19		
ISOMERS OF XYLENE	279	326	0	0.0542	606		
LEAD & COMPOUNDS	0.000107	0	0	0.0101	0.0102		
OXIDES OF NITROGEN	0	0	0	1,900	1,900		
PARTICULATE MATTER ≤ 10 µm	0.165	0	0	145	145		
PARTICULATE MATTER $\leq 2.5 \ \mu m$	0.04	0	0	144	144		
PERCHLOROETHYLENE	0	0	0	0	0		
POLYCYCLIC AROMATIC HYDROCARBONS	0	0	0	0.013	0.013		
SULFUR DIOXIDE	0	0	0	9.91	9.91		
TOLUENE	621	1,530	0	4.76	2,150		
TOTAL SUSPENDED PARTICULATE	0.862	0	0	149	150		
TOTAL VOLATILE ORGANIC COMPOUNDS	2,840	4,290	0	105	7,240		
TRICHLOROETHYLENE	0	0	0	0	0		

Table 3-158: Estimated emissions from furniture manufacturing

a Totals may not appear additive due to rounding

Estimated emissions from gas supply businesses within the GMR, Sydney, Newcastle, Wollongong and Non Urban regions are provided in Table 3-159.

Substance	Estimated Emissions (kg/year)						
Substance	Sydney	Newcastle	Wollongong	Non Urban	GMR a		
1,3 BUTADIENE	0	0	0	0	0		
ACETALDEHYDE	0	0	0	0	0		
BENZENE	18.4	0	0	0	18.4		
CARBON MONOXIDE	3,090	0	0	0	3,090		
FORMALDEHYDE	36.8	0	0	0	36.8		
ISOMERS OF XYLENE	0	0	0	0	0		
LEAD & COMPOUNDS	0.0184	0	0	0	0.0184		
OXIDES OF NITROGEN	3,680	0	0	0	3,680		
PARTICULATE MATTER ≤ 10 µm	280	0	0	0	280		
PARTICULATE MATTER ≤ 2.5 μm	280	0	0	0	280		
PERCHLOROETHYLENE	0	0	0	0	0		
POLYCYCLIC AROMATIC HYDROCARBONS	0.0253	0	0	0	0.0253		
SULFUR DIOXIDE	19.2	0	0	0	19.2		
TOLUENE	9.2	0	0	0	9.2		
TOTAL SUSPENDED PARTICULATE	280	0	0	0	280		
TOTAL VOLATILE ORGANIC COMPOUNDS	202	0	0	0	202		
TRICHLOROETHYLENE	0	0	0	0	0		

Table 3-159: Estimated emissions from gas supply

a Totals may not appear additive due to rounding

Estimated emissions from ice cream manufacturing businesses within the GMR, Sydney, Newcastle, Wollongong and Non Urban regions are provided in Table 3-160.

Substance	Estimated Emissions (kg/year)						
Substance	Sydney	Newcastle	Wollongong	Non Urban	GMR a		
1,3 BUTADIENE	0	0	0	0	0		
ACETALDEHYDE	0	0	0	0	0		
BENZENE	6.12	0	0	0	6.12		
CARBON MONOXIDE	294	0	0	0	294		
FORMALDEHYDE	20.9	0	0	0	20.9		
ISOMERS OF XYLENE	51.7	0	0	0	51.7		
LEAD & COMPOUNDS	0.00829	0	0	0	0.00829		
OXIDES OF NITROGEN	2,080	0	0	0	2,080		
PARTICULATE MATTER ≤ 10 µm	96.4	0	0	0	96.4		
PARTICULATE MATTER ≤ 2.5 μm	93.8	0	0	0	93.8		
PERCHLOROETHYLENE	60.3	0	0	0	60.3		
POLYCYCLIC AROMATIC HYDROCARBONS	0.00841	0	0	0	0.00841		
SULFUR DIOXIDE	6.39	0	0	0	6.39		
TOLUENE	37.5	0	0	0	37.5		
TOTAL SUSPENDED PARTICULATE	110	0	0	0	110		
TOTAL VOLATILE ORGANIC COMPOUNDS	438	0	0	0	438		
TRICHLOROETHYLENE	8.62	0	0	0	8.62		

a Totals may not appear additive due to rounding

Estimated emissions from industrial gas manufacturing businesses within the GMR, Sydney, Newcastle, Wollongong and Non Urban regions are provided in Table 3-161.

Substance	Estimated Emissions (kg/year)						
Substance	Sydney	Newcastle	Wollongong	Non Urban	GMR a		
1,3 BUTADIENE	0	0	0	0	0		
ACETALDEHYDE	0	0	0	0	0		
BENZENE	0.0824	0	0	0	0.0824		
CARBON MONOXIDE	1.88	0	0	0	1.88		
FORMALDEHYDE	0.165	0	0	0	0.165		
ISOMERS OF XYLENE	633	0	0	0	633		
LEAD & COMPOUNDS	0.358	0	0	0	0.358		
OXIDES OF NITROGEN	13.6	0	0	0	13.6		
PARTICULATE MATTER $\leq 10 \ \mu m$	750	0	0	0	750		
PARTICULATE MATTER ≤ 2.5 µm	86.8	0	0	0	86.8		
PERCHLOROETHYLENE	0	0	0	0	0		
POLYCYCLIC AROMATIC HYDROCARBONS	0.0000584	0	0	0	0.0000584		
SULFUR DIOXIDE	0.0000706	0	0	0	0.0000706		
TOLUENE	2,020	0	0	0	2,020		
TOTAL SUSPENDED PARTICULATE	2,770	0	0	0	2,770		
TOTAL VOLATILE ORGANIC COMPOUNDS	5,820	0	0	0	5,820		

Table 3-161: Estimated emissions from industrial gas manufacturing

Substance	Estimated Emissions (kg/year)					
	Sydney	Newcastle	Wollongong	Non Urban	GMR a	
TRICHLOROETHYLENE	0	0	0	0	0	

Totals may not appear additive due to rounding а

Estimated emissions from ink manufacturing businesses within the GMR, Sydney, Newcastle, Wollongong and Non Urban regions are provided in Table 3-162.

	Estimated Emissions (kg/year)					
Substance	Sydney	Newcastle	Wollongong	Non Urban	GMR a	
1,3 BUTADIENE	0	0	0	0	0	
ACETALDEHYDE	0	0	0	0	0	
BENZENE	0	0	0	0	0	
CARBON MONOXIDE	0	0	0	0	0	
FORMALDEHYDE	0	0	0	0	0	
ISOMERS OF XYLENE	0.0138	0	0	0	0.0138	
LEAD & COMPOUNDS	0.00252	0	0	0	0.00252	
OXIDES OF NITROGEN	0	0	0	0	0	
PARTICULATE MATTER ≤ 10 µm	619	0	0	0	619	
PARTICULATE MATTER ≤ 2.5 μm	611	0	0	0	611	
PERCHLOROETHYLENE	0	0	0	0	0	
POLYCYCLIC AROMATIC HYDROCARBONS	0	0	0	0	0	
SULFUR DIOXIDE	0	0	0	0	0	
TOLUENE	1,260	0	0	0	1,260	
TOTAL SUSPENDED PARTICULATE	688	0	0	0	688	
TOTAL VOLATILE ORGANIC COMPOUNDS	10,600	0	0	0	10,600	
TRICHLOROETHYLENE	0	0	0	0	0	
a Totals may not appear additive due to rounding						

Table 3-162: Estimated emissions from ink manufacturing

Estimated emissions from lifting and material handling equipment manufacturing businesses within the GMR, Sydney, Newcastle, Wollongong and Non Urban regions are provided in Table 3-163.

Table 3-163: Estimated emissions from lifting and material handling equipment manufacturing

Substance	Estimated Emissions (kg/year)						
Substance	Sydney	Newcastle	Wollongong	Non Urban	GMR a		
1,3 BUTADIENE	0	0	0	0	0		
ACETALDEHYDE	0	0	0	0	0		
BENZENE	0.49	0	0	0	0.49		
CARBON MONOXIDE	0	0	0	0	0		
FORMALDEHYDE	0	0	0	0	0		
ISOMERS OF XYLENE	97	0	0	0	97		
LEAD & COMPOUNDS	0	0	0	0	0		
OXIDES OF NITROGEN	124	0	0	0	124		
PARTICULATE MATTER $\leq 10 \ \mu m$	24.5	0	0	0	24.5		
PARTICULATE MATTER ≤ 2.5 µm	24.5	0	0	0	24.5		
PERCHLOROETHYLENE	0	0	0	0	0		
POLYCYCLIC AROMATIC HYDROCARBONS	0	0	0	0	0		

Air Emissions Inventory for the Greater Metropolitan Region of New South Wales 3. *Data Sources and Results*

Substance	Estimated Emissions (kg/year)					
Substance	Sydney	Newcastle	Wollongong	Non Urban	GMR a	
SULFUR DIOXIDE	0	0	0	0	0	
TOLUENE	210	0	0	0	210	
TOTAL SUSPENDED PARTICULATE	24.5	0	0	0	24.5	
TOTAL VOLATILE ORGANIC COMPOUNDS	745	0	0	0	745	
TRICHLOROETHYLENE	0	0	0	0	0	

a Totals may not appear additive due to rounding

Estimated emissions from log sawmilling businesses within the GMR, Sydney, Newcastle, Wollongong and Non Urban regions are provided in Table 3-164.

Synhotom ag	Estimated Emissions (kg/year)						
Substance	Sydney	Newcastle	Wollongong	Non Urban	GMR a		
1,3 BUTADIENE	0	0	0	0	0		
ACETALDEHYDE	0	0	0	0	0		
BENZENE	0	0	0	11	11		
CARBON MONOXIDE	0	0	0	3,290	3,290		
FORMALDEHYDE	0	0	0	32.6	32.6		
ISOMERS OF XYLENE	0	0	0	16,100	16,100		
LEAD & COMPOUNDS	0	0	0	1.23	1.23		
OXIDES OF NITROGEN	0	0	0	64,800	64,800		
PARTICULATE MATTER ≤ 10 µm	0	0	0	18,400	18,400		
PARTICULATE MATTER ≤ 2.5 μm	0	0	0	7,420	7,420		
PERCHLOROETHYLENE	0	0	0	12.2	12.2		
POLYCYCLIC AROMATIC HYDROCARBONS	0	0	0	0.0787	0.0787		
SULFUR DIOXIDE	0	0	0	49,500	49,500		
TOLUENE	0	0	0	12,500	12,500		
TOTAL SUSPENDED PARTICULATE	0	0	0	45,200	45,200		
TOTAL VOLATILE ORGANIC COMPOUNDS	0	0	0	90,000	90,000		
TRICHLOROETHYLENE	0	0	0	1.74	1.74		

Table 3-164: Estimated emissions from log sawmilling

a Totals may not appear additive due to rounding

Estimated emissions from medicinal or pharmaceutical product manufacturing businesses within the GMR, Sydney, Newcastle, Wollongong and Non Urban regions are provided in Table 3-165.

Table 3-165: Estimated emissions from medicinal or pharmaceutical manufacturin	g
--	---

Substance	Estimated Emissions (kg/year)						
Substance	Sydney	Newcastle	Wollongong	Non Urban	GMR a		
1,3 BUTADIENE	0	0	0	0	0		
ACETALDEHYDE	0	0	0	0	0		
BENZENE	15.1	0	0	3.09	18.2		
CARBON MONOXIDE	2,440	0	0	520	2,960		
FORMALDEHYDE	30.1	0	0	6.19	36.3		
ISOMERS OF XYLENE	0.0151	0	0	0	0.0151		
LEAD & COMPOUNDS	0.0148	0	0	0.00318	0.0179		
OXIDES OF NITROGEN	2,990	0	0	619	3,610		

2008 Calendar Year Commercial Emissions: Results 3. Data Sources and Results

Substance	Estimated Emissions (kg/year)						
Substance	Sydney	Newcastle	Wollongong	Non Urban	GMR a		
PARTICULATE MATTER $\leq 10 \ \mu m$	223	0	0	47.1	270		
PARTICULATE MATTER $\leq 2.5 \ \mu m$	223	0	0	47	270		
PERCHLOROETHYLENE	0	0	0	0	0		
POLYCYCLIC AROMATIC HYDROCARBONS	0.0203	0	0	0.00425	0.0245		
SULFUR DIOXIDE	15.1	0	0	3.23	18.3		
TOLUENE	7.54	0	0	1.55	9.08		
TOTAL SUSPENDED PARTICULATE	223	0	0	47.7	270		
TOTAL VOLATILE ORGANIC COMPOUNDS	1,350	0	0	693	2,040		
TRICHLOROETHYLENE	0	0	0	0	0		

Totals may not appear additive due to rounding а

Estimated emissions from milk and cream processing businesses within the GMR, Sydney, Newcastle, Wollongong and Non Urban regions are provided in Table 3-166.

Substance	Estimated Emissions (kg/year)						
Substance	Sydney	Newcastle	Wollongong	Non Urban	GMR a		
1,3 BUTADIENE	0	0	0	0	0		
ACETALDEHYDE	0	0	0	0	0		
BENZENE	6.12	0	0	0	6.12		
CARBON MONOXIDE	1,030	0	0	0	1,030		
FORMALDEHYDE	12.2	0	0	0	12.2		
ISOMERS OF XYLENE	0	0	0	0	0		
LEAD & COMPOUNDS	0.00612	0	0	0	0.00612		
OXIDES OF NITROGEN	1,220	0	0	0	1,220		
PARTICULATE MATTER ≤ 10 µm	93	0	0	0	93		
PARTICULATE MATTER ≤ 2.5 μm	93	0	0	0	93		
PERCHLOROETHYLENE	0	0	0	0	0		
POLYCYCLIC AROMATIC HYDROCARBONS	0.00842	0	0	0	0.00842		
SULFUR DIOXIDE	6.4	0	0	0	6.4		
TOLUENE	3.06	0	0	0	3.06		
TOTAL SUSPENDED PARTICULATE	93	0	0	0	93		
TOTAL VOLATILE ORGANIC COMPOUNDS	67.3	0	0	0	67.3		
TRICHLOROETHYLENE	0	0	0	0	0		
a Totals may not appear additive due to rounding		•	•	• • • • •			

Table 3-166: Estimated emissions from milk and cream processing

Estimated emissions from mining and construction machinery manufacturing businesses within the GMR, Sydney, Newcastle, Wollongong and Non Urban regions are provided in Table 3-167.

Table 3-167: Estimated of	missions from	mining and	construction	machiner	manufacturing
Table 5-107. Estimateu	21115510115 110111	mining and	construction	machinery	manufacturing

Substance	Estimated Emissions (kg/year)					
Substance	Sydney	Newcastle	Wollongong	Non Urban	GMR a	
1,3 BUTADIENE	0	0	0	0	0	
ACETALDEHYDE	0	0	0	0	0	
BENZENE	0	0.799	0	0	0.799	
CARBON MONOXIDE	0	0	0	0	0	

Air Emissions Inventory for the Greater Metropolitan Region of New South Wales 3. *Data Sources and Results*

Substance	Estimated Emissions (kg/year)					
Substance	Sydney	Newcastle	Wollongong	Non Urban	GMR a	
FORMALDEHYDE	0	0	0	0	0	
ISOMERS OF XYLENE	0	28.8	0	197	226	
LEAD & COMPOUNDS	0	0	0	0.000605	0.000605	
OXIDES OF NITROGEN	0	0	0	0	0	
PARTICULATE MATTER ≤ 10 µm	0	0.201	0	0.937	1.14	
PARTICULATE MATTER ≤ 2.5 μm	0	0.201	0	0.227	0.427	
PERCHLOROETHYLENE	0	0	0	0	0	
POLYCYCLIC AROMATIC HYDROCARBONS	0	0	0	0	0	
SULFUR DIOXIDE	0	0	0	0	0	
TOLUENE	0	134	0	136	270	
TOTAL SUSPENDED PARTICULATE	0	0.201	0	4.88	5.08	
TOTAL VOLATILE ORGANIC COMPOUNDS	0	475	0	806	1,280	
TRICHLOROETHYLENE	0	0	0	0	0	

a Totals may not appear additive due to rounding

Estimated emissions from non-building construction n.e.c. businesses within the GMR, Sydney, Newcastle, Wollongong and Non Urban regions are provided in Table 3-168.

Table 3-168: Estimated emissions from non-building construction n.e.c.

Calatanaa	Estimated Emissions (kg/year)					
Substance	Sydney	Newcastle	Wollongong	Non Urban	GMR a	
1,3 BUTADIENE	0	0	0	0	0	
ACETALDEHYDE	0	0	0	0	0	
BENZENE	0.721	0	0	0.31	1.03	
CARBON MONOXIDE	16.5	0	0	7.09	23.6	
FORMALDEHYDE	1.44	0	0	0.621	2.06	
ISOMERS OF XYLENE	0	0	0	0	0	
LEAD & COMPOUNDS	0.305	0	0	0.000157	0.306	
OXIDES OF NITROGEN	119	0	0	51.4	171	
PARTICULATE MATTER ≤ 10 µm	476	0	0	1.59	477	
PARTICULATE MATTER ≤ 2.5 µm	118	0	0	1.58	119	
PERCHLOROETHYLENE	0	0	0	0	0	
POLYCYCLIC AROMATIC HYDROCARBONS	0.000511	0	0	0.00022	0.000731	
SULFUR DIOXIDE	0.000618	0	0	0.000266	0.000883	
TOLUENE	0.36	0	0	0.155	0.515	
TOTAL SUSPENDED PARTICULATE	2,460	0	0	1.63	2,470	
TOTAL VOLATILE ORGANIC COMPOUNDS	2.88	0	0	1.24	4.12	
TRICHLOROETHYLENE	0	0	0	0	0	

a Totals may not appear additive due to rounding

Estimated emissions from non-ferrous metal casting businesses within the GMR, Sydney, Newcastle, Wollongong and Non Urban regions are provided in Table 3-169.

Estimated Emissions (kg/year)					
Substance					
	Sydney	Newcastle	Wollongong	Non Urban	GMR a
1,3 BUTADIENE	0	0	0	0	0
ACETALDEHYDE	0	0	0	0	0
BENZENE	0	0	0	0	0
CARBON MONOXIDE	0	0	0	7.2	7.2
FORMALDEHYDE	0	0	0	0.234	0.234
ISOMERS OF XYLENE	0	0	0	0.0144	0.0144
LEAD & COMPOUNDS	0	0	0	0.00181	0.00181
OXIDES OF NITROGEN	0	0	0	28.8	28.8
PARTICULATE MATTER ≤ 10 µm	0	0	0	244	244
PARTICULATE MATTER ≤ 2.5 µm	0	0	0	183	183
PERCHLOROETHYLENE	0	0	0	0	0
POLYCYCLIC AROMATIC HYDROCARBONS	0	0	0	0	0
SULFUR DIOXIDE	0	0	0	21.7	21.7
TOLUENE	0	0	0	0.00443	0.00443
TOTAL SUSPENDED PARTICULATE	0	0	0	384	384
TOTAL VOLATILE ORGANIC COMPOUNDS	0	0	0	0.64	0.64
TRICHLOROETHYLENE	0	0	0	0	0

Table 3-169: Estimated emissions from non-ferrous metal casting

a Totals may not appear additive due to rounding

Estimated emissions from non-metallic mineral product manufacturing n.e.c. businesses within the GMR, Sydney, Newcastle, Wollongong and Non Urban regions are provided in Table 3-170.

Substance	Estimated Emissions (kg/year)					
Substance	Sydney	Newcastle	Wollongong	Non Urban	GMR a	
1,3 BUTADIENE	0	0	0	0	0	
ACETALDEHYDE	0	0	0	0	0	
BENZENE	2.89	0	0	0	2.89	
CARBON MONOXIDE	485	0	0	0	485	
FORMALDEHYDE	5.77	0	0	0	5.77	
ISOMERS OF XYLENE	0	0	0	0	0	
LEAD & COMPOUNDS	0.00289	0	0	0	0.00289	
OXIDES OF NITROGEN	577	0	0	0	577	
PARTICULATE MATTER ≤ 10 µm	43.9	0	0	0	43.9	
PARTICULATE MATTER ≤ 2.5 μm	43.9	0	0	0	43.9	
PERCHLOROETHYLENE	0	0	0	0	0	
POLYCYCLIC AROMATIC HYDROCARBONS	0.00397	0	0	0	0.00397	
SULFUR DIOXIDE	3.02	0	0	0	3.02	
TOLUENE	3,610	0	0	0	3,610	
TOTAL SUSPENDED PARTICULATE	43.9	0	0	0	43.9	
TOTAL VOLATILE ORGANIC COMPOUNDS	106,000	0	0	0	106,000	
TRICHLOROETHYLENE	0	0	0	0	0	

Table 3-170: Estimated emissions from non-metallic mineral product manufacturing n.e.c.

a Totals may not appear additive due to rounding

Estimated emissions from oil and fat manufacturing businesses within the GMR, Sydney, Newcastle, Wollongong and Non Urban regions are provided in Table 3-171.

Substance	Estimated Emissions (kg/year)					
Substance	Sydney	Newcastle	Wollongong	Non Urban	GMR a	
1,3 BUTADIENE	0	0	0	0	0	
ACETALDEHYDE	0	0	0	0	0	
BENZENE	31.7	0	0	0	31.7	
CARBON MONOXIDE	5,320	0	0	0	5,320	
FORMALDEHYDE	63.4	0	0	0	63.4	
ISOMERS OF XYLENE	0	0	0	0	0	
LEAD & COMPOUNDS	0.0317	0	0	0	0.0317	
OXIDES OF NITROGEN	11,400	0	0	0	11,400	
PARTICULATE MATTER ≤ 10 µm	482	0	0	0	482	
PARTICULATE MATTER ≤ 2.5 µm	482	0	0	0	482	
PERCHLOROETHYLENE	0	0	0	0	0	
POLYCYCLIC AROMATIC HYDROCARBONS	0.0436	0	0	0	0.0436	
SULFUR DIOXIDE	33.1	0	0	0	33.1	
TOLUENE	15.9	0	0	0	15.9	
TOTAL SUSPENDED PARTICULATE	482	0	0	0	482	
TOTAL VOLATILE ORGANIC COMPOUNDS	349	0	0	0	349	
TRICHLOROETHYLENE	0	0	0	0	0	

a Totals may not appear additive due to rounding

Estimated emissions from organic industrial chemical manufacturing n.e.c. businesses within the GMR, Sydney, Newcastle, Wollongong and Non Urban regions are provided in Table 3-172.

Substance	Estimated Emissions (kg/year)					
Substance	Sydney	Newcastle	Wollongong	Non Urban	GMR a	
1,3 BUTADIENE	0	0	0	0	0	
ACETALDEHYDE	0	0	0	0	0	
BENZENE	0.15	0	0	0	0.15	
CARBON MONOXIDE	25.1	0	0	0	25.1	
FORMALDEHYDE	0.299	0	0	0	0.299	
ISOMERS OF XYLENE	83.1	0	0	0	83.1	
LEAD & COMPOUNDS	0.00015	0	0	0	0.00015	
OXIDES OF NITROGEN	29.9	0	0	0	29.9	
PARTICULATE MATTER $\leq 10 \ \mu m$	2.27	0	0	0	2.27	
PARTICULATE MATTER $\leq 2.5 \ \mu m$	2.27	0	0	0	2.27	
PERCHLOROETHYLENE	0.00163	0	0	0	0.00163	
POLYCYCLIC AROMATIC HYDROCARBONS	0.000206	0	0	0	0.000206	
SULFUR DIOXIDE	0.156	0	0	0	0.156	
TOLUENE	985	0	0	0	985	
TOTAL SUSPENDED PARTICULATE	2.27	0	0	0	2.27	
TOTAL VOLATILE ORGANIC COMPOUNDS	4,540	0	0	0	4,540	

Table 3-172: Estimated emissions from organic industrial chemical manufacturing n.e.c.

Substance	Estimated Emissions (kg/year)				
	Sydney	Newcastle	Wollongong	Non Urban	GMR a
TRICHLOROETHYLENE	0.000232	0	0	0	0.000232

Totals may not appear additive due to rounding а

Estimated emissions from paper product manufacturing n.e.c. businesses within the GMR, Sydney, Newcastle, Wollongong and Non Urban regions are provided in Table 3-173.

Table 3-173: Estimated emissions from	paper pr	roduct manufacturing n.e.c.
---------------------------------------	----------	-----------------------------

Substance	Estimated Emissions (kg/year)					
Substance	Sydney	Newcastle	Wollongong	Non Urban	GMR a	
1,3 BUTADIENE	0	0	0	2.18	2.18	
ACETALDEHYDE	0	0	0	0	0	
BENZENE	6.76	0	0	2.46	9.23	
CARBON MONOXIDE	1,140	0	0	81.1	1,220	
FORMALDEHYDE	13.5	0	0	0	13.5	
ISOMERS OF XYLENE	38.6	0	0	0	38.6	
LEAD & COMPOUNDS	0.00676	0	0	0.0478	0.0546	
OXIDES OF NITROGEN	1350	0	0	377	1730	
PARTICULATE MATTER ≤ 10 µm	103	0	0	26.5	129	
PARTICULATE MATTER ≤ 2.5 μm	103	0	0	26.3	129	
PERCHLOROETHYLENE	0	0	0	0	0	
POLYCYCLIC AROMATIC HYDROCARBONS	0.0093	0	0	0.0144	0.0237	
SULFUR DIOXIDE	7.07	0	0	24.8	31.9	
TOLUENE	141	0	0	0	141	
TOTAL SUSPENDED PARTICULATE	103	0	0	27.2	130	
TOTAL VOLATILE ORGANIC COMPOUNDS	471	0	0	27.6	498	
TRICHLOROETHYLENE	0	0	0	0	0	
a Totals may not appear additive due to rounding						

Estimated emissions from commercial petroleum product wholesaling businesses within the GMR, Sydney, Newcastle, Wollongong and Non Urban regions are provided in Table 3-174.

Table 3-174: Estimated emissions from commercial	petroleum pro	oduct wholesaling
Tuble 5 174. Estimated emissions from commercial	petroleum pro	ounce wholesaming

Substance	Estimated Emissions (kg/year)				
	Sydney	Newcastle	Wollongong	Non Urban	GMR a
1,3 BUTADIENE	0	0	0	0	0
ACETALDEHYDE	0	0	0	0	0
BENZENE	271	0	83.9	492	847
CARBON MONOXIDE	0	0	0	0	0
FORMALDEHYDE	0	0	0.000759	0	0.000759
ISOMERS OF XYLENE	192	8.08	73	348	621
LEAD & COMPOUNDS	0.22	0	0	0.0744	0.295
OXIDES OF NITROGEN	0	0	0	0	0
PARTICULATE MATTER ≤ 10 µm	341	0	0	163	504
PARTICULATE MATTER ≤ 2.5 µm	82.5	0	0	16.3	98.8
PERCHLOROETHYLENE	0	0	0.00532	0	0.00532
POLYCYCLIC AROMATIC HYDROCARBONS	0	0	0	0	0

Air Emissions Inventory for the Greater Metropolitan Region of New South Wales 3. *Data Sources and Results*

Substance	Estimated Emissions (kg/year)					
Substance	Sydney	Newcastle	Wollongong	Non Urban	GMR a	
SULFUR DIOXIDE	0	0	0	0	0	
TOLUENE	661	2.48	209	1200	2070	
TOTAL SUSPENDED PARTICULATE	1,780	0	0	572	2350	
TOTAL VOLATILE ORGANIC COMPOUNDS	53,000	89.5	10,600	61,300	125,000	
TRICHLOROETHYLENE	0	0	0.000759	0	0.000759	

a Totals may not appear additive due to rounding

Estimated emissions from plastic bag and film manufacturing businesses within the GMR, Sydney, Newcastle, Wollongong and Non Urban regions are provided in Table 3-175.

Tuble 5 175. Estimated emissions from plaste bag and finn manarated ing							
Substance	Estimated Emissions (kg/year)						
Substance	Sydney	Newcastle	Wollongong	Non Urban	GMR a		
1,3 BUTADIENE	0	0	0	0	0		
ACETALDEHYDE	0.368	0	0	0	0.368		
BENZENE	1.11	0	0	0	1.11		
CARBON MONOXIDE	0	0	0	0	0		
FORMALDEHYDE	2.04	0	0	0	2.04		
ISOMERS OF XYLENE	18.5	0	0	0	18.5		
LEAD & COMPOUNDS	0	0	0	0	0		
OXIDES OF NITROGEN	0	0	0	0	0		
PARTICULATE MATTER ≤ 10 µm	899	0	0	0	899		
PARTICULATE MATTER ≤ 2.5 μm	832	0	0	0	832		
PERCHLOROETHYLENE	24.3	0	0	0	24.3		
POLYCYCLIC AROMATIC HYDROCARBONS	0	0	0	0	0		
SULFUR DIOXIDE	0	0	0	0	0		
TOLUENE	1150	0	0	0	1150		
TOTAL SUSPENDED PARTICULATE	899	0	0	0	899		
TOTAL VOLATILE ORGANIC COMPOUNDS	17,700	0	0	0	17,700		
TRICHLOROETHYLENE	2.98	0	0	0	2.98		

Table 3-175: Estimated emissions from plastic bag and film manufacturing

a Totals may not appear additive due to rounding

Estimated emissions from plastic injection moulded product manufacturing businesses within the GMR, Sydney, Newcastle, Wollongong and Non Urban regions are provided in Table 3-176.

		,			0	
Substance	Estimated Emissions (kg/year)					
Substance	Sydney	Newcastle	Wollongong	Non Urban	GMR a	
1,3 BUTADIENE	0	0	0	0	0	
ACETALDEHYDE	0	0	0	0	0	
BENZENE	18.2	0	0	0	18.2	
CARBON MONOXIDE	2,960	0	0	0	2,960	
FORMALDEHYDE	35.5	0	0	0	35.5	
ISOMERS OF XYLENE	14.1	0	0	0	14.1	
LEAD & COMPOUNDS	2.62	0	0	0	2.62	
OXIDES OF NITROGEN	3,540	0	0	0	3,540	

Table 3-176: Estimated emissions from plastic injection moulded product manufacturing

2008 Calendar Year Commercial Emissions: Results 3. Data Sources and Results

Substance	Estimated Emissions (kg/year)					
Substance	Sydney	Newcastle	Wollongong	Non Urban	GMR a	
PARTICULATE MATTER ≤ 10 µm	5,960	0	0	0	5,960	
PARTICULATE MATTER $\leq 2.5 \ \mu m$	839	0	0	0	839	
PERCHLOROETHYLENE	0	0	0	0	0	
POLYCYCLIC AROMATIC HYDROCARBONS	0.0243	0	0	0	0.0243	
SULFUR DIOXIDE	21.8	0	0	0	21.8	
TOLUENE	58.1	0	0	0	58.1	
TOTAL SUSPENDED PARTICULATE	20,300	0	0	0	20,300	
TOTAL VOLATILE ORGANIC COMPOUNDS	441	0	0	0	441	
TRICHLOROETHYLENE	0	0	0	0	0	

a Totals may not appear additive due to rounding

Estimated emissions from prepared animal and bird feed manufacturing businesses within the GMR, Sydney, Newcastle, Wollongong and Non Urban regions are provided in Table 3-177.

Substance	Estimated Emissions (kg/year)					
Substance	Sydney	Newcastle	Wollongong	Non Urban	GMR a	
1,3 BUTADIENE	0	0	0	0	0	
ACETALDEHYDE	0	0	0	0	0	
BENZENE	0	0	0	7.74	7.74	
CARBON MONOXIDE	1.44	0	0	1300	1300	
FORMALDEHYDE	0.0468	0	0	15.5	15.5	
ISOMERS OF XYLENE	0	0	0	0	0	
LEAD & COMPOUNDS	0.000361	0	0	0.00774	0.00811	
OXIDES OF NITROGEN	5.76	0	0	1550	1550	
PARTICULATE MATTER ≤ 10 µm	0.312	0	0	118	118	
PARTICULATE MATTER ≤ 2.5 μm	0.31	0	0	118	118	
PERCHLOROETHYLENE	0	0	0	0	0	
POLYCYCLIC AROMATIC HYDROCARBONS	0	0	0	0.0106	0.0106	
SULFUR DIOXIDE	2.04	0	0	8.09	10.1	
TOLUENE	0	0	0	3.87	3.87	
TOTAL SUSPENDED PARTICULATE	0.319	0	0	118	118	
TOTAL VOLATILE ORGANIC COMPOUNDS	0.096	0	0	85.2	85.3	
TRICHLOROETHYLENE	0	0	0	0	0	

Table 3-177: Estimated emissions from prepared animal and bird feed manufacturing

a Totals may not appear additive due to rounding

Estimated emissions from rail transport businesses within the GMR, Sydney, Newcastle, Wollongong and Non Urban regions are provided in Table 3-178.

C. Laterary	Estimated Emissions (kg/year)					
Substance	Sydney	Newcastle	Wollongong	Non Urban	GMR a	
1,3 BUTADIENE	0	0	0	0	0	
ACETALDEHYDE	0	0	0	0	0	
BENZENE	0	0	0	0	0	
CARBON MONOXIDE	0	0	0	0	0	
FORMALDEHYDE	0	0	0	0	0	
ISOMERS OF XYLENE	0	0	0	0.226	0.226	
LEAD & COMPOUNDS	0	0	0	0	0	
OXIDES OF NITROGEN	0	0	0	0	0	
PARTICULATE MATTER ≤ 10 µm	0	0	0	0	0	
PARTICULATE MATTER ≤ 2.5 μm	0	0	0	0	0	
PERCHLOROETHYLENE	0	0	0	0	0	
POLYCYCLIC AROMATIC HYDROCARBONS	0	0	0	0.06	0.06	
SULFUR DIOXIDE	0	0	0	0	0	
TOLUENE	0	0	0	0.176	0.176	
TOTAL SUSPENDED PARTICULATE	0	0	0	0	0	
TOTAL VOLATILE ORGANIC COMPOUNDS	0	0	0	1.26	1.26	
TRICHLOROETHYLENE	0	0	0	0	0	

Table 3-178: Estimated emissions from rail transport

a Totals may not appear additive due to rounding

Estimated emissions from railway equipment manufacturing businesses within the GMR, Sydney, Newcastle, Wollongong and Non Urban regions are provided in Table 3-179.

Substance	Estimated Emissions (kg/year)					
Substance	Sydney	Newcastle	Wollongong	Non Urban	GMR a	
1,3 BUTADIENE	0	0	0	0	0	
ACETALDEHYDE	0	0	0	0	0	
BENZENE	0	0	0	0	0	
CARBON MONOXIDE	0	0	0	0	0	
FORMALDEHYDE	0	0	0	0	0	
ISOMERS OF XYLENE	0.36	0	0	0	0.36	
LEAD & COMPOUNDS	0	0	0	0	0	
OXIDES OF NITROGEN	0	0	0	0	0	
PARTICULATE MATTER ≤ 10 µm	0	0	0	0	0	
PARTICULATE MATTER ≤ 2.5 μm	0	0	0	0	0	
PERCHLOROETHYLENE	1.41	0	0	0	1.41	
POLYCYCLIC AROMATIC HYDROCARBONS	0	0	0	0	0	
SULFUR DIOXIDE	0	0	0	0	0	
TOLUENE	0.827	0	0	0	0.827	
TOTAL SUSPENDED PARTICULATE	0	0	0	0	0	
TOTAL VOLATILE ORGANIC COMPOUNDS	58	0	0	0	58	
TRICHLOROETHYLENE	5.05	0	0	0	5.05	

Table 3-179: Estimated emissions from railway equipment manufacturing

a Totals may not appear additive due to rounding

Estimated emissions from road and bridge construction businesses within the GMR, Sydney, Newcastle, Wollongong and Non Urban regions are provided in Table 3-180.

Substance	Estimated Emissions (kg/year)					
Substance	Sydney	Newcastle	Wollongong	Non Urban	GMR a	
1,3 BUTADIENE	0	0	0	0	0	
ACETALDEHYDE	0	0	0	0	0	
BENZENE	0	0.0566	0	0.0627	0.119	
CARBON MONOXIDE	0	0	0	0	0	
FORMALDEHYDE	0	0	0	0	0	
ISOMERS OF XYLENE	0	0.0399	0	0.0501	0.09	
LEAD & COMPOUNDS	1.62	1.52x10-06	0	0.0000157	1.62	
OXIDES OF NITROGEN	0	0	0	0	0	
PARTICULATE MATTER ≤ 10 µm	3,440	32.6	0	32.5	3,500	
PARTICULATE MATTER $\leq 2.5 \ \mu m$	394	6.56	0	6.51	407	
PERCHLOROETHYLENE	0	0	0	0	0	
POLYCYCLIC AROMATIC HYDROCARBONS	0	0	0	0	0	
SULFUR DIOXIDE	0	0	0	0	0	
TOLUENE	0	0.138	0	0.155	0.292	
TOTAL SUSPENDED PARTICULATE	12,600	65.2	0	65	12,700	
TOTAL VOLATILE ORGANIC COMPOUNDS	0	7.02	0	7.84	14.9	
TRICHLOROETHYLENE	0	0	0	0	0	

Table 3-180: Estimated	emissions from road	l and bridge construction
Tuble o 1000 Estimated	emiloorono mom rout	and singe construction

Totals may not appear additive due to rounding а

Estimated emissions from rubber product manufacturing n.e.c. businesses within the GMR, Sydney, Newcastle, Wollongong and Non Urban regions are provided in Table 3-181.

Substance	Estimated Emissions (kg/year)						
Substance	Sydney	Newcastle	Wollongong	Non Urban	GMR a		
1,3 BUTADIENE	0.000006	0	0	0	0.000006		
ACETALDEHYDE	0	0	0	0	0		
BENZENE	0	0	0	0	0		
CARBON MONOXIDE	0	0	7.2	0	7.2		
FORMALDEHYDE	0	0	0.234	0	0.234		
ISOMERS OF XYLENE	0.996	0	0.0348	0	1.03		
LEAD & COMPOUNDS	0.000105	0	0.0371	0	0.0372		
OXIDES OF NITROGEN	0	0	28.8	0	28.8		
PARTICULATE MATTER ≤ 10 µm	5.78	0	71.1	0	76.9		
PARTICULATE MATTER ≤ 2.5 µm	0	0	11.1	0	11.1		
PERCHLOROETHYLENE	0	0	0	0	0		
POLYCYCLIC AROMATIC HYDROCARBONS	0	0	0	0	0		
SULFUR DIOXIDE	0	0	10.2	0	10.2		
TOLUENE	0.926	0	0.0107	0	0.937		
TOTAL SUSPENDED PARTICULATE	1.91	0	278	0	280		
TOTAL VOLATILE ORGANIC COMPOUNDS	6	0	0.866	0	6.87		
TRICHLOROETHYLENE	0	0	0	0	0		
a Totals may not appear additive due to rounding		•	•				

Table 3-181: Estimated emissions from rubber product manufacturing n.e.c.

Estimated emissions from scientific research businesses within the GMR, Sydney, Newcastle, Wollongong and Non Urban regions are provided in Table 3-182.

Substance	Estimated Emissions (kg/year)					
Substance	Sydney	Newcastle	Wollongong	Non Urban	GMR a	
1,3 BUTADIENE	0	0	0	0	0	
ACETALDEHYDE	0	0	0	0	0	
BENZENE	5.52	0	0	0	5.52	
CARBON MONOXIDE	927	0	0	0	927	
FORMALDEHYDE	11	0	0	0	11	
ISOMERS OF XYLENE	0	0	0	0	0	
LEAD & COMPOUNDS	0.00552	0	0	0	0.00552	
OXIDES OF NITROGEN	552	0	0	0	552	
PARTICULATE MATTER ≤ 10 µm	83.9	0	0	0	83.9	
PARTICULATE MATTER ≤ 2.5 μm	83.9	0	0	0	83.9	
PERCHLOROETHYLENE	0	0	0	0	0	
POLYCYCLIC AROMATIC HYDROCARBONS	0.00759	0	0	0	0.00759	
SULFUR DIOXIDE	5.77	0	0	0	5.77	
TOLUENE	2.76	0	0	0	2.76	
TOTAL SUSPENDED PARTICULATE	83.9	0	0	0	83.9	
TOTAL VOLATILE ORGANIC COMPOUNDS	60.7	0	0	0	60.7	
TRICHLOROETHYLENE	0	0	0	0	0	

a Totals may not appear additive due to rounding

Estimated emissions from services to air transport businesses within the GMR, Sydney, Newcastle, Wollongong and Non Urban regions are provided in Table 3-183.

Substance	Estimated Emissions (kg/year)						
Jubstance	Sydney	Newcastle	Wollongong	Non Urban	GMR a		
1,3 BUTADIENE	0	0	0	0	0		
ACETALDEHYDE	0	0	0	0	0		
BENZENE	13.4	0	0	0	13.4		
CARBON MONOXIDE	2,240	0	0	0	2,240		
FORMALDEHYDE	26.7	0	0	0	26.7		
ISOMERS OF XYLENE	12,800	0	0	0	12,800		
LEAD & COMPOUNDS	0.0134	0	0	0	0.0134		
OXIDES OF NITROGEN	2,670	0	0	0	2,670		
PARTICULATE MATTER $\leq 10 \ \mu m$	203	0	0	0	203		
PARTICULATE MATTER $\leq 2.5 \ \mu m$	203	0	0	0	203		
PERCHLOROETHYLENE	0	0	0	0	0		
POLYCYCLIC AROMATIC HYDROCARBONS	0.0184	0	0	0	0.0184		
SULFUR DIOXIDE	14	0	0	0	14		
TOLUENE	9,960	0	0	0	9,960		
TOTAL SUSPENDED PARTICULATE	203	0	0	0	203		
TOTAL VOLATILE ORGANIC COMPOUNDS	71,400	0	0	0	71,400		

Table 3-183: Estimated emissions from services to air transport

Substance	Estimated Emissions (kg/year)				
	Sydney	Newcastle	Wollongong	Non Urban	GMR a
TRICHLOROETHYLENE	0	0	0	0	0

Totals may not appear additive due to rounding а

Estimated emissions from soap and other detergent manufacturing businesses within the GMR, Sydney, Newcastle, Wollongong and Non Urban regions are provided in Table 3-184.

Table 3-184: Estimated emissions from soap and other detergent manufacturing

Substance	Estimated Emissions (kg/year)					
	Sydney	Newcastle	Wollongong	Non Urban	GMR a	
1,3 BUTADIENE	0	0	0	0	0	
ACETALDEHYDE	0	0	0	0	0	
BENZENE	0	0	0	0	0	
CARBON MONOXIDE	0	0	0	0	0	
FORMALDEHYDE	0.000648	0	0	0	0.000648	
ISOMERS OF XYLENE	0.00389	0	0	0	0.00389	
LEAD & COMPOUNDS	0.305	0	0	0	0.305	
OXIDES OF NITROGEN	0	0	0	0	0	
PARTICULATE MATTER ≤ 10 µm	665	0	0	0	665	
PARTICULATE MATTER ≤ 2.5 µm	67.4	0	0	0	67.4	
PERCHLOROETHYLENE	0.00454	0	0	0	0.00454	
POLYCYCLIC AROMATIC HYDROCARBONS	0	0	0	0	0	
SULFUR DIOXIDE	0	0	0	0	0	
TOLUENE	0.0026	0	0	0	0.0026	
TOTAL SUSPENDED PARTICULATE	2,350	0	0	0	2,350	
TOTAL VOLATILE ORGANIC COMPOUNDS	28.9	0	0	0	28.9	
TRICHLOROETHYLENE	0.000648	0	0	0	0.000648	
a Totals may not appear additive due to rounding			•	•		

Estimated emissions from soft drink, cordial and syrup manufacturing businesses within the GMR, Sydney, Newcastle, Wollongong and Non Urban regions are provided in Table 3-185.

Table 3-185: Estimated emissions from soft drink, cordial and syrup manufacturing

Substance	Estimated Emissions (kg/year)						
Substance	Sydney	Newcastle	Wollongong	Non Urban	GMR a		
1,3 BUTADIENE	0	0	0	0	0		
ACETALDEHYDE	0	0	0	0	0		
BENZENE	20.6	0	0	0	20.6		
CARBON MONOXIDE	3,460	0	0	0	3,460		
FORMALDEHYDE	88.1	0	0	0	88.1		
ISOMERS OF XYLENE	281	0	0	0	281		
LEAD & COMPOUNDS	0.0206	0	0	0	0.0206		
OXIDES OF NITROGEN	4,120	0	0	0	4,120		
PARTICULATE MATTER ≤ 10 µm	313	0	0	0	313		
PARTICULATE MATTER ≤ 2.5 µm	313	0	0	0	313		
PERCHLOROETHYLENE	328	0	0	0	328		
POLYCYCLIC AROMATIC HYDROCARBONS	0.0283	0	0	0	0.0283		

Air Emissions Inventory for the Greater Metropolitan Region of New South Wales 3. *Data Sources and Results*

Substance -	Estimated Emissions (kg/year)					
	Sydney	Newcastle	Wollongong	Non Urban	GMR a	
SULFUR DIOXIDE	21.5	0	0	0	21.5	
TOLUENE	198	0	0	0	198	
TOTAL SUSPENDED PARTICULATE	313	0	0	0	313	
TOTAL VOLATILE ORGANIC COMPOUNDS	2,240	0	0	0	2,240	
TRICHLOROETHYLENE	46.9	0	0	0	46.9	

a Totals may not appear additive due to rounding

Estimated emissions from solid paperboard container manufacturing businesses within the GMR, Sydney, Newcastle, Wollongong and Non Urban regions are provided in Table 3-186.

	Estimated Emissions (kg/year)						
Substance	Sydney	Newcastle	Wollongong	Non Urban	GMR a		
1,3 BUTADIENE	0	0	0	0	0		
ACETALDEHYDE	0	0	0	0	0		
BENZENE	0	0	0	0	0		
CARBON MONOXIDE	0	0	0	0	0		
FORMALDEHYDE	0	0	0	0	0		
ISOMERS OF XYLENE	0	0	0	0	0		
LEAD & COMPOUNDS	0	0	0	0	0		
OXIDES OF NITROGEN	0	0	0	0	0		
PARTICULATE MATTER ≤ 10 µm	0	0	0	0	0		
PARTICULATE MATTER $\leq 2.5 \ \mu m$	0	0	0	0	0		
PERCHLOROETHYLENE	0	0	0	0	0		
POLYCYCLIC AROMATIC HYDROCARBONS	0	0	0	0	0		
SULFUR DIOXIDE	0	0	0	0	0		
TOLUENE	524	0	0	0	524		
TOTAL SUSPENDED PARTICULATE	0	0	0	0	0		
TOTAL VOLATILE ORGANIC COMPOUNDS	15,300	0	0	0	15,300		
TRICHLOROETHYLENE	0	0	0	0	0		

Table 3-186: Estimated emissions from soil paperboard container manufacturing

a Totals may not appear additive due to rounding

Estimated emissions from spirit manufacturing businesses within the GMR, Sydney, Newcastle, Wollongong and Non Urban regions are provided in Table 3-187.

of the second seco						
Substance	Estimated Emissions (kg/year)					
	Sydney	Newcastle	Wollongong	Non Urban	GMR a	
1,3 BUTADIENE	0	0	0	0	0	
ACETALDEHYDE	0	0	0	0	0	
BENZENE	0	0	0	0	0	
CARBON MONOXIDE	0	0	0	0	0	
FORMALDEHYDE	0	0	0	0	0	
ISOMERS OF XYLENE	0	0	0	0	0	
LEAD & COMPOUNDS	0	0	0	0	0	
OXIDES OF NITROGEN	0	0	0	0	0	

Table 3-187: Estimated emissions from spirit manufacturing

2008 Calendar Year Commercial Emissions: Results 3. Data Sources and Results

Substance	Estimated Emissions (kg/year)					
	Sydney	Newcastle	Wollongong	Non Urban	GMR a	
PARTICULATE MATTER ≤ 10 µm	0	0	0	0	0	
PARTICULATE MATTER ≤ 2.5 µm	0	0	0	0	0	
PERCHLOROETHYLENE	0	0	0	0	0	
POLYCYCLIC AROMATIC HYDROCARBONS	0	0	0	0	0	
SULFUR DIOXIDE	0	0	0	0	0	
TOLUENE	0	0	0	0	0	
TOTAL SUSPENDED PARTICULATE	0	0	0	0	0	
TOTAL VOLATILE ORGANIC COMPOUNDS	66,800	0	0	0	66,800	
TRICHLOROETHYLENE	0	0	0	0	0	

a Totals may not appear additive due to rounding

Estimated emissions from spring and wire product manufacturing businesses within the GMR, Sydney, Newcastle, Wollongong and Non Urban regions are provided in Table 3-188.

Substance	Estimated Emissions (kg/year)						
	Sydney	Newcastle	Wollongong	Non Urban	GMR a		
1,3 BUTADIENE	0	0	0	0	0		
ACETALDEHYDE	0	0	0	0	0		
BENZENE	0.0269	0	0.0263	0	0.0532		
CARBON MONOXIDE	4.52	0	0.6	0	5.12		
FORMALDEHYDE	0.0586	0	0.0526	0	0.111		
ISOMERS OF XYLENE	0.0293	0	0	14	14		
LEAD & COMPOUNDS	0.03	0	0.0000133	0.632	0.662		
OXIDES OF NITROGEN	5.38	0	4.35	772	781		
PARTICULATE MATTER ≤ 10 µm	46.8	5	0.135	1,110	1,160		
PARTICULATE MATTER ≤ 2.5 μm	11.6	5	0.134	366	383		
PERCHLOROETHYLENE	0.0342	0	0	0	0.0342		
POLYCYCLIC AROMATIC HYDROCARBONS	0.000037	0	0.0000186	0	0.0000556		
SULFUR DIOXIDE	0.0281	0	0.0000225	0	0.0281		
TOLUENE	0.033	0	0.0131	168	169		
TOTAL SUSPENDED PARTICULATE	242	5	0.138	5,230	5,480		
TOTAL VOLATILE ORGANIC COMPOUNDS	0.506	0	0.105	380	381		
TRICHLOROETHYLENE	0.00488	0	0	0	0.00488		

 Table 3-188: Estimated emissions from spring and wire product manufacturing

a Totals may not appear additive due to rounding

Estimated emissions from structural metal product manufacturing n.e.c. businesses within the GMR, Sydney, Newcastle, Wollongong and Non Urban regions are provided in Table 3-189.

Table 3-189: Estimated emissions from structural metal	product manufacturing n.e.c.
--	------------------------------

Substance	Estimated Emissions (kg/year)					
	Sydney	Newcastle	Wollongong	Non Urban	GMR a	
1,3 BUTADIENE	0	0	0	0	0	
ACETALDEHYDE	0	0	0	0	0	
BENZENE	0	0	0	0	0	
CARBON MONOXIDE	0	0	0	0	0	

Air Emissions Inventory for the Greater Metropolitan Region of New South Wales 3. *Data Sources and Results*

Substance -	Estimated Emissions (kg/year)						
	Sydney	Newcastle	Wollongong	Non Urban	GMR a		
FORMALDEHYDE	0	0	0	0	0		
ISOMERS OF XYLENE	134	0	0	0	134		
LEAD & COMPOUNDS	0.085	0	0	0	0.085		
OXIDES OF NITROGEN	0	0	0	0	0		
PARTICULATE MATTER ≤ 10 µm	7	0	0	0	7		
PARTICULATE MATTER ≤ 2.5 μm	7	0	0	0	7		
PERCHLOROETHYLENE	0	0	0	0	0		
POLYCYCLIC AROMATIC HYDROCARBONS	0	0	0	0	0		
SULFUR DIOXIDE	0	0	0	0	0		
TOLUENE	579	0	0	0	579		
TOTAL SUSPENDED PARTICULATE	7	0	0	0	7		
TOTAL VOLATILE ORGANIC COMPOUNDS	2,490	0	0	0	2,490		
TRICHLOROETHYLENE	0	0	0	0	0		

a Totals may not appear additive due to rounding

Estimated emissions from structural steel fabricating businesses within the GMR, Sydney, Newcastle, Wollongong and Non Urban regions are provided in Table 3-190.

Table 3-190: Estimated emissions from structural steel fabricating

Carbotamaa	Estimated Emissions (kg/year)					
Substance	Sydney	Newcastle	Wollongong	Non Urban	GMR a	
1,3 BUTADIENE	0	0	0	0	0	
ACETALDEHYDE	0	0	0	0	0	
BENZENE	0	0	0	0	0	
CARBON MONOXIDE	0	0	0	0	0	
FORMALDEHYDE	0	0	0	0	0	
ISOMERS OF XYLENE	0	0	0	0	0	
LEAD & COMPOUNDS	0.252	0	0	0	0.252	
OXIDES OF NITROGEN	0	0	0	0	0	
PARTICULATE MATTER ≤ 10 µm	400	0	0	0	400	
PARTICULATE MATTER ≤ 2.5 μm	104	0	0	0	104	
PERCHLOROETHYLENE	0	0	0	0	0	
POLYCYCLIC AROMATIC HYDROCARBONS	0	0	0	0	0	
SULFUR DIOXIDE	0	0	0	0	0	
TOLUENE	0	0	0	0	0	
TOTAL SUSPENDED PARTICULATE	2040	0	0	0	2040	
TOTAL VOLATILE ORGANIC COMPOUNDS	0	0	0	0	0	
TRICHLOROETHYLENE	0	0	0	0	0	

a Totals may not appear additive due to rounding

Estimated emissions from synthetic resin manufacturing businesses within the GMR, Sydney, Newcastle, Wollongong and Non Urban regions are provided in Table 3-191.

	Estimated Emissions (kg/year)					
Substance	Sydney	Newcastle	Wollongong	Non Urban	GMR a	
1,3 BUTADIENE	0	0	0	0	0	
ACETALDEHYDE	2,360	0	0	0	2,360	
BENZENE	10,800	0	0.0088	3.3	10,800	
CARBON MONOXIDE	900	0	1.48	554	1,460	
FORMALDEHYDE	41.3	0	0.0176	6.6	48	
ISOMERS OF XYLENE	9,980	0	0	0	9,980	
LEAD & COMPOUNDS	0.00536	0	0.0000088	3.65	3.66	
OXIDES OF NITROGEN	1,070	0	1.76	660	1,730	
PARTICULATE MATTER ≤ 10 µm	191,000	0	0.134	53.8	191,000	
PARTICULATE MATTER ≤ 2.5 µm	189,000	0	0.134	53.8	189,000	
PERCHLOROETHYLENE	0	0	0	0	0	
POLYCYCLIC AROMATIC HYDROCARBONS	0.00736	0	0.0000121	0.00454	0.0119	
SULFUR DIOXIDE	5.6	0	0.0092	3.45	9.05	
TOLUENE	11,000	0	0.0044	1.65	11,000	
TOTAL SUSPENDED PARTICULATE	212,000	0	0.134	53.8	212,000	
TOTAL VOLATILE ORGANIC COMPOUNDS	268,000	0	0.0968	1290	270,000	
TRICHLOROETHYLENE	0	0	0	0	0	

Table 3-191: Estimated emissions from synthetic resin manufacturing

a Totals may not appear additive due to rounding

Estimated emissions from waste disposal services businesses within the GMR, Sydney, Newcastle, Wollongong and Non Urban regions are provided in Table 3-192.

Calestones	Estimated Emissions (kg/year)					
Substance	Sydney	Newcastle	Wollongong	Non Urban	GMR a	
1,3 BUTADIENE	27.3	0	0	0	27.3	
ACETALDEHYDE	0	0	0	0	0	
BENZENE	110	0.0365	0	0	110	
CARBON MONOXIDE	9,220	6.13	0	0	9,220	
FORMALDEHYDE	175	0.073	0	0	175	
ISOMERS OF XYLENE	622	885	0	0	1,510	
LEAD & COMPOUNDS	0.641	0.0000365	0	0	0.641	
OXIDES OF NITROGEN	13,000	7.3	0	0	13,000	
PARTICULATE MATTER ≤ 10 µm	1,700	0.555	0	0	1,700	
PARTICULATE MATTER ≤ 2.5 μm	1,670	0.555	0	0	1,670	
PERCHLOROETHYLENE	135	0	0	0	135	
POLYCYCLIC AROMATIC HYDROCARBONS	0.236	0.0000502	0	0	0.236	
SULFUR DIOXIDE	353	0.0382	0	0	353	
TOLUENE	2,850	3,640	0	0	6,490	
TOTAL SUSPENDED PARTICULATE	1,770	0.555	0	0	1,770	
TOTAL VOLATILE ORGANIC COMPOUNDS	17,300	16,000	0	0	33,200	
TRICHLOROETHYLENE	136	0	0	0	136	

Table 3-192: Estimated emissions from waste disposal services

a Totals may not appear additive due to rounding

Estimated emissions from wood product manufacturing n.e.c. businesses within the GMR, Sydney, Newcastle, Wollongong and Non Urban regions are provided in Table 3-193.

Substance	Estimated Emissions (kg/year)					
Substance	Sydney	Newcastle	Wollongong	Non Urban	GMR a	
1,3 BUTADIENE	0	0	0	0	0	
ACETALDEHYDE	0	0	0	0	0	
BENZENE	0.00298	0	0	0	0.00298	
CARBON MONOXIDE	0.5	0	0	0	0.5	
FORMALDEHYDE	0.00595	0	0	0	0.00595	
ISOMERS OF XYLENE	0	0	0	298	298	
LEAD & COMPOUNDS	0.133	0	0	0.0164	0.15	
OXIDES OF NITROGEN	0.595	0	0	0	0.595	
PARTICULATE MATTER ≤ 10 μm	206	0	0	25.4	232	
PARTICULATE MATTER ≤ 2.5 µm	49.9	0	0	6.14	56.1	
PERCHLOROETHYLENE	0	0	0	0	0	
POLYCYCLIC AROMATIC HYDROCARBONS	0.00000409	0	0	0	0.00000409	
SULFUR DIOXIDE	0.00311	0	0	0	0.00311	
TOLUENE	0.00149	0	0	1,140	1,140	
TOTAL SUSPENDED PARTICULATE	1,070	0	0	132	1,210	
TOTAL VOLATILE ORGANIC COMPOUNDS	0.0327	0	0	5,420	5,420	
TRICHLOROETHYLENE	0	0	0	0	0	

a Totals may not appear additive due to rounding

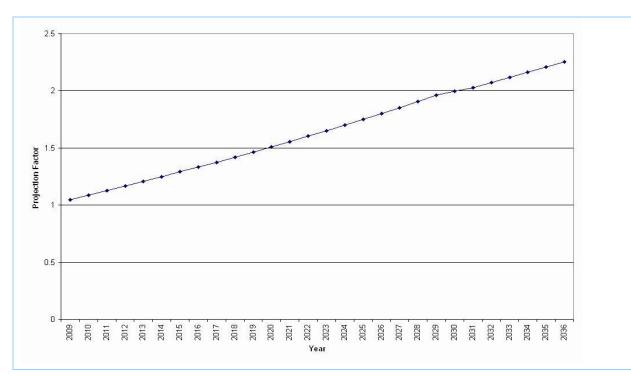
Estimated emissions from wooden furniture and upholstered seat manufacturing businesses within the GMR, Sydney, Newcastle, Wollongong and Non Urban regions are provided in Table 3-194.

Substance	Estimated Emissions (kg/year)					
Substance	Sydney	Newcastle	Wollongong	Non Urban	GMR a	
1,3 BUTADIENE	0	0	0	0	0	
ACETALDEHYDE	0	0	0	0	0	
BENZENE	0	0	0	0	0	
CARBON MONOXIDE	0	0	0	0	0	
FORMALDEHYDE	0	0	0	0	0	
ISOMERS OF XYLENE	86.4	0	0	0	86.4	
LEAD & COMPOUNDS	0	0	0	0	0	
OXIDES OF NITROGEN	0	0	0	0	0	
PARTICULATE MATTER $\leq 10 \ \mu m$	0	0	0	0	0	
PARTICULATE MATTER $\leq 2.5 \ \mu m$	0	0	0	0	0	
PERCHLOROETHYLENE	0	0	0	0	0	
POLYCYCLIC AROMATIC HYDROCARBONS	0	0	0	0	0	
SULFUR DIOXIDE	0	0	0	0	0	
TOLUENE	647	0	0	0	647	
TOTAL SUSPENDED PARTICULATE	0	0	0	0	0	
TOTAL VOLATILE ORGANIC COMPOUNDS	1,770	0	0	0	1,770	

Table 3-194: Estimated emissions from wooden furniture and upholstered seat manufacturing

Substance	Estimated Emissions (kg/year)				
Substance	Sydney	Newcastle	Wollongong	Non Urban	GMR a
TRICHLOROETHYLENE	0	0	0	0	0

a Totals may not appear additive due to rounding

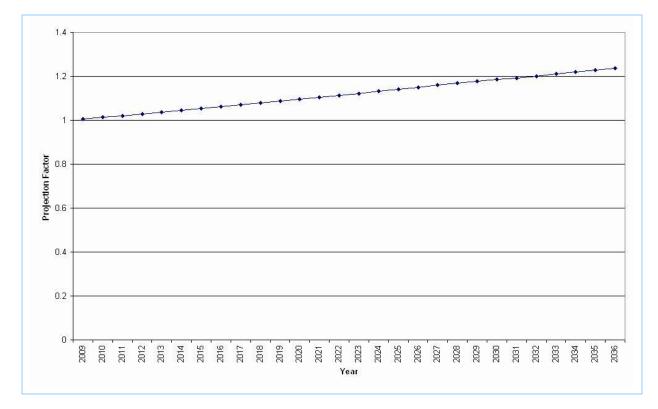

3.23.6 Emission Projection Methodology

Derived projection factors based on air transport (final energy consumption) are provided in Table 3-195 and illustrated in Figure 3-47.

Year	Projection Factor	Year	Projection Factor			
2009	1.0442	2023	1.6516			
2010	1.0868	2024	1.7010			
2011	1.1281	2025	1.7507			
2012	1.1681	2026	1.8010			
2013	1.2085	2027	1.8526			
2014	1.2494	2028	1.9056			
2015	1.2906	2029	1.9601			
2016	1.3323	2030	1.9954			
2017	1.3749	2031	2.0258			
2018	1.4182	2032	2.0713			
2019	1.4628	2033	2.1168			
2020	1.5086	2034	2.1623			
2021	1.5554	2035	2.2077			
2022	1.6030	2036	2.2532			

Table 3-195: Projection factors for air transport related sources

Source: ABARE (2006)



Derived projection factors based on basic non-ferrous metals products (final energy consumption) are provided in Table 3-196 and illustrated in Figure 3-48.

Year	Projection Factor	Year	Projection Factor
2009	1.0064	2023	1.1224
2010	1.0129	2024	1.1315
2011	1.0206	2025	1.1406
2012	1.0287	2026	1.1498
2013	1.0367	2027	1.1592
2014	1.0448	2028	1.1688
2015	1.0532	2029	1.1785
2016	1.0616	2030	1.1859
2017	1.0700	2031	1.1926
2018	1.0784	2032	1.2013
2019	1.0870	2033	1.2099
2020	1.0958	2034	1.2185
2021	1.1045	2035	1.2272
2022	1.1134	2036	1.2358

Table 3-196: Projection factors for basic non-ferrous metals products related sources

Source: ABARE (2006)

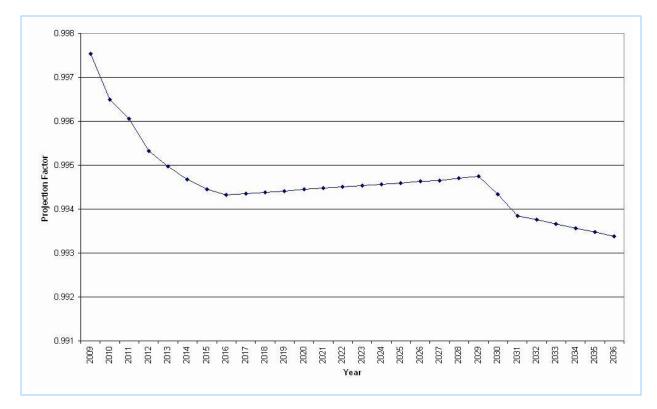
Figure 3-48: Projection factors for basic non-ferrous metals products related sources

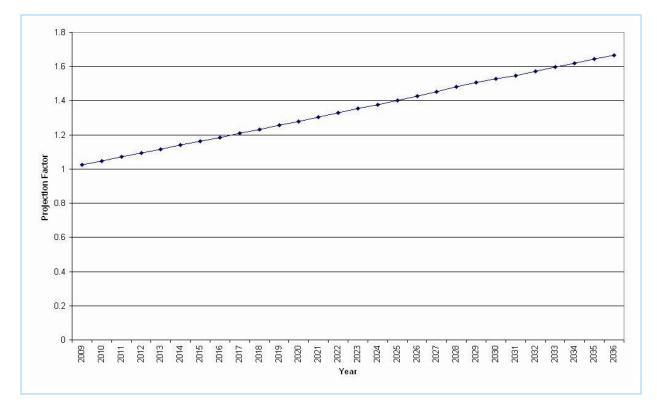
Derived projection factors based on iron and steel (final energy consumption) are provided in Table 3-197 and illustrated in Figure 3-49.

Tuble 6 197. Hojection factors for non and steel (final chergy) featers							
Year	Projection Factor	Year	Projection Factor				
2009	0.9975	2023	0.9945				
2010	0.9965	2024	0.9946				
2011	0.9961	2025	0.9946				
2012	0.9953	2026	0.9946				
2013	0.9950	2027	0.9947				
2014	0.9947	2028	0.9947				
2015	0.9944	2029	0.9948				
2016	0.9943	2030	0.9943				
2017	0.9944	2031	0.9939				
2018	0.9944	2032	0.9938				
2019	0.9944	2033	0.9937				
2020	0.9944	2034	0.9936				
2021	0.9945	2035	0.9935				
2022	0.9945	2036	0.9934				

Table 3-197: Projection factors for iron and steel (final energy) related sources

Source: ABARE (2006)



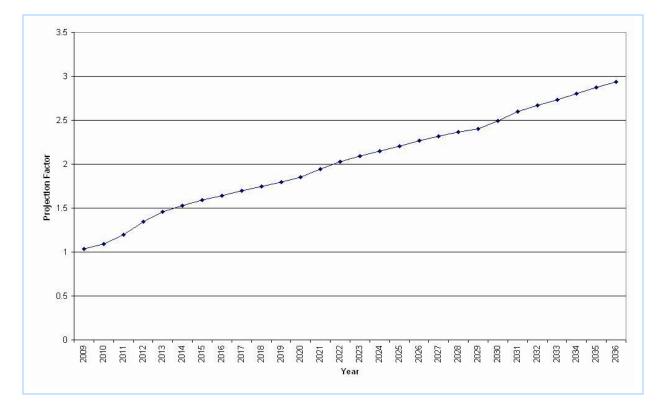

Figure 3-49: Projection factors for iron and steel (final energy) related sources

Derived projection factors based on other basic non-ferrous metals (final energy consumption) are provided in Table 3-198 and illustrated in Figure 3-50.

Year	Projection Factor	Year	Projection Factor
2009	1.0243	2023	1.3528
2010	1.0479	2024	1.3778
2011	1.0714	2025	1.4028
2012	1.0941	2026	1.4280
2013	1.1166	2027	1.4537
2014	1.1394	2028	1.4798
2015	1.1622	2029	1.5064
2016	1.1852	2030	1.5277
2017	1.2083	2031	1.5475
2018	1.2315	2032	1.5714
2019	1.2552	2033	1.5954
2020	1.2792	2034	1.6194
2021	1.3035	2035	1.6434
2022	1.3280	2036	1.6673

Table 3-198: Projection factors for other basic non-ferrous metals related sources

Source: ABARE (2006)

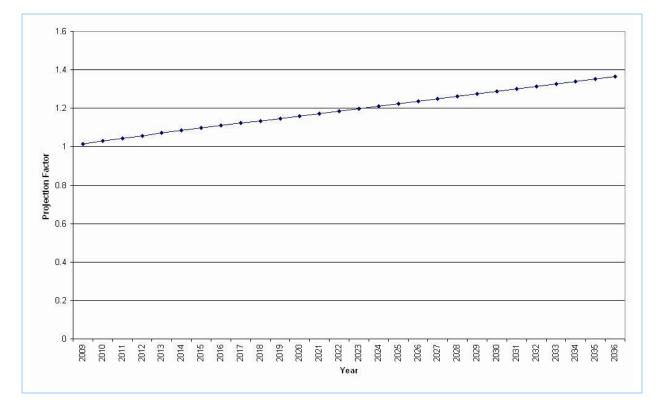

Figure 3-50: Projection factors for other basic non-ferrous metals related sources

Derived projection factors based on pipeline transport (final energy consumption) are provided in Table 3-199 and illustrated in Figure 3-51.

Table 3-199: Projection factors for pipeline transport related sources						
Year	Projection Factor	Year	Projection Factor			
2009	1.0347	2023	2.0894			
2010	1.0924	2024	2.1463			
2011	1.1944	2025	2.2047			
2012	1.3429	2026	2.2646			
2013	1.4582	2027	2.3200			
2014	1.5292	2028	2.3651			
2015	1.5883	2029	2.3991			
2016	1.6415	2030	2.4906			
2017	1.6948	2031	2.6010			
2018	1.7487	2032	2.6683			
2019	1.7975	2033	2.7356			
2020	1.8537	2034	2.8030			
2021	1.9416	2035	2.8703			
2022	2.0281	2036	2.9376			

Table 3-199: Projection factors for pipeline transport related sources

Source: ABARE (2006)


Figure 3-51: Projection factors for pipeline transport related sources

Derived projection factors based on rail transport (final energy consumption) are provided in Table 3-200 and illustrated in Figure 3-52.

Table 3-200. I tojection factors for fair transport related sources									
Year	Projection Factor	Year	Projection Factor						
2009	1.0151	2023	1.1989						
2010	1.0296	2024	1.2116						
2011	1.0438	2025	1.2241						
2012	1.0574	2026	1.2365						
2013	1.0707	2027	1.2490						
2014	1.0838	2028	1.2616						
2015	1.0968	2029	1.2743						
2016	1.1095	2030	1.2878						
2017	1.1222	2031	1.3013						
2018	1.1348	2032	1.3142						
2019	1.1475	2033	1.3271						
2020	1.1604	2034	1.3400						
2021	1.1733	2035	1.3528						
2022	1.1861	2036	1.3657						

Table 3-200: Projection factors for rail transport related sources

Source: ABARE (2006)

Figure 3-52: Projection factors for rail transport related sources

Derived projection factors based on road transport are provided in Table 3-201 and illustrated in Figure 3-53.

Table 5-201. Hojection factors for foad transport felated sources									
Year	Projection Factor	Year	Projection Factor						
2009	1.0048	2023	1.0238						
2010	1.0085	2024	1.0243						
2011	1.0105	2025	1.0248						
2012	1.0116	2026	1.0252						
2013	1.0129	2027	1.0256						
2014	1.0141	2028	1.0260						
2015	1.0152	2029	1.0263						
2016	1.0164	2030	1.0284						
2017	1.0179	2031	1.0309						
2018	1.0192	2032	1.0319						
2019	1.0206	2033	1.0330						
2020	1.0217	2034	1.0340						
2021	1.0224	2035	1.0350						
2022	1.0231	2036	1.0360						

Source: ABARE (2006)

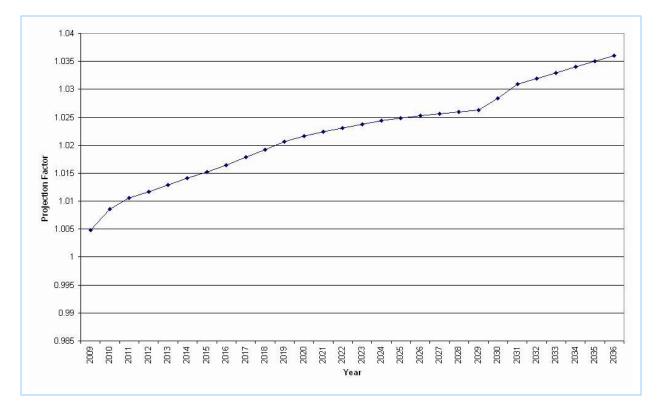


Figure 3-53: Projection factors for road transport related sources

4 RESULTS SUMMARY

4.1 Source Summary

The commercial emissions inventory includes emissions from 5,153 businesses. A total of 23,228 emission sources have been included in the commercial emissions inventory, consisting of 459 point sources and 22,769 fugitive sources. Table 4-1 presents the number and type of emission sources included in the commercial emissions inventory for each area considered.

Area	Point Sources	Fugitive Sources	Total Sources
Sydney	330	16,089	16,419
Newcastle	32	1436	1468
Wollongong	15	867	882
Non Urban	82	4377	4459
GMR	459	22,769	23,228

Table 4-1: Emission source summary

The pollutants inventoried include criteria pollutants specified in the Air NEPM, air toxics associated with the National Pollutant Inventory and the Air Toxics NEPM and any other pollutants associated with state specific programs, i.e. Load Based Licensing (Protection of the Environment Operations (General) Regulation 1998 (DEC, 2002 & PCO, 1998)) and Protection of the Environment Operations (Clean Air) Regulation 2010 (PCO, 2011).

The location of each emission source included in the commercial air emissions inventory is shown in Figure 4-1.

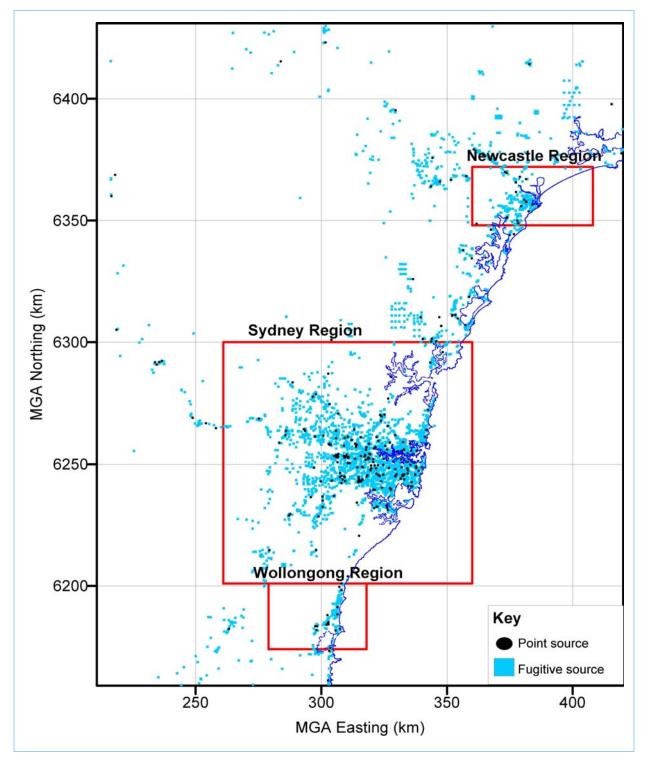


Figure 4-1: Commercial emission sources in the GMR

4.2 Activity Summary

Table 4-2 shows annual fuel consumption by commercial activity type for the 2008 calendar year in the GMR.

Table 4-2: Annual fuel consu	Fuel Consumed (TJ/year)						
Activity	Diesel	Natural Gas	LPG	Coal	Total		
Aircraft manufacturing	0	67.0	0	0	67.0		
Automotive component manufacturing n.e.c.	0	6.00	0	0	6.00		
Basic iron and steel manufacturing	0	155	0	0	155		
Basic non-ferrous metal manufacturing n.e.c.	0	26.7	0	0	26.7		
Beer and malt manufacturing	0	136	0	0	136		
Biscuit manufacturing	0	198	0	0	198		
Bread manufacturing	0	378	0	0	378		
Cake and pastry manufacturing	0	38.1	0	0	38.1		
Ceramic product manufacturing	0	29.3	0	0	29.3		
Ceramic product manufacturing n.e.c.	0	0	0.514	0	0.514		
Chemical product manufacturing n.e.c.	0	133	0	0	133		
Confectionery manufacturing	0	22.0	0	0	22.0		
Corrugated paperboard container manufacturing	0	137	0	0	137		
Electrical and equipment manufacturing n.e.c.	0	1.05	0	0	1.05		
Fabricated metal product manufacturing n.e.c.	0	46.2	0.0272	0	46.2		
Food manufacturing n.e.c.	3.27	340	53.4	43.5	440		
Fruit and vegetable processing	0	70.9	0	0	70.9		
Furniture manufacturing n.e.c.	0	45.4	0	0	45.4		
Gas supply	0	88.1	0	0	88.1		
Glass and glass product manufacturing	0	165	0.463	0	165		
Hospitals	1.39	1,529	4.13	0	1,534		
Ice cream manufacturing	0	29.3	0	0	29.3		
Industrial gas manufacturing	0	0	0.201	0	0.201		
Laundries and dry-cleaners	0	112	0	0	112		
Log sawmilling	0	52.4	0	135	188		
Medicinal and pharmaceutical product manufacturing	0	83.9	1.542	0	85.4		
Metal coating and finishing	0	147	0.0293	0	147		
Milk and cream processing	0	29.3	0	0	29.3		
Non-building construction n.e.c.	0	0	2.52	0	2.52		
Non-ferrous metal casting	0.463	0	0	0	0.463		
Non-metallic mineral product manufacturing n.e.c.	0	13.8	0	0	13.8		
Oil and fat manufacturing	0	152	0	0	152		
Organic industrial chemical manufacturing n.e.c.	0	0.716	0	0	0.716		
Paper product manufacturing n.e.c.	0.201	32.4	0	0	32.6		
Plaster product manufacturing	0	390	0	0	390		
Plastic injection moulded product manufacturing	0.154	84.3	0.227	0	84.6		
Plastic product, rigid fibre reinforced, manufacturing	0	39.8	0	0	39.8		
Poultry farming (meat)	0	32.9	0	0	32.9		
Prepared animal and bird feed manufacturing	0.0926	37.1	0	0	37.2		
Printing	0.0386	404	0	0	404		
Rubber product manufacturing n.e.c.	0.463	0	0	0	0.463		

Table 4-2: Annual fuel con	sumption by commercial activit	v

2008 Calendar Year Commercial Emissions: Results 4. Results Summary

Activity	-	Fuel Consumed (TJ/year)						
Activity	Diesel	Natural Gas	LPG	Coal	Total			
Scientific research	0	26.4	0	0	26.4			
Services to air transport	0	64.0	0	0	64.0			
Soft drink, cordial and syrup manufacturing	0	98.5	0	0	98.5			
Spring and wire product manufacturing		0.129	0.0643	0	0.193			
Synthetic resin manufacturing	0	41.5	0	0	41.5			
Waste disposal services	2.51	197	0.247	0	199			
Wine manufacturing	0	0	0.0258	0	0.0258			
Wood product manufacturing n.e.c.	0	0.0142	0	0	0.0142			
Grand Total	8.59	5,680	63.4	179	5,931			

a Energy values used: Diesel: 38.6 MJ/L; Natural gas: 38.3 MJ/m³; LPG: 25.7 MJ/L; Black coal: 23.4 GJ/t; (ABARE, 2009b)

Figure 4-2 shows the proportion of total fuel consumption by commercial activity type for the 2008 calendar year in the GMR.

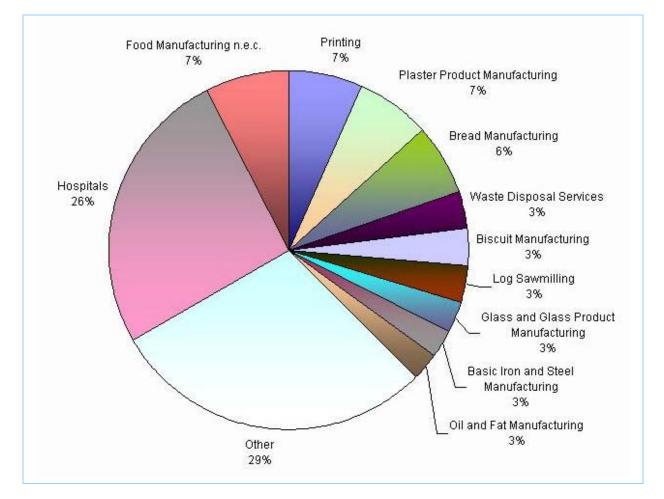


Figure 4-2: Proportion of total fuel consumption by commercial activity type in the GMR

4.3 Emissions Summary

Table 4-3 shows the total estimated annual emissions (for selected substances) from all commercial sources in the GMR, Sydney, Newcastle, Wollongong and Non Urban regions.

Substance	Emissions (tonne/year)								
Substance	Sydney	Newcastle	Wollongong	Non Urban	GMR				
1,3 BUTADIENE	1.52	0.210	0.0637	0.323	2.12				
ACETALDEHYDE	2.58	0.002	0.0007	0.0042	2.59				
BENZENE	38.2	3.23	2.54	11.1	55.1				
CARBON MONOXIDE	335	9.20	19.7	24.3	389				
FORMALDEHYDE	48.4	0.110	0.168	0.50	49.2				
ISOMERS OF XYLENE	87.9	4.70	2.77	47.7	143				
LEAD AND COMPOUNDS	0.394	0.0045	0.0013	0.0362	0.436				
OXIDES OF NITROGEN	344	38.5	12.1	106	501				
PARTICULATE MATTER ≤ 10 µm	1,111	129	47.7	732	2,020				
PARTICULATE MATTER ≤ 2.5 µm	485	30.0	13.9	167	695				
POLYCYCLIC AROMATIC HYDROCARBONS	0.012	0.0001	0.0002	0.0004	0.013				
SULFUR DIOXIDE	108	1.62	0.73	69.8	180				
TETRACHLOROETHYLENE	358	21.4	16.9	59.7	456				
TOLUENE	424	18.1	10.3	66.8	520				
TOTAL SUSPENDED PARTICULATE	3,332	327	121	2,416	6,195				
TOTAL VOLATILE ORGANIC COMPOUNDS	6,652	476	358	1,689	9,176				
TRICHLOROETHYLENE	58.7	0.00004	0.0001	0.016	58.7				

Table 4-3: Total estimated annual emissions from commercial sources in each region

Figure 4-3 shows the proportion of total estimated annual emissions (for selected substances) from all commercial sources in the GMR, Sydney, Newcastle, Wollongong and Non Urban regions.

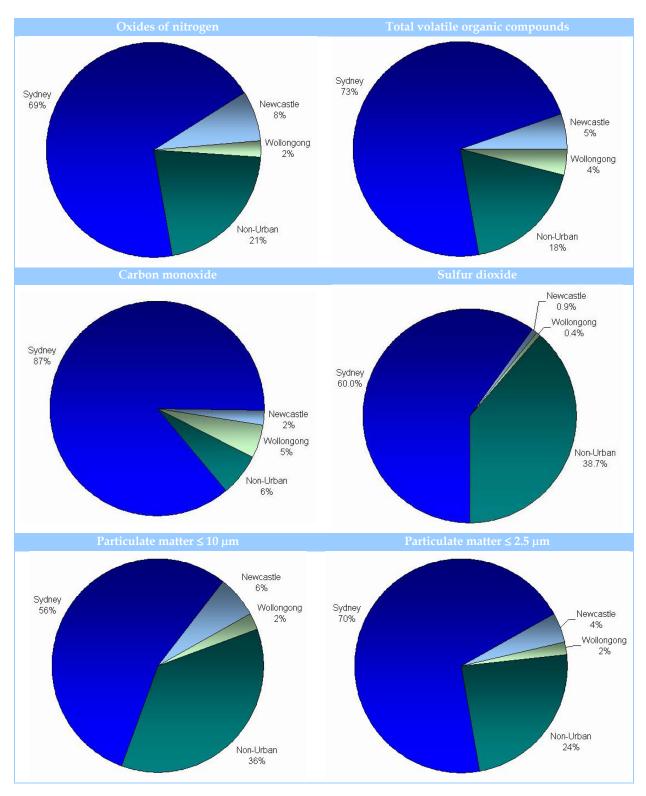


Figure 4-3: Proportion of total estimated annual emissions from commercial sources in each region

Table 4-4 shows total estimated annual emissions (for selected substances) from each commercial source type in the GMR.

A chimitre				ons (tonne/y			
Activity	СО	NO _x	TSP	PM_{10}	PM _{2.5}	SO ₂	VOC
Agricultural machinery							
manufacturing	0	0	0	0	0	0	0.00023
Aircraft manufacturing	2.35	2.8	0.213	0.213	0.213	0.0146	0.154
Aluminium rolling,							
drawing, extruding	0	0	0.0705	0.0705	0.0705	0	0
Automotive component							
manufacturing n.e.c.	0.21	0.251	1.21	0.25	0.0771	0.00131	14
Automotive fuel retailing	0	0	0	0	0	0	4,910
Basic iron and steel							
manufacturing	5.42	8.6	14.9	9.91	8.32	0.0337	12.3
Basic non-ferrous metal							
manufacturing n.e.c.	0.936	1.12	15.8	10	7.55	0.134	0.965
Beer and malt							
manufacturing	4.77	5.68	3.39	3.39	3.39	8.91	21.9
Biscuit manufacturing	6.94	8.26	0.628	0.628	0.628	0.0432	0.454
Bread manufacturing	13.3	15.8	2.25	1.53	1.39	0.0826	143
Cake and pastry							
manufacturing	1.34	1.59	0.121	0.121	0.121	0.00832	12.2
Ceramic product							
manufacturing	28.6	6.44	49.6	30.8	23.2	47.7	0.63
Ceramic product							
manufacturing n.e.c.	0.0048	0.0348	0.00111	0.00108	0.00107	0	0.00084
Chemical product							
manufacturing n.e.c.	4.54	5.54	30.8	9.52	1.92	29.6	520
Chemical wholesaling	0	0	7.9	1.52	0.367	0	81.4
Concrete slurry							
manufacturing	0	0	20.2	7.06	1.12	0	0.00006
Confectionery							
manufacturing	0.353	1.41	0.0746	0.0708	0.0702	0.00481	1.35
Construction material							
mining n.e.c.	0	0	106	50.3	10.3	0	0.00603
Corrugated paperboard							
container manufacturing	4.82	5.74	0.436	0.436	0.436	0.03	0.316
Electric cable and wire							
manufacturing	0	0	3.33	1.22	0.722	0	84
Electrical and equipment							
manufacturing n.e.c.	0.0368	0.422	0.429	0.429	0.429	0.00023	4.18
Explosive manufacturing	0	0	0	0	0	0	0.0213
Fabricated metal product							
manufacturing n.e.c.	1.64	3.41	12.4	4.85	3.48	0.0101	105
Food manufacturing n.e.c.	13	29.2	2.37	1.65	1.37	17.8	6.21
Fruit and vegetable							
processing	2.49	1.48	0.225	0.225	0.225	0.0155	0.163
Funeral directors,	3.07	6.73	0.318	0.0955	0.0636	11.9	0.283

Table 4-4: Total estimated annual emissions by commercial source type in the GMR

2008 Calendar Year Commercial Emissions: Results 4. Results Summary

Activity			Emissi	ons (tonne/	year)		
Activity	CO	NO _x	TSP	PM_{10}	PM _{2.5}	SO_2	VOC
crematoria and cemeteries							
Furniture manufacturing							
n.e.c.	1.59	1.9	0.15	0.145	0.144	0.00991	7.24
Gas supply	3.09	3.68	0.28	0.28	0.28	0.0192	0.202
Glass and glass product							
manufacturing	3.72	3.92	8.58	8.41	8.26	0.176	2.86
Gravel and sand							
quarrying	0	0	5,080	1,390	306	0	0.105
Hospitals	54.2	66.5	5.01	5	5	0.469	3.79
Ice cream manufacturing	0.294	2.08	0.11	0.0964	0.0938	0.00639	0.438
Industrial gas							
manufacturing	0.00188	0.0136	2.77	0.75	0.0868	0	5.82
Ink manufacturing	0	0	0.688	0.619	0.611	0	10.6
Laundries and dry-							
cleaners	3.87	4.68	0.356	0.356	0.356	0.0245	474
Lifting and material							
handling equipment							
manufacturing	0	0.124	0.0245	0.0245	0.0245	0	0.745
Log sawmilling	3.29	64.8	45.2	18.4	7.42	49.5	90
Medicinal and							
pharmaceutical product							
manufacturing	2.96	3.61	0.27	0.27	0.27	0.0183	2.04
Metal coating and							
finishing	5.16	32.4	25	14.6	12.5	0.0321	21.5
Milk and cream							
processing	1.03	1.22	0.093	0.093	0.093	0.0064	0.0673
Mining and construction							
machinery manufacturing	0	0	0.00508	0.00114	0.00043	0	1.28
Non-building construction							
n.e.c.	0.0236	0.171	2.47	0.477	0.119	0	0.00412
Non-ferrous metal casting	0.0072	0.0288	0.384	0.244	0.183	0.0217	0.00064
Non-metallic mineral							
product manufacturing							
n.e.c.	0.485	0.577	0.0439	0.0439	0.0439	0.00302	106
Oil and fat manufacturing	5.32	11.4	0.482	0.482	0.482	0.0331	0.349
Organic industrial							
chemical manufacturing							
n.e.c.	0.0251	0.0299	0.00227	0.00227	0.00227	0.00016	4.54
Paint manufacturing	0	0	34.3	29.3	28.3	0	124
Paper product							
manufacturing n.e.c.	1.22	1.73	0.13	0.129	0.129	0.0319	0.498
Petroleum product							
wholesaling	0	0	2.35	0.504	0.0988	0	125
Plaster product							
manufacturing	138	37.3	16.1	13.6	7.81	3.4	3.41
Plastic bag and film							
manufacturing	0	0	0.899	0.899	0.832	0	17.7
Plastic injection moulded							
product manufacturing	2.96	3.54	20.3	5.96	0.839	0.0218	0.441

Air Emissions Inventory for the Greater Metropolitan Region of New South Wales

4. Results Summary

Antiputtor	Emissions (tonne/year)								
Activity	СО	NO _x	TSP	\mathbf{PM}_{10}	PM _{2.5}	SO ₂	VOC		
Plastic product, rigid fibre									
reinforced, manufacturing	1.4	1.66	0.433	0.194	0.139	0.00869	43.4		
Port operators	31.3	102	8.95	8.95	8.95	9.94	13.7		
Poultry farming (eggs)	0	0	116	50.5	11.6	0	0		
Poultry farming (meat)	1.16	1.38	303	132	30.3	0.00719	0.0757		
Prepared animal and bird									
feed manufacturing	1.3	1.55	0.118	0.118	0.118	0.0101	0.0853		
Printing	14.9	26	1.46	1.46	1.46	0.0933	1,320		
Rail transport	0	0	0	0	0	0	0.00126		
Railway equipment									
manufacturing	0	0	0	0	0	0	0.058		
Road and bridge									
construction	0	0	12.7	3.5	0.407	0	0.0149		
Rubber product									
manufacturing n.e.c.	0.0072	0.0288	0.28	0.0769	0.0111	0.0102	0.00687		
Scientific research	0.927	0.552	0.0839	0.0839	0.0839	0.00577	0.0607		
Services to air transport	2.24	2.67	0.203	0.203	0.203	0.014	71.4		
Smash repairing	0	0	0	0	0	0	393		
Soap and other detergent									
manufacturing	0	0	2.35	0.665	0.0674	0	0.0289		
Soft drink, cordial and									
syrup manufacturing	3.46	4.12	0.313	0.313	0.313	0.0215	2.24		
Solid paperboard									
container manufacturing	0	0	0	0	0	0	15.3		
Spirit manufacturing	0	0	0	0	0	0	66.8		
Spring and wire product									
manufacturing	0.00512	0.781	5.48	1.16	0.383	0.00003	0.381		
Steel pipe and tube									
manufacturing	0	0.744	5.81	4.78	4.56	0	0.00123		
Structural metal product									
manufacturing n.e.c.	0	0	0.007	0.007	0.007	0	2.49		
Structural steel fabricating	0	0	2.04	0.4	0.104	0	0		
Synthetic resin									
manufacturing	1.46	1.73	212	191	189	0.00905	270		
Waste disposal services	9.22	13	1.77	1.7	1.67	0.353	33.2		
Wine manufacturing	0.00024	0.00175	0.00006	0.00005	0.00005	0	24.1		
Wood product									
manufacturing n.e.c.	0.0005	0.0006	1.21	0.232	0.0561	0	5.42		
Wooden furniture and									
upholstered seat									
manufacturing	0	0	0	0	0	0	1.77		
Grand Total	389	501	6,190	2,020	695	180	9,180		

The proportion of total estimated annual emissions (for selected substances) from each commercial source type in the GMR are shown in Figure 4-4 to Figure 4-9.

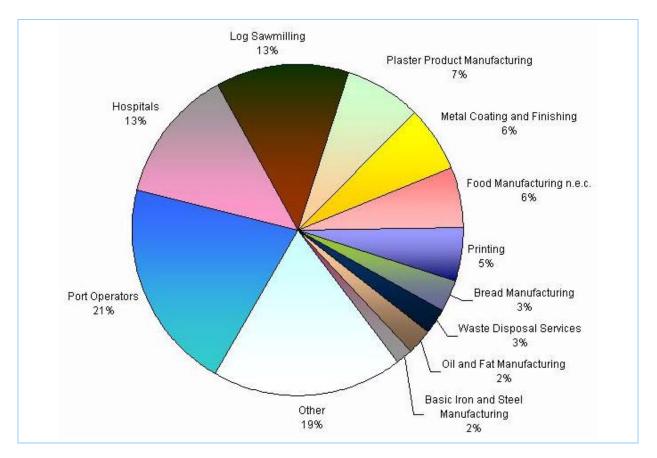
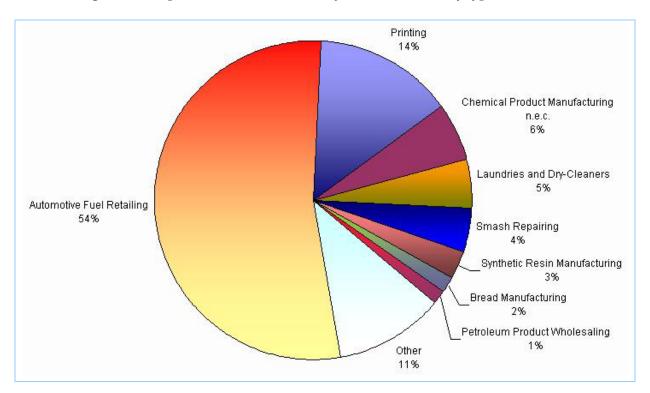



Figure 4-4: Proportion of NO_x emissions by commercial activity type in the GMR

Air Emissions Inventory for the Greater Metropolitan Region of New South Wales 4. Results Summary

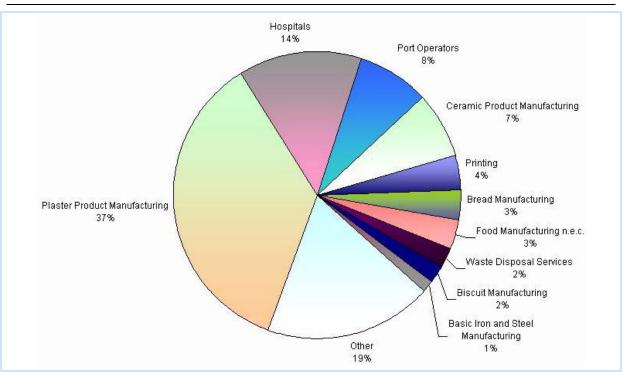


Figure 4-6: Proportion of CO emissions by commercial activity type in the GMR

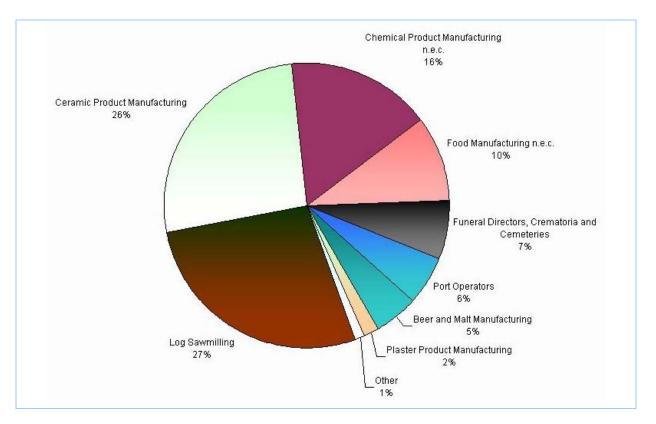


Figure 4-7: Proportion of SO₂ emissions by commercial activity type in the GMR

2008 Calendar Year Commercial Emissions: Results 4. Results Summary

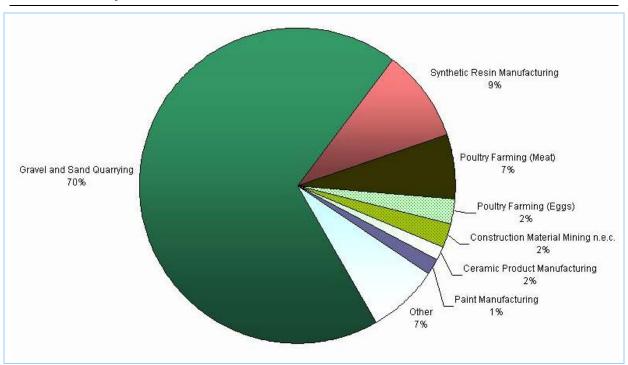


Figure 4-8: Proportion of PM₁₀ emissions by commercial activity type in the GMR

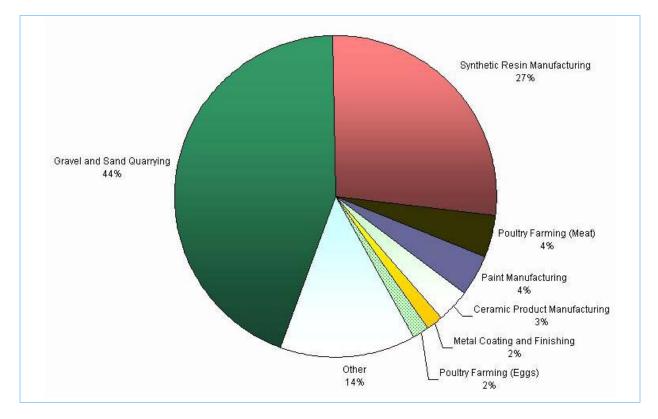
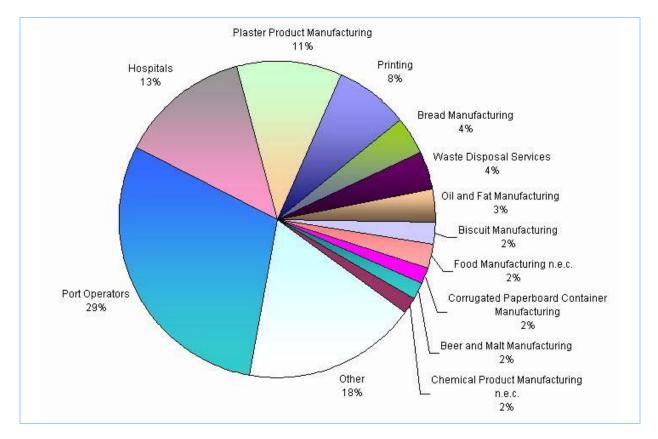


Figure 4-9: Proportion of PM_{2.5} emissions by commercial activity type in the GMR

Table 4-5 shows total estimated annual emissions (for selected substances) from each commercial source type in the Sydney region.

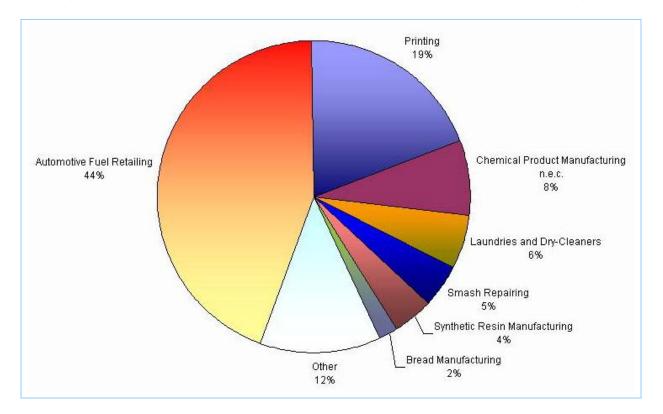
	Emissions (tonne/year)							
Activity	СО	NO _x	TSP	PM ₁₀	PM _{2.5}	SO ₂	VOC	
Agricultural machinery								
manufacturing	0	0	0	0	0	0	0.00023	
Aircraft manufacturing	2.35	2.8	0.213	0.213	0.213	0.0146	0.154	
Automotive component								
manufacturing n.e.c.	0.208	0.247	1.21	0.25	0.0768	0.00129	12.7	
Automotive fuel retailing	0	0	0	0	0	0	2,940	
Basic iron and steel								
manufacturing	0.853	3.16	14.4	9.45	7.86	0.0053	12	
Basic non-ferrous metal								
manufacturing n.e.c.	0.936	1.12	15.8	10	7.55	0.134	0.965	
Beer and malt								
Manufacturing	4.77	5.68	3.39	3.39	3.39	8.91	21.9	
Biscuit manufacturing	6.94	8.26	0.628	0.628	0.628	0.0432	0.454	
Bread manufacturing	11.6	13.8	1.05	1.05	1.05	0.0721	132	
Cake and pastry								
manufacturing	1.34	1.59	0.121	0.121	0.121	0.00832	12.2	
Ceramic product								
manufacturing	15.7	2.57	41.6	23.3	21.3	47.5	0.153	
Chemical product								
manufacturing n.e.c.	4.54	5.54	30.8	9.51	1.91	29.6	510	
Chemical wholesaling	0	0	6.75	1.29	0.313	0	81.4	
Concrete slurry								
manufacturing	0	0	13.2	4.52	0.716	0	0.00006	
Confectionery								
manufacturing	0.353	1.41	0.0746	0.0708	0.0702	0.00481	1.35	
Corrugated paperboard								
container manufacturing	4.82	5.74	0.436	0.436	0.436	0.03	0.316	
Electrical and equipment								
manufacturing n.e.c.	0.0368	0.422	0.429	0.429	0.429	0.00023	4.18	
Fabricated metal product								
manufacturing n.e.c.	0.87	2.08	11.9	4.54	3.21	0.00532	103	
Food manufacturing n.e.c.	6.9	8.22	0.714	0.642	0.629	0.0429	5.72	
Fruit and vegetable								
processing	2.49	1.48	0.225	0.225	0.225	0.0155	0.163	
Funeral directors,								
crematoria and cemeteries	1.95	4.27	0.202	0.0605	0.0403	7.51	0.18	
Furniture manufacturing								
n.e.c.	0	0	0.00086	0.00017	0.00004	0	2.84	
Gas supply	3.09	3.68	0.28	0.28	0.28	0.0192	0.202	
Glass and glass product								
manufacturing	3.71	3.88	8.57	8.4	8.25	0.174	2.86	
Gravel and sand								
quarrying	0	0	2590	646	145	0	0.0477	
Hospitals	38	45.6	3.44	3.44	3.44	0.256	2.62	

Table 4-5: Total estimated annual emissions by commercial source type in the Sydney region


2008 Calendar Year Commercial Emissions: Results 4. Results Summary

Activity			Emissi	ons (tonne/y	year)		
Activity	CO	NO _x	TSP	PM ₁₀	PM _{2.5}	SO ₂	VOC
Ice cream manufacturing	0.294	2.08	0.11	0.0964	0.0938	0.00639	0.438
Industrial gas							
manufacturing	0.00188	0.0136	2.77	0.75	0.0868	0	5.82
Ink manufacturing	0	0	0.688	0.619	0.611	0	10.6
Laundries and dry-							
cleaners	3.87	4.68	0.356	0.356	0.356	0.0245	372
Lifting and material							
handling equipment							
manufacturing	0	0.124	0.0245	0.0245	0.0245	0	0.745
Medicinal and							
pharmaceutical product							
manufacturing	2.44	2.99	0.223	0.223	0.223	0.0151	1.35
Metal coating and							
finishing	2.7	3.83	11.3	9.85	9.28	0.0168	20.9
Milk and cream							
processing	1.03	1.22	0.093	0.093	0.093	0.0064	0.0673
Non-building construction							
n.e.c.	0.0165	0.119	2.46	0.476	0.118	0	0.00288
Non-metallic mineral							
product manufacturing							
n.e.c.	0.485	0.577	0.0439	0.0439	0.0439	0.00302	106
Oil and fat manufacturing	5.32	11.4	0.482	0.482	0.482	0.0331	0.349
Organic industrial							
chemical manufacturing							
n.e.c.	0.0251	0.0299	0.00227	0.00227	0.00227	0.00016	4.54
Paint manufacturing	0	0	34.3	29.3	28.3	0	124
Paper product							
manufacturing n.e.c.	1.14	1.35	0.103	0.103	0.103	0.00707	0.471
Petroleum product							
wholesaling	0	0	1.78	0.341	0.0825	0	53
Plaster product							
manufacturing	138	37.3	16.1	13.6	7.81	3.4	3.41
Plastic bag and film							
manufacturing	0	0	0.899	0.899	0.832	0	17.7
Plastic injection moulded							
product manufacturing	2.96	3.54	20.3	5.96	0.839	0.0218	0.441
Plastic product, rigid fibre							
reinforced, manufacturing	1.4	1.66	0.22	0.153	0.129	0.00869	20.4
Port operators	31.3	102	8.95	8.95	8.95	9.94	13.7
Poultry farming (eggs)	0	0	104	45.4	10.4	0	0
Poultry farming (meat)	1.16	1.38	147	64.1	14.8	0.00719	0.0757
Prepared animal and bird							
feed manufacturing	0.00144	0.00576	0.00032	0.00031	0.00031	0.00204	0.0001
Printing	14.9	26	1.46	1.46	1.46	0.0933	1,300
Railway equipment							
manufacturing	0	0	0	0	0	0	0.058
Road and bridge							
construction	0	0	12.6	3.44	0.394	0	0
Rubber product	0	0	0.00191	0.00578	0	0	0.006

$\label{eq:approx} Air\ Emissions\ Inventory\ for\ the\ Greater\ Metropolitan\ Region\ of\ New\ South\ Wales$


4. Results Summary

Activity	Emissions (tonne/year)						
	CO	NO _x	TSP	PM_{10}	PM _{2.5}	SO_2	VOC
manufacturing n.e.c.							
Scientific research	0.927	0.552	0.0839	0.0839	0.0839	0.00577	0.0607
Services to air transport	2.24	2.67	0.203	0.203	0.203	0.014	71.4
Smash repairing	0	0	0	0	0	0	308
Soap and other detergent							
manufacturing	0	0	2.35	0.665	0.0674	0	0.0289
Soft drink, cordial and							
syrup manufacturing	3.46	4.12	0.313	0.313	0.313	0.0215	2.24
Solid paperboard							
container manufacturing	0	0	0	0	0	0	15.3
Spirit manufacturing	0	0	0	0	0	0	66.8
Spring and wire product							
manufacturing	0.00452	0.00538	0.242	0.0468	0.0116	0.00003	0.00051
Steel pipe and tube							
manufacturing	0	0.744	1.91	1.27	1.05	0	0.00123
Structural metal product							
manufacturing n.e.c.	0	0	0.007	0.007	0.007	0	2.49
Structural steel fabricating	0	0	2.04	0.4	0.104	0	0
Synthetic resin							
manufacturing	0.9	1.07	212	191	189	0.0056	268
Waste disposal services	9.22	13	1.77	1.7	1.67	0.353	17.3
Wine manufacturing	0.00024	0.00175	0.00006	0.00005	0.00005	0	3.18
Wood product							
manufacturing n.e.c.	0.0005	0.0006	1.07	0.206	0.0499	0	0.00003
Wooden furniture and							
upholstered seat							
manufacturing	0	0	0	0	0	0	1.77
Grand Total	335	344	3,330	1,110	485	108	6,650

The proportion of total estimated annual emissions (for selected substances) from each commercial source type in the Sydney region are shown in Figure 4-10 to Figure 4-15.

Figure 4-10: Proportion of NO_x emissions by commercial activity type in the Sydney region

Air Emissions Inventory for the Greater Metropolitan Region of New South Wales 4. Results Summary

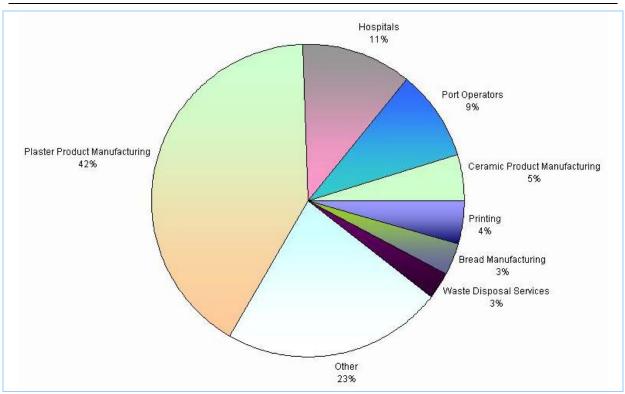


Figure 4-12: Proportion of CO emissions by commercial activity type in the Sydney region

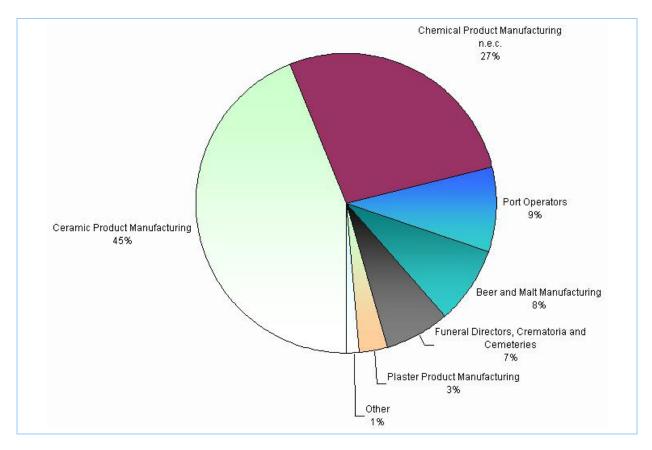


Figure 4-13: Proportion of SO₂ emissions by commercial activity type in the Sydney region

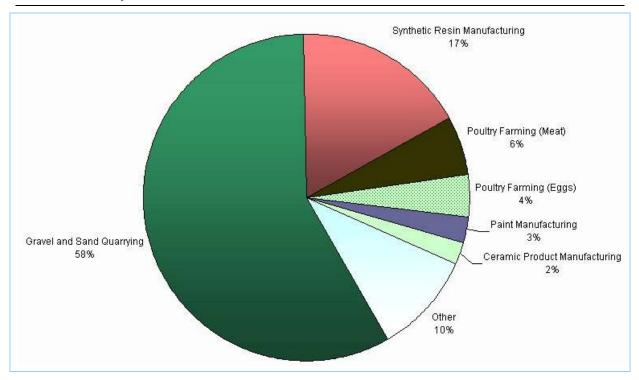


Figure 4-14: Proportion of PM₁₀ emissions by commercial activity type in the Sydney region

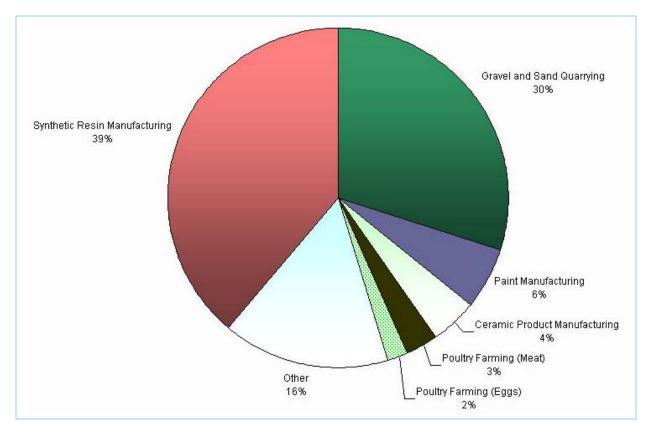


Figure 4-15: Proportion of PM_{2.5} emissions by commercial activity type in the Sydney region

Table 4-6 shows total estimated annual emissions (for selected substances) from each commercial source type in the Newcastle region.

Activity	Emissions (tonne/year)							
	СО	NO _x	TSP	PM_{10}	PM _{2.5}	SO_2	VOC	
Aluminium rolling,								
drawing, extruding	0	0	0.0012	0.0012	0.0012	0	0	
Automotive fuel retailing	0	0	0	0	0	0	389	
Bread manufacturing	1.68	2	1.2	0.477	0.346	0.0105	10.3	
Ceramic product								
manufacturing n.e.c.	0.0048	0.0348	0.00111	0.00108	0.00107	0	0.00084	
Chemical product								
manufacturing n.e.c.	0	0	0	0	0	0	6.34	
Chemical wholesaling	0	0	1.15	0.221	0.0534	0	0	
Concrete slurry								
manufacturing	0	0	2.81	1.03	0.161	0	0	
Construction material								
mining n.e.c.	0	0	57	33.9	6.58	0	0.00423	
Fabricated metal product								
manufacturing n.e.c.	0	0.413	0.427	0.237	0.203	0	0.0247	
Funeral directors,								
crematoria and cemeteries	0.381	0.835	0.0394	0.0118	0.00789	1.47	0.0351	
Furniture manufacturing								
n.e.c.	0	0	0	0	0	0	4.29	
Gravel and sand								
quarrying	0	0	245	85.5	18.4	0	0.009	
Hospitals	4.66	6.63	0.498	0.496	0.495	0.122	0.391	
Laundries and dry-								
cleaners	0	0	0	0	0	0	22.3	
Metal coating and								
finishing	2.46	28.6	13.7	4.79	3.19	0.0153	0.59	
Mining and construction								
machinery manufacturing	0	0	0.0002	0.0002	0.0002	0	0.475	
Petroleum product								
wholesaling	0	0	0	0	0	0	0.0895	
Plastic product, rigid fibre								
reinforced, manufacturing	0	0	0	0	0	0	5.31	
Poultry farming (meat)	0	0	5.39	2.35	0.539	0	0	
Road and bridge								
construction	0	0	0.0652	0.0326	0.00656	0	0.00702	
Smash repairing	0	0	0	0	0	0	20.8	
Spring and wire product								
manufacturing	0	0	0.005	0.005	0.005	0	0	
Waste disposal services	0.00613	0.0073	0.00055	0.00055	0.00055	0.00004	16	
Wine manufacturing	0	0	0	0	0	0	0.034	
Grand Total	9.2	38.5	327	129	30	1.62	476	

Table 4-6: Total estimated annual emissions by commercial source type in the Newcastle region

The proportion of total estimated annual emissions (for selected substances) from each commercial source type in the Newcastle region are shown in Figure 4-16 to Figure 4-21.

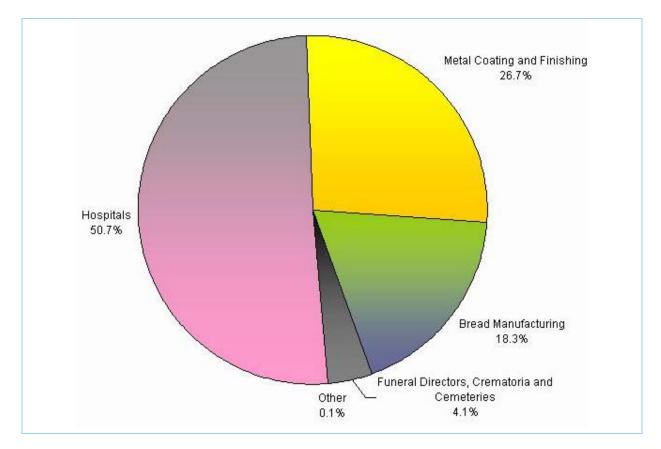


Figure 4-16: Proportion of NO_x emissions by commercial activity type in the Newcastle region

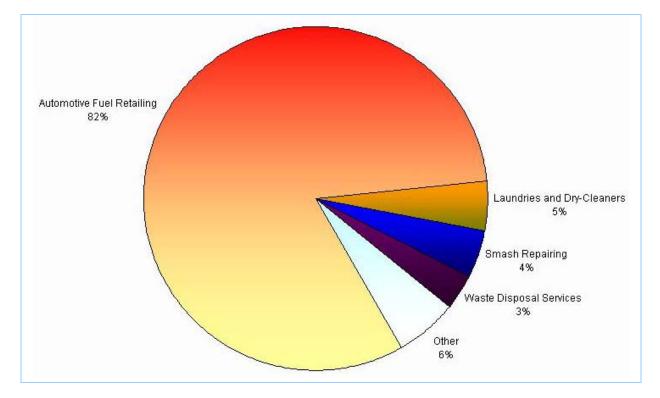


Figure 4-17: Proportion of VOC emissions by commercial activity type in the Newcastle region

Air Emissions Inventory for the Greater Metropolitan Region of New South Wales 4. Results Summary

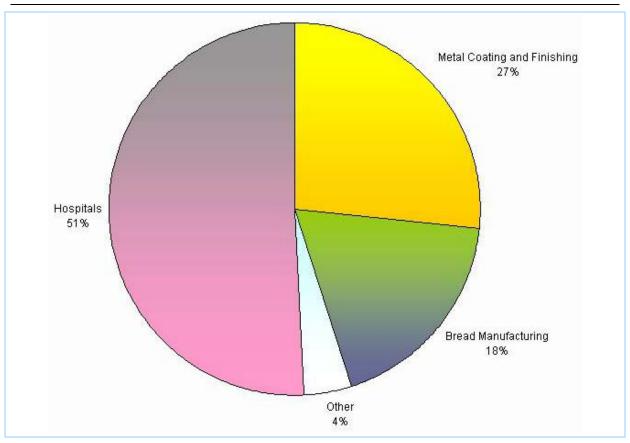


Figure 4-18: Proportion of CO emissions by commercial activity type in the Newcastle region

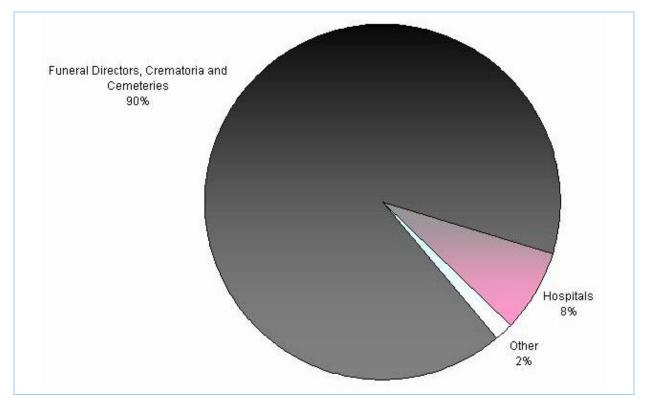


Figure 4-19: Proportion of SO₂ emissions by commercial activity type in the Newcastle region

2008 Calendar Year Commercial Emissions: Results 4. Results Summary

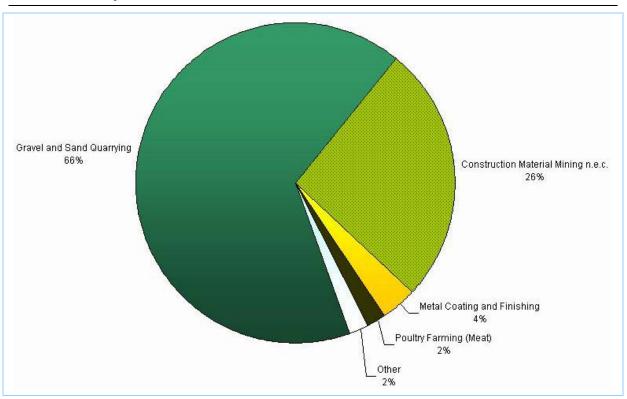


Figure 4-20: Proportion of PM₁₀ emissions by commercial activity type in the Newcastle region

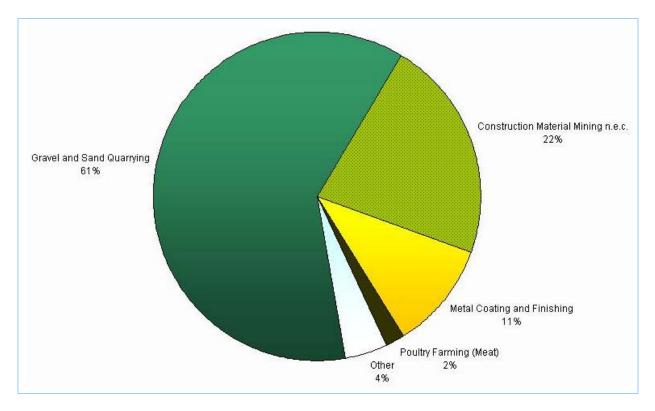


Figure 4-21: Proportion of PM_{2.5} emissions by commercial activity type in the Newcastle region

Table 4-7 shows total estimated annual emissions (for selected substances) from each commercial source type in the Wollongong region.

Activity	Emissions (tonne/year)							
	СО	NO _x	TSP	PM ₁₀	PM _{2.5}	SO_2	VOC	
Aluminium rolling,								
drawing, extruding	0	0	0.0693	0.0693	0.0693	0	0	
Automotive component								
manufacturing n.e.c.	0.00269	0.0032	0.00024	0.00024	0.00024	0.00002	0.807	
Automotive fuel retailing	0	0	0	0	0	0	292	
Basic iron and steel								
manufacturing	4.57	5.44	0.457	0.457	0.457	0.0284	0.334	
Ceramic product								
manufacturing	12.9	3.87	7.96	7.54	1.9	0.22	0.477	
Concrete slurry								
manufacturing	0	0	0.236	0.084	0.0134	0	0	
Fabricated metal product								
manufacturing n.e.c.	0	0	0	0	0	0	1.39	
Funeral directors,								
crematoria and cemeteries	0.118	0.258	0.0122	0.00366	0.00244	0.454	0.0109	
Gravel and sand								
quarrying	0	0	106	35.1	7.62	0	0.0036	
Hospitals	2.1	2.5	0.19	0.19	0.19	0.013	0.137	
Laundries and dry-								
cleaners	0	0	0	0	0	0	17.7	
Petroleum product								
wholesaling	0	0	0	0	0	0	10.6	
Plastic product, rigid fibre								
reinforced, manufacturing	0	0	0	0	0	0	13.4	
Poultry farming (meat)	0	0	1.36	0.593	0.136	0	0	
Printing	0	0	0	0	0	0	6.19	
Rubber product								
manufacturing n.e.c.	0.0072	0.0288	0.278	0.0711	0.0111	0.0102	0.00087	
Smash repairing	0	0	0	0	0	0	15.1	
Spring and wire product								
manufacturing	0.0006	0.00435	0.00014	0.00014	0.00013	0	0.00011	
Steel pipe and tube								
manufacturing	0	0	3.9	3.51	3.51	0	0	
Synthetic resin								
manufacturing	0.00148	0.00176	0.00013	0.00013	0.00013	0.00001	0.0001	
Grand Total	19.7	12.1	121	47.7	13.9	0.726	358	

Table 4-7: Total estimated annual emissions by commercial source type in the Wollongong region

The proportion of total estimated annual emissions (for selected substances) from each commercial source type in the Wollongong region are shown in Figure 4-22 to Figure 4-27.

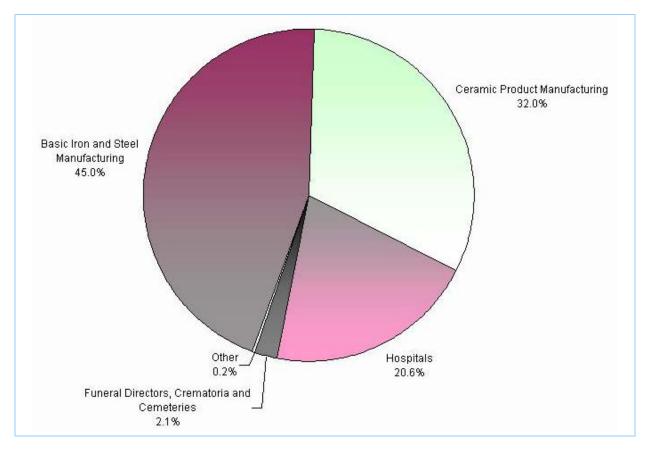


Figure 4-22: Proportion of NO_x emissions by commercial activity type in the Wollongong region

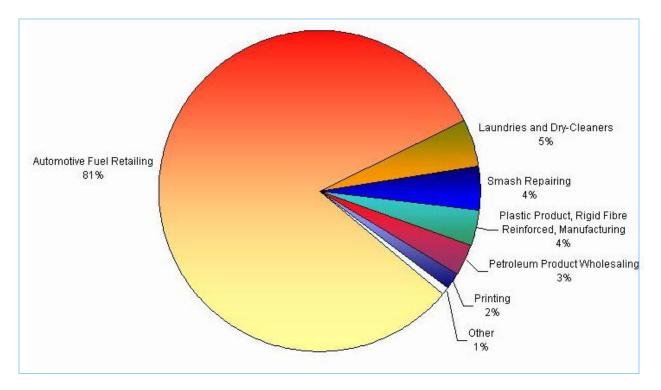


Figure 4-23: Proportion of VOC emissions by commercial activity type in the Wollongong region

Air Emissions Inventory for the Greater Metropolitan Region of New South Wales 4. Results Summary

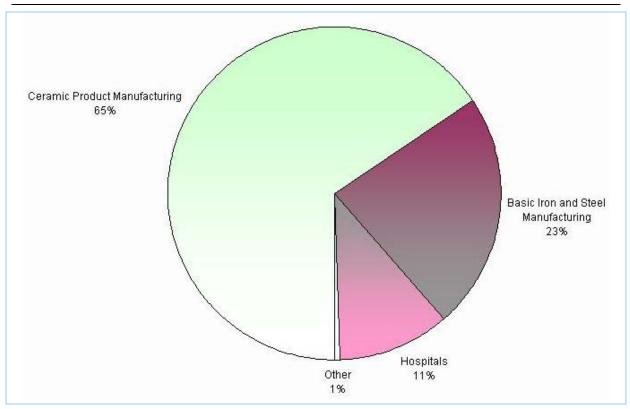


Figure 4-24: Proportion of CO emissions by commercial activity type in the Wollongong region

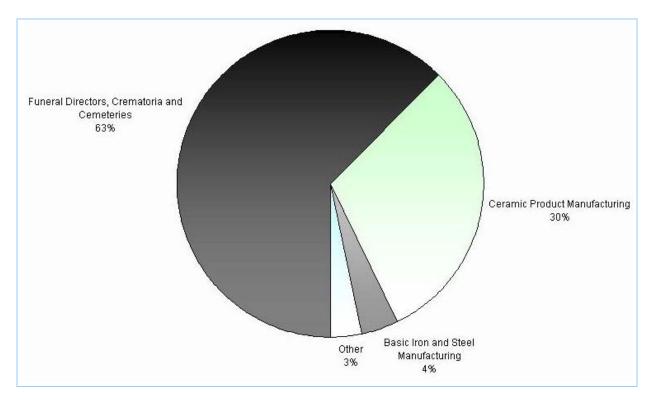


Figure 4-25: Proportion of SO₂ emissions by commercial activity type in the Wollongong region

2008 Calendar Year Commercial Emissions: Results 4. Results Summary

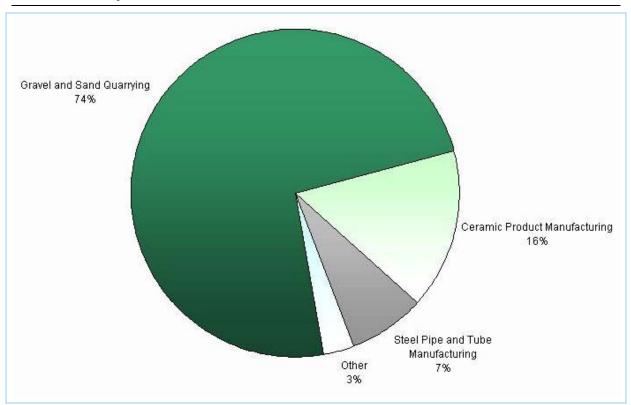


Figure 4-26: Proportion of PM₁₀ emissions by commercial activity type in the Wollongong region

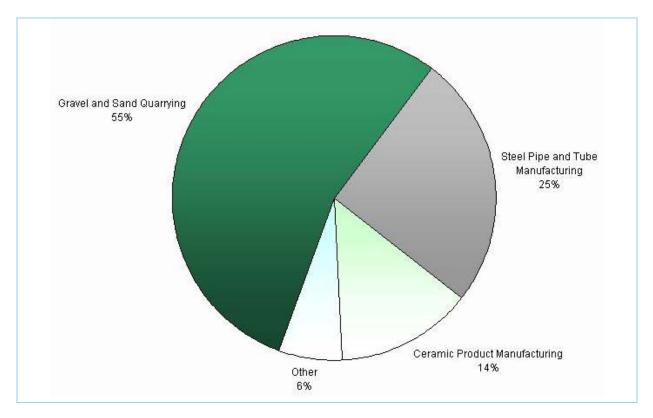


Figure 4-27: Proportion of PM_{2.5} emissions by commercial activity type in the Wollongong region

Table 4-8 shows total estimated annual emissions (for selected substances) from each commercial source type in the Non Urban region.

Activity	Emissions (tonne/year)							
Activity	CO	NO _x	TSP	PM_{10}	PM _{2.5}	SO ₂	VOC	
Automotive component								
manufacturing n.e.c.	0	0	0	0	0	0	0.429	
Automotive fuel retailing	0	0	0	0	0	0	1,290	
Chemical product								
manufacturing n.e.c.	0	0	0.0199	0.00786	0.00569	0	4.06	
Concrete slurry								
manufacturing	0	0	4.01	1.43	0.228	0	0	
Construction material								
mining n.e.c.	0	0	48.9	16.4	3.69	0	0.0018	
Electric cable and wire								
manufacturing	0	0	3.33	1.22	0.722	0	84	
Explosive manufacturing	0	0	0	0	0	0	0.0213	
Fabricated metal product								
manufacturing n.e.c.	0.766	0.912	0.0693	0.0693	0.0693	0.00477	0.0586	
Food manufacturing n.e.c.	6.05	21	1.65	1.01	0.738	17.8	0.489	
Funeral directors,								
crematoria and cemeteries	0.627	1.37	0.0649	0.0195	0.013	2.42	0.0578	
Furniture manufacturing								
n.e.c.	1.59	1.9	0.149	0.145	0.144	0.00991	0.105	
Glass and glass product								
manufacturing	0.00442	0.0356	0.00914	0.00895	0.00196	0.0028	0.00096	
Gravel and sand								
quarrying	0	0	2,140	621	136	0	0.0445	
Hospitals	9.51	11.8	0.881	0.88	0.88	0.0776	0.644	
Laundries and dry-								
cleaners	0	0	0	0	0	0	62.4	
Log sawmilling	3.29	64.8	45.2	18.4	7.42	49.5	90	
Medicinal and								
pharmaceutical product								
manufacturing	0.52	0.619	0.0477	0.0471	0.047	0.00323	0.693	
Mining and construction								
machinery manufacturing	0	0	0.00488	0.00094	0.00023	0	0.806	
Non-building construction								
n.e.c.	0.00709	0.0514	0.00163	0.00159	0.00158	0	0.00124	
Non-ferrous metal casting	0.0072	0.0288	0.384	0.244	0.183	0.0217	0.00064	
Paper product								
manufacturing n.e.c.	0.0811	0.377	0.0272	0.0265	0.0263	0.0248	0.0276	
Petroleum product								
wholesaling	0	0	0.572	0.163	0.0163	0	61.3	
Plastic product, rigid fibre								
reinforced, manufacturing	0	0	0.213	0.0409	0.0099	0	4.35	
8		0	11.7	5.12	1.17	0	0	
Poultry farming (eggs)	0	01	11./ 1	0.14				
Poultry farming (eggs) Poultry farming (meat)	0	0	11.7	64.9	1.17	0	0	

Table 4-8: Total estimated annual emissions by commercial source type in the Non Urban region

2008 Calendar Year Commercial Emissions: Results 4. Results Summary

Activity	Emissions (tonne/year)							
	СО	NO _x	TSP	PM_{10}	$PM_{2.5}$	SO ₂	VOC	
feed manufacturing								
Printing	0.00003	0.00004	0	0	0	0	13	
Rail transport	0	0	0	0	0	0	0.00126	
Road and bridge								
construction	0	0	0.065	0.0325	0.00651	0	0.00784	
Smash repairing	0	0	0	0	0	0	48.8	
Spring and wire product								
manufacturing	0	0.772	5.23	1.11	0.366	0	0.38	
Synthetic resin								
manufacturing	0.554	0.66	0.0538	0.0538	0.0538	0.00345	1.29	
Wine manufacturing	0	0	0	0	0	0	20.9	
Wood product								
manufacturing n.e.c.	0	0	0.132	0.0254	0.00614	0	5.42	
Grand Total	24.3	106	2,420	732	167	69.8	1,690	

The proportion of total estimated annual emissions (for selected substances) from each commercial source type in the Non Urban region are shown in Figure 4-28 to Figure 4-33.

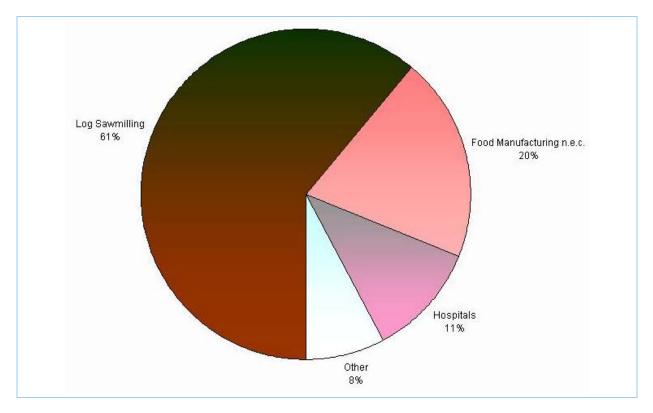


Figure 4-28: Proportion of NO_x emissions by commercial activity type in the Non Urban region

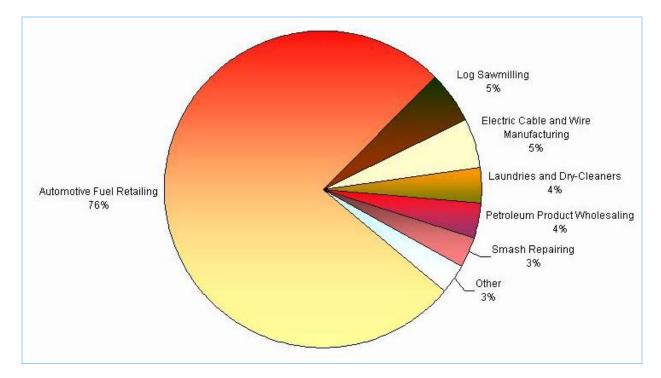


Figure 4-29: Proportion of VOC emissions by commercial activity type in the Non Urban region

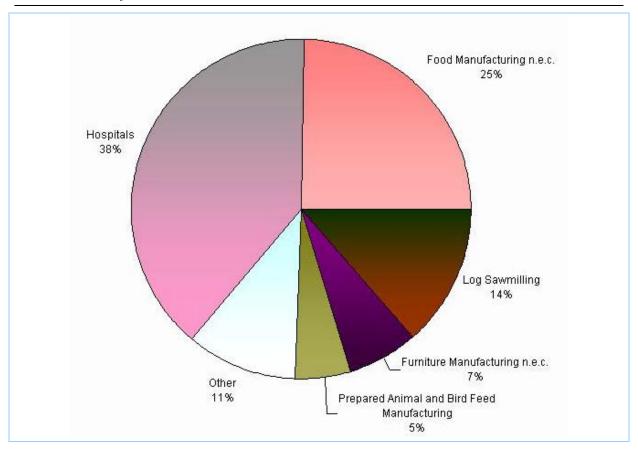


Figure 4-30: Proportion of CO emissions by commercial activity type in the Non Urban region

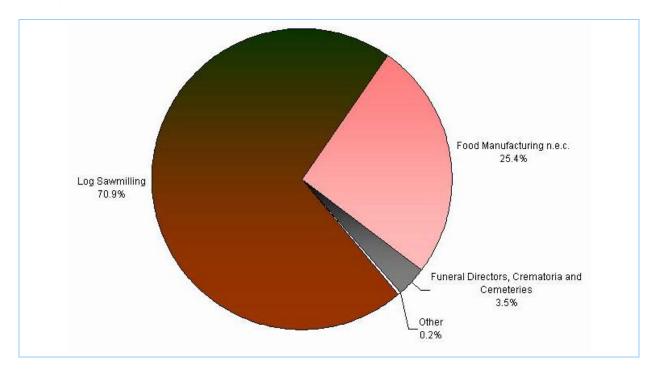


Figure 4-31: Proportion of SO₂ emissions by commercial activity type in the Non Urban region

Air Emissions Inventory for the Greater Metropolitan Region of New South Wales 4. Results Summary

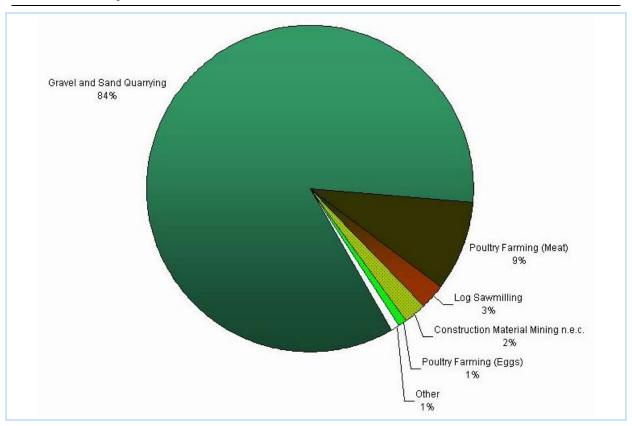


Figure 4-32: Proportion of PM₁₀ emissions by commercial activity type in the Non Urban region

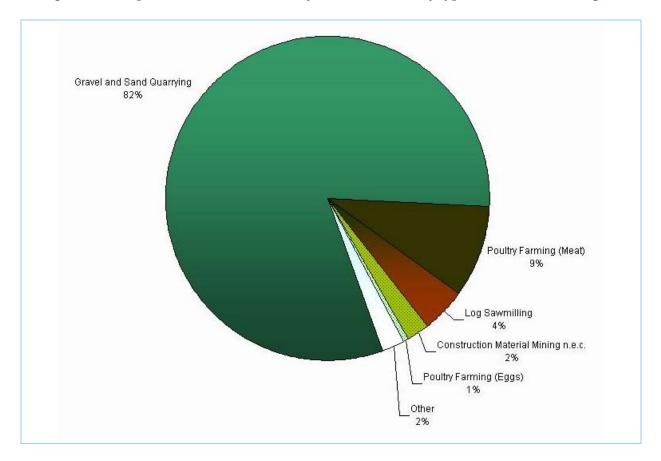


Figure 4-33: Proportion of PM_{2.5} emissions by commercial activity type in the Non Urban region

5 REFERENCES

ABARE (2006), Australian Energy, National and State Projections to 2029-30, ABARE Research Report 06.26, Australian Bureau of Agricultural and Resource Economics, GPO Box 1563, Canberra 2601, Australia. http://www.abare.gov.au/publications_html/energy/energy_06/nrg_projections06.pdf http://www.abareconomics.com/interactive/energy_dec06/excel/TFEC_06.xls http://www.abareconomics.com/interactive/energy_dec06/excel/TPEC_06.xls

ABARE (2009a) Australian Wine Grape Production Projections to 2010-1, Report 09.7 March 2009, Australian Bureau of Agricultural and Resource Economics (ABARE), GPO Box 1563, Canberra 2601, Australia.

http://www.abareconomics.com/publications_html/crops/crops_09/winegrapes.pdf

ABARE (2009b), Energy in Australia 2009, Australian Bureau of Agriculture and Resource Economics, GPO Box 1563, Canberra 2601, Canberra, Australia.

http://www.abareconomics.com/publications_html/energy/energy_09/auEnergy09.pdf

ABS (2004), Agricultural Commodities, Australia, 2002-2003, Report no: 7120, Australian Bureau of Statistics, Canberra, Australia

http://www.abs.gov.au/AUSSTATS/abs@.nsf/DetailsPage/7121.02002-03?OpenDocument

ABS (2005), Agricultural Commodities, Australia, 2003-2004, Report no: 7120, Australian Bureau of Statistics, Canberra, Australia

http://www.abs.gov.au/AUSSTATS/abs@.nsf/DetailsPage/7121.02003-04?OpenDocument

ABS (2008a), Section 18, Livestock Products - December Quarter 2007 (filename: 72150_dec 2007.pdf), ABS Publication 7215.0, Australian Bureau of Statistics, Canberra, Australia

http://www.abs.gov.au/AUSSTATS/abs@.nsf/allprimarymainfeatures/4894CD27B43360CECA2574 480013A947?opendocument"

ABS (2008b), Manufacturing Industry - Australia, 2006-2007, Report no. 8221.0, Australian Bureau of Statistics, Canberra, Australia

http://www.abs.gov.au/AUSSTATS/abs@.nsf/DetailsPage/8221.02006-07?OpenDocument

ABS (2009a), 3101.0 - Australian Demographic Statistics, Australian Bureau of Statistics, Canberra, Australia.

http://www.abs.gov.au/AUSSTATS/abs@.nsf/DetailsPage/3101.0Dec%202008?OpenDocument"

ABS (2009b), Australian Wine and Grape Industry 2008 (re-issue), 29 Jan 2009, Report no: 1329.0, Australian Bureau of Statistics, Canberra, Australia

http://www.abs.gov.au/ausstats/abs@.nsf/mf/1329.0

ABS (2009c), Agricultural Commodities, Australia, 2007-08, Report no: 7120, Australian Bureau of Statistics, Canberra, Australia http://www.abs.gov.au/AUSSTATS/abs@.nsf/DetailsPage/7121.02007-08?OpenDocument

ABS (2009d), International Merchandise Trade [data available on request], Imports of Perchloroethylene, Australian Bureau of Statistics, Canberra, Australia

ABS (2009e), *Pre-mix Concrete Production Data 2008 [data available on request]*, pers. comm. Wendy Hardy 24/03/2009, Australian Bureau of Statistics, Canberra, Australia

ABS (2009f) Section 18, Livestock Products - December Quarter 2008 (filename: 72150_dec 2008.pdf), ABS Publication 7215.0, Australian Bureau of Statistics, Canberra, Australia http://www.abs.gov.au/AUSSTATS/abs@.nsf/allprimarymainfeatures/A6E9DD65602ACF4CCA257 5B600187E2F?opendocument"

AECL (2005), *Poultry farms (laying hens)*, pers. comm. J Kellaway 17/03/2005, Australian Egg Corporation Limited, 107 Mount Street, North Sydney NSW 2060.

APMF (2009), APMF Paint Sales Data – Motor Vehicle Refinishing, Australian Paint Manufacturing Federation, Sydney, Australia

ATL (1988), A Study of Uncontrolled Automotive Refuelling Emissions, Prepared by Automotive Testing Laboratories Inc for the Coordinating Research Council Inc, January 5, 1988.

Bawden, K., Ormerod, R., Starke, G. and Zeise, K (2004), *Australian Inventory of Dioxin Emissions 2004, National Dioxins Program Technical Report No. 3*, Prepared by: Pacific Air and Environment, Level 1, 59 Melbourne Street, South Brisbane, QLD, 4101, Prepared for: Australian Government Department of the Environment and Heritage, GPO Box 787, Canberra, ACT 2601, Australia. <u>http://www.environment.gov.au/settlements/publications/chemicals/dioxins/report-</u>

3/index.html#downloadpubs/report-3.pdf

BP (2001a), Average diesel vapour concentration from diesel produced at BP refineries around Australia, pers comm. Peter Jones, BP Bulwer Refinery, Brisbane, Queensland, Australia

BP (2001b), Average petrol vapour concentration from petrol produced at BP refineries around Australia, pers comm. Peter Jones, BP Bulwer Refinery, Brisbane, Queensland, Australia

CARB (1990), Evaluation test on two propane fired crematories at Camellia Memorial Lawn Cemetery. Engineering Evaluation Branch, Monitoring and Laboratory Division. Test Report No. C-90-004, California Air Resources Board, California, USA

CARB (2005), *California Emission Inventory and Reporting System (CEIDARS), Organic Gas Speciation Profiles,* Californian Air Resources Board, 1001 "I" Street P.O. Box 2815 Sacramento, CA 95812, USA. http://www.arb.ca.gov/ei/speciate/orgprof_10_03_05.xls

CARB (2007), California Emission Inventory and Reporting System (CEIDARS), Particulate Matter (PM) Speciation Profiles, Californian Air Resources Board, 1001 "I" Street P.O. Box 2815 Sacramento, CA 95812, USA.

http://www.arb.ca.gov/ei/speciate/pmprof_07_19_07.xls

CARB (2008), California Emission Inventory and Reporting System (CEIDARS), Particulate Matter (PM) Speciation Profiles, Californian Air Resources Board, 1001 "I" Street P.O. Box 2815 Sacramento, CA 95812, USA.

http://www.arb.ca.gov/ei/speciate/pmsize_07242008.xls

CARB (2011), *Consolidated Table of OEHHA / ARB Approved Risk Assessment Health Values*, California Air Resources Board, 1001 "I" Street, P.O. Box 2815 Sacramento, CA 95812, USA. http://www.arb.ca.gov/toxics/healthval/contable.pdf

Carter, W (2010), *Development of the SAPRC-07 Chemical Mechanism and Updated Ozone Reactivity Scales, Report to the California Air Resources Board Contracts No.* 03-318, 06-408, and 07-730, College of Engineering, Center for Environmental Research and Technology (CE-CERT), University of California, Riverside, CA 92521, USA.

http://www.engr.ucr.edu/~carter/SAPRC/saprc07.pdf

DCC (2009), National Greenhouse Accounts (NGA) Factors, Department of Climate Change, GPO Box 854, Canberra, ACT 2601, Australia.

http://www.climatechange.gov.au/en/government/initiatives/national-greenhouse-energyreporting/~/media/publications/greenhouse-gas/national-greenhouse-factors-june-2009-pdf.ashx

DCCEE (2010), *National Greenhouse Accounts (NGA) Factors*, Department of Climate Change and Energy Efficiency, GPO Box 854, Canberra, ACT 2601, Australia.

http://www.climatechange.gov.au/~/media/publications/greenhouse-acctg/national-greenhousefactors-july-2010-pdf.pdf

DEC (2005), Approved Methods For the Modelling and Assessment of Air Pollutants in New South Wales, Department of Environment and Conservation, PO Box A290, Sydney South, NSW 1232, Australia. http://www.environment.nsw.gov.au/resources/air/ammodelling05361.pdf

DECC (2007), Air Emissions Inventory for the Greater Metropolitan Region in NSW, Commercial Emissions Module: Results, Prepared by Department of Environment and Climate Change (DECC) & Pacific Air & Environment, Sydney, NSW 2000, Australia.

http://www.environment.nsw.gov.au/resources/air/tr4aei078.pdf

DEH (2004a), NPI Emission Estimation Technique Manual for Glass and Glass Fibre Manufacturing v2.0, Department of Environment and Heritage, GPO Box 787, Canberra, ACT 2601, Australia. <u>http://www.npi.gov.au/publications/emission-estimation-technique/pubs/fglass.pdf</u>

DEH (2004b), *NPI Emission Estimation Technique Manual for Plasterboard and Plaster Manufacturing v*1.2, Department of Environment and Heritage, GPO Box 787, Canberra, ACT 2601, Australia. http://www.npi.gov.au/publications/emission-estimation-technique/plaster.html

DEH (2005), *NPI Emission Estimation Technique Manual for Fossil Fuel Electric Power Generation v2.3*, Department of Environment and Heritage, GPO Box 787, Canberra, ACT 2601, Australia. <u>http://www.npi.gov.au/publications/emission-estimation-technique/pubs/elec-supply.pdf</u> *Air Emissions Inventory for the Greater Metropolitan Region of New South Wales 5. References*

DEWHA (2008) *NPI Emission Estimation Technique Manual for Combustion in Engines v3.0*, Department of Environment Water Heritage and the Arts, GPO Box 787, Canberra, ACT 2601, Australia. http://www.npi.gov.au/publications/emission-estimation-technique/pubs/combustion-engines.pdf

DEWHA (2010) NPI Emission Estimation Technique Manual for Wine and Spirit Manufacturing v2.0, Department of Environment Water Heritage and the Arts, GPO Box 787, Canberra, ACT 2601, Australia.

http://www.npi.gov.au/publications/emission-estimation-technique/pubs/wine.pdf

DEWHA (2011), *NPI Emission Estimation Technique Manual for Crematoria*, Department of Environment Water Heritage and the Arts, GPO Box 787, Canberra, ACT 2601, Australia. <u>http://www.npi.gov.au/publications/emission-estimation-technique/pubs/crematoria.pdf</u>

DHA (2001), *Priority Existing Chemical Number 15, Tetrachloroethylene*, Australian Government Department of Health and Aging, National Industrial Chemicals Notification & Assessment Scheme (NICNAS), GPO Box 58, Sydney, NSW, 2001

DITR (2005), *Australian Petroleum Statistics*, 2003, Department of Industry, Tourism and Resources, Canberra, Australia (data available on request).

DMR (2000), Supply and Demand for Coarse Aggregate in the Sydney Planning Region, NSW Department of Mineral Resources, St Leonards, NSW, Australia.

DMR (2001a), *Supply and Demand for Construction Sand in the Sydney Planning Region*, NSW Department of Mineral Resources, St Leonards, NSW, Australia.

DMR (2001b), *Structural Clay/Shale Resources of the Sydney Region*, NSW Department of Mineral Resources, St Leonards, NSW, Australia.

DMR (2003) *New South Wales Industrial Minerals Database*, NSW Department of Mineral Resources, St Leonards, NSW, Australia.

DPI (2005), *Poultry farms (meat chicken (broiler) and turkey farms)*, pers. comm. G Bolla, 14/03/2005, NSW Department of Industries, Locked Bag 21, Orange NSW 2800.

DRET (2009), *Australian Petroleum Statistics*, 2008, Department of Resources, Industry and Tourism, Canberra, Australia

http://www.ret.gov.au/resources/fuels/aps/aps-08/Pages/default.aspx

EEA (2006), EMEP/CORINAIR Emission Inventory Guidebook - 2006 - Gasoline Distribution, European Environment Agency, Kongens Nytorv 6, 1050 Copenhagen K, Denmark http://www.eea.europa.eu/publications/EMEPCORINAIR4/page002.html

EEA (2009), *EMEP/EEA Air Pollutant Emission Inventory Guidebook 2009*, European Environment Agency, Kongens Nytorv 6, 1050 Copenhagen K, Denmark. http://www.eea.europa.eu/publications/emep-eea-emission-inventory-guidebook-2009/# ENVIRON (2009), VOCs from Surface Coatings – Assessment of the Categorisation, VOC Content and Sales Volumes of Coating Products Sold in Australia, Prepared for NEPC Service Corporation on behalf of Environment Protection Heritage Council, Australia

http://www.ephc.gov.au/sites/default/files/AAQ_Rpt__VOCs_from_Surface_Coatings_Final_2009 0930.pdf

EA (1999a) NPI Emission Estimation Technique Manual for Aggregated Emissions from Motor Vehicle Refinishing, GPO Box 787, Canberra, ACT 2601, Australia. http://www.npi.gov.au/publications/aedmanuals/pubs/mvrefinish_rev2.pdf

EA (1999b), NPI Emission Estimation Technique Manual for Aggregated Emissions from Printing and Graphic Arts, Environment Australia, GPO Box 787, Canberra, ACT 2601, Australia. http://www.npi.gov.au/publications/aedmanuals/pubs/printing_rev.pdf

EA (1999c) NPI Emission Estimation Technique Manual for Aggregated Emissions from Service Stations, Environment Australia, GPO Box 787, Canberra, ACT 2601, Australia. http://www.npi.gov.au/handbooks/aedmanuals/pubs/servstatns_rev4.pdf

EA (1999d) *NPI Emission Estimation Technique Manual for Dry Cleaning*, Environment Australia, GPO Box 787, Canberra, ACT 2601, Australia. http://www.npi.gov.au/publications/aedmanuals/pubs/dryclean_rev.pdf

EA (1999e) NPI Emission Estimation Technique Manual for Fibreglass Product Manufacturing, Environment Australia, GPO Box 787, Canberra, ACT 2601, Australia.

http://www.npi.gov.au/publications/emission-estimation-technique/pubs/ffibgls.pdf

EA (1999f), NPI Emission Estimation Technique Manual for Fugitive Emissions, Environment Australia, GPO Box 787, Canberra, ACT 2601, Australia. http://www.npi.gov.au/publications/emission-estimation-technique/pubs/ffugitive.pdf

EA (1999g), NPI Emission Estimation Technique Manual for Iron and Steel Production, Environment Australia, GPO Box 787, Canberra, ACT 2601, Australia. http://www.npi.gov.au/publications/emission-estimation-technique/pubs/fironste.pdf

EA (1999h), *NPI Emission Estimation Technique Manual for Non-Ferrous Foundries*, Environment Australia, GPO Box 787, Canberra, ACT 2601, Australia. http://www.npi.gov.au/publications/emission-estimation-technique/pubs/f2nonfer.pdf

EA (1999i), NPI Emission Estimation Technique Manual for Structural and Fabricated Metal Product Manufacture, Environment Australia, GPO Box 787, Canberra, ACT 2601, Australia. http://www.npi.gov.au/publications/emission-estimation-technique/pubs/fstfamet.pdf

EA (2001a), *NPI Emission Estimation Technique Manual for Galvanising v1.1*, Environment Australia, GPO Box 787, Canberra, ACT 2601, Australia.

http://www.npi.gov.au/publications/emission-estimation-technique/pubs/galvanising.pdf

Air Emissions Inventory for the Greater Metropolitan Region of New South Wales 5. References

EA (2001b), *State of Knowledge Report: Air Toxics and Indoor Air Quality in Australia*, Environment Australia, GPO Box 787, Canberra, ACT 2601, Australia. http://www.environment.gov.au/atmosphere/airquality/publications/sok/index.html

EA (2002a), NPI Emission Estimation Technique Manual for Intensive Livestock – Poultry Raising v1.0, Environment Australia, GPO Box 787, Canberra, ACT 2601, Australia. http://www.npi.gov.au/publications/emission-estimation-technique/pubs/poultry.pdf

EA (2002b), NPI Emission Estimation Technique Manual for Plasterboard and Plaster Manufacturing v1.1, Environment Australia, GPO Box 787, Canberra, ACT 2601, Australia.

EA (2003a), *NPI Emission Estimation Technique Manual for Bread Manufacturing v1.1*, Environment Australia, GPO Box 787, Canberra, ACT 2601, Australia. <u>http://www.npi.gov.au/publications/emission-estimation-technique/pubs/bakery.pdf</u>

EA (2003b), *NPI Emission Estimation Technique Manual for Mining v2.3*, Environment Australia, GPO Box 787, Canberra, ACT 2601, Australia. http://www.npi.gov.au/publications/emission-estimation-technique/pubs/mining.pdf

EPAV (1999), *Hazardous Air Pollutants - A Review of Studies Performed in Australia and New Zealand*, Environment Protection Authority of Victoria, GPO Box 4395QQ, Melbourne, Victoria 3001 Australia.

Hurley, P.J. (2005), *The Air Pollution Model (TAPM) Version 3, User Manual, Internal Paper No. 31*, CSIRO Atmospheric Research, PB 1, Aspendale, Victoria 3195, Australia.

ICSM (2006), *Geocentric Datum of Australia Technical Manual Version* 2.3, Intergovernmental Committee on Surveying and Mapping, GPO Box 378, Canberra, ACT 2601, Australia. http://www.icsm.gov.au/icsm/gda/gdatm/gdav2.3.pdf

Keith, L.H. and Telliard, W.A. (1979), *Priority Pollutants Part 1. A Perspective View*. Environmental Science and Technology, Volume 13, Number 4, April 1979, pp 416–424, American Chemical Society, 1155 Sixteenth Street N.W., Washington, DC 2003.

Mirrabooka (2002), "Silverweir" Broiler Farm Development Approval Application - Air Quality Assessment, Mirrabooka Consulting, Stafford, Queensland, 4053

NEPC (2003), National Environment Protection (Ambient Air Quality) Measure – As varied 7 July 2003 Environment Protection & Heritage Council, Level 5, 81 Flinders Street, Adelaide, SA 5000, Australia. http://www.ephc.gov.au/sites/default/files/AAQ_NEPM_Ambient_Air_Quality_NEPM_Varied_s caleplus_Final_200305_1.pdf

NEPC (2004), *National Environment Protection (Air Toxics) Measure* – As made 3 December 2004, Environment Protection & Heritage Council, Level 5, 81 Flinders Street, Adelaide, SA 5000, Australia. http://www.ephc.gov.au/sites/default/files/AT_NEPM_Air_Toxics_NEPM_20041203.pdf NEPC (2006), National Environment Protection (Air Toxics) Measure, Air Toxics Tier 2 Prioritisation Methodology, Environment Protection & Heritage Council, Level 5, 81 Flinders Street, Adelaide, SA 5000, Australia.

http://www.ephc.gov.au/sites/default/files/AT_T2__Tier_2_Prioritisation_Methodology_200606.pd f

NEPC (2008), National Environment Protection (National Pollutant Inventory) Measure – As varied 13 November 2008, Environment Protection & Heritage Council, Level 5, 81 Flinders Street, Adelaide, SA 5000, Australia.

http://www.ephc.gov.au/sites/default/files/NPI_NEPM_NPI_NEPM_as_Varied_200811.pdf

NGGIC (1996), Australian Methodology for the Estimation of Greenhouse Gas Emissions and Sinks – Workbook for Waste, National Greenhouse Gas Inventory Committee, Department of the Environment, Sport and Territories, Canberra, Australia.

NSW Health (2009a), Average Available Beds, June 2008 (Beds in Emergency Departments, Delivery Suites, Operating Theatres and Recovery Rooms are excluded), pers. Comm. John Agland, 27/03/2009, NSW Department of Health, Locked Mail Bag 961, North Sydney NSW 2059, Australia

NSW Health (2009b), *List of Private Health Care Facilities in NSW Currently Licensed by the Private Health Care Branch*, pers. Comm.. John Agland, 5/10/2009, NSW Department of Health, Locked Mail Bag 961, North Sydney NSW 2059, Australia

NSWBDM (2009), *DECC Air Emissions Inventory - NSW Deaths, Burials and Cremations for 2008 Calendar Year - Follow Up 29/06/2009,* pers comm. email received from Les Gould, Research Coordinator, NSW Registry Births Deaths and Marriages, 03/07/2009.

PAE (2004), New South Wales Air Emissions Inventory Compliance Assessment of Stage 1 Vapour Phase Recovery Module, Prepared by Chris Boyce, Consultancy report for New South Wales Department of Environment and Conservation, Pacific Air & Environment, South Brisbane, Australia.

PAE (2007), *Commercial Emissions Inventory Database*, Database designed for New South Wales Department of Environment and Conservation, Pacific Air & Environment, South Brisbane, Australia.

PCO (2010), Protection of the Environment Operations (General) Regulation 2009, New South Wales Parliamentary Counsel's Office, GPO Box 4191, Sydney NSW 2001, Australia.

http://www.legislation.nsw.gov.au/scanview/inforce/s/1/?SRTITLE=%22Protection%20of%20the% 20Environment%20Operations%20(General)%20Regulation%202009%22&nohits=y

PCO (2011), Protection of the Environment Operations (Clean Air) Regulation 2010, New South Wales Parliamentary Counsel's Office, GPO Box 4191, Sydney NSW 2001, Australia. http://www.legislation.nsw.gov.au/maintop/view/inforce/subordleg+428+2010+cd+0+N

Pechan (2004), *Estimating Ammonia Emissions from Anthropogenic Non-Agricultural Sources – Draft Final Report*, E.H. Pechan & Associates Inc., 5528-B Hempstead Way, Springfield, VA 22151, USA. http://www.epa.gov/ttn/chief/eiip/techreport/volume03/eiip_areasourcesnh3.pdf Perry, R.H. & Green, D.W. (1997), *Perry's Chemical Engineers' Handbook – Seventh Edition*, McGraw Hill, New York.

Raoult, M [Francois-Marie] (1882a), Loi De Congélation (Congelation) Des Solutions Benzéniques (Benziniques) Des Substances Neutres, In Comptes Rendus, 1882, 2 Semestre T. XCV, No. 4, pp 187 – 198.

Raoult, M [Francois-Marie] (1882b), Loi Générale (Generale) De Congélation (Congelation) Des Dissolvantes. In Comptes-Redus, 1882 2 Semestre T. XCV, No. 22, pp. 1030 – 1033

Raoult, M [Francois-Marie] (1887a), Influence Du Degree De Concentration Sur La Tension De Vapeur Des Dissolutions Faites Dans L'éther (L'ether), In Comptus Rendu, 1887, 1er Semestre. T. CIV, No. 14, pp. 976 – 978.

Raoult, M [Francois-Marie] (1887b), Loi Générale (Generale) Des Tensions De Vapeur Des Dissolvants, In Comptus Rendu, 1887,, 1er Semestre T. CIV, No. 21, pp. 1430 – 1433.

RARE (2009), *Reducing VOC emissions from automotive refinishing in the Sydney basin*, Consultancy Report for Department of Environment and Climate Change, NSW, Sydney, NSW 2000, Australia. Prepared by RARE Consulting Pty. Ltd., Sydney, Australia.

Sydney Auto Repairers (2005), *Sydney Auto Repairers Directory*, Available from <u>http://www.autorepairers.com.au</u>, Accessed 01/08/05.

TDC (2005), *Car Travel in Sydney: Changes in the Last Decade*, DIPNR. Transport Data Centre, GPO Box 1620, Sydney, NSW 2001, Australia.

http://www.transport.nsw.gov.au/tdc/documents/car-travel-mar-2005.pdf

TDC (2009), *TDC Forecasts for Population and VKT 2006 to 2036 Ref: 09/088*, Transport Data Centre, GPO Box 1620, Sydney, NSW 2001, Australia.

USEPA (1983), AP 42, Fifth Edition, Volume 1, Chapter 6: Organic Chemical Process Industry: 6.4 Paint & Varnish. Technology Transfer Network, Clearinghouse for Inventories & Emission Factors, United States Environmental Protection Agency, Office of Air Quality Planning and Standards, Research Triangle Park, NC 27711, USA.

http://www.epa.gov/ttn/chief/ap42/ch06/final/c06s04.pdf

USEPA (1986a), AP 42, Fifth Edition, Volume 1, Chapter 11: Mineral Products Industry: 11.15 Glass Manufacturing. Technology Transfer Network, Clearinghouse for Inventories & Emission Factors, United States Environmental Protection Agency, Office of Air Quality Planning and Standards, Research Triangle Park, NC 27711, USA.

http://www.epa.gov/ttn/chief/ap42/ch11/final/c11s15.pdf

USEPA (1986b), AP 42, Fifth Edition, Volume 1, Chapter 12: Metallurgical Industry: 12.5 Iron and Steel Production. Technology Transfer Network, Clearinghouse for Inventories & Emission Factors, United States Environmental Protection Agency, Office of Air Quality Planning and Standards, Research Triangle Park, NC 27711, USA.

http://www.epa.gov/ttn/chief/ap42/ch12/final/c12s05.pdf

USEPA (1993), Control of Air Pollution from New Motor Vehicles and New Motor Vehicle Engines, Refueling Emission Regulations for Light-Duty Vehicles and Trucks and Heavy-Duty Vehicles (Assuming Stage II is not present) - Regulatory Impact Analysis, Joint Center AEI Brookings Joint Center for Regulatory Studies, Environment Protection Agency - Office of Air, USA.

USEPA (1995a), *AP 42, Fifth Edition, Compilation of Air Pollutant Emission Factors, Volume 1: Stationary Point and Area Sources,* Technology Transfer Network, Clearinghouse for Inventories & Emissions Factors, United States Environmental Protection Agency, Office of Air Quality Planning and Standards, Research Triangle Park, NC 27711, USA.

http://www.epa.gov/ttn/chief/ap42/index.html

USEPA (1995b), AP 42, Fifth Edition, Volume 1, Chapter 9: Food and Agricultural Industries: 9.12.2 Wines and Brandy. Technology Transfer Network, Clearinghouse for Inventories & Emission Factors, United States Environmental Protection Agency, Office of Air Quality Planning and Standards, Research Triangle Park, NC 27711, USA.

http://www.epa.gov/ttn/chief/ap42/ch09/final/c9s12-2.pdf

USEPA (1995c), AP 42, Fifth Edition, Volume 1, Chapter 9: Food and Agricultural Industries: 9.13.3 Snack Chip Deep Fat Frying. Technology Transfer Network, Clearinghouse for Inventories & Emission Factors, United States Environmental Protection Agency, Office of Air Quality Planning and Standards, Research Triangle Park, NC 27711, USA.

http://www.epa.gov/ttn/chief/ap42/ch09/final/c9s13-3.pdf

USEPA (1995d), *AP 42, Fifth Edition, Volume 1, Chapter 12: Metallurgical Industry: 12.13 Steel Foundries.* Technology Transfer Network, Clearinghouse for Inventories & Emission Factors, United States Environmental Protection Agency, Office of Air Quality Planning and Standards, Research Triangle Park, NC 27711, USA.

http://www.epa.gov/ttn/chief/ap42/ch12/final/c12s13.pdf

USEPA (1996a), AP 42, Fifth Edition, Volume 1, Chapter 3: Stationary Internal Combustion Sources: 3.3 Gasoline and Diesel Industrial Engines. Technology Transfer Network, Clearinghouse for Inventories & Emission Factors, United States Environmental Protection Agency, Office of Air Quality Planning and Standards, Research Triangle Park, NC 27711, USA.

http://www.epa.gov/ttn/chief/ap42/ch03/final/c03s03.pdf

USEPA (1996b), AP 42, Fifth Edition, Volume 1, Chapter 11: Mineral Products Industry, 11.7 Ceramic Products Manufacturing, Technology Transfer Network, Clearinghouse for Inventories & Emission Factors, United States Environmental Protection Agency, Office of Air Quality Planning and Standards, Research Triangle Park, NC 27711, USA.

http://www.epa.gov/ttn/chief/ap42/ch11/final/c11s07.pdf

USEPA (1996c), *AP 42, Fifth Edition, Volume 1, Chapter 12: Metallurgical Industry: 12.10 Electroplating.* Technology Transfer Network, Clearinghouse for Inventories & Emission Factors, United States Environmental Protection Agency, Office of Air Quality Planning and Standards, Research Triangle Park, NC 27711, USA.

http://www.epa.gov/ttn/chief/ap42/ch12/final/c12s20.pdf

Air Emissions Inventory for the Greater Metropolitan Region of New South Wales 5. References

USEPA (1998a), AP 42, Fifth Edition, Volume 1, Chapter 1: External Combustion Sources: 1.1 Bituminous and Subbituminous Coal Combustion, Technology Transfer Network, Clearinghouse for Inventories & Emission Factors, United States Environmental Protection Agency, Office of Air Quality Planning and Standards, Research Triangle Park, NC 27711, USA.

http://www.epa.gov/ttn/chief/ap42/ch01/final/c01s01.pdf

USEPA (1998b), AP 42, Fifth Edition, Volume 1, Chapter 1: External Combustion Sources: 1.4 Natural Gas Combustion. Technology Transfer Network, Clearinghouse for Inventories & Emission Factors, United States Environmental Protection Agency, Office of Air Quality Planning and Standards, Research Triangle Park, NC 27711, USA.

http://www.epa.gov/ttn/chief/ap42/ch01/final/c01s04.pdf

USEPA (1999), AP 42, Fifth Edition, Volume 1, Chapter 1: External Combustion Sources: 1.3 Fuel Oil Combustion, Technology Transfer Network, Clearinghouse for Inventories & Emission Factors, United States Environmental Protection Agency, Office of Air Quality Planning and Standards, Research Triangle Park, NC 27711, USA.

http://www.epa.gov/ttn/chief/ap42/ch01/final/c01s03.pdf

USEPA (2000), AP 42, Fifth Edition, Volume 1, Chapter 3: Stationary Internal Combustion Sources: 3.2 Natural Gas-fired Reciprocating Engines. Technology Transfer Network, Clearinghouse for Inventories & Emission Factors, United States Environmental Protection Agency, Office of Air Quality Planning and Standards, Research Triangle Park, NC 27711, USA.

http://www.epa.gov/ttn/chief/ap42/ch03/final/c03s02.pdf

USEPA (2003a), AP 42, Fifth Edition, Volume 1, Chapter 9: Food and Agricultural Industries: 9.9.1 Grain Elevators & Processes. Technology Transfer Network, Clearinghouse for Inventories & Emission Factors, United States Environmental Protection Agency, Office of Air Quality Planning and Standards, Research Triangle Park, NC 27711, USA.

http://www.epa.gov/ttn/chief/ap42/ch09/final/c9s0909-1.pdf

USEPA (2003b), *AP* 42, *Fifth Edition, Volume 1, Chapter 12: Metallurgical Industry: 12.10 Gray Iron Foundries.* Technology Transfer Network, Clearinghouse for Inventories & Emission Factors, United States Environmental Protection Agency, Office of Air Quality Planning and Standards, Research Triangle Park, NC 27711, USA.

http://www.epa.gov/ttn/chief/ap42/ch12/final/c12s10.pdf

USEPA (2003c), *Technology Transfer Network - Clearinghouse for Inventories & Emissions Factors*, United States Environmental Protection Agency, Office of Air Quality Planning and Standards, Research Triangle Park, NC 27711, USA.

http://www.epa.gov/ttn/chief/ap42/index.html

USEPA (2006a), *AP 42, Fifth Edition, Volume 1, Chapter 7: Liquid Storage Tanks, 7.1 Organic Liquid Storage Tanks,* Technology Transfer Network, Clearinghouse for Inventories & Emission Factors, United States Environmental Protection Agency, Office of Air Quality Planning and Standards, Research Triangle Park, NC 27711, USA.

http://www.epa.gov/ttn/chief/ap42/ch07/final/c07s01.pdf

USEPA (2006b), *AP 42, Fifth Edition, Volume 1, Chapter 11: Mineral Products Industry, 11.12 Concrete Batching,* Technology Transfer Network, Clearinghouse for Inventories & Emission Factors, United States Environmental Protection Agency, Office of Air Quality Planning and Standards, Research Triangle Park, NC 27711, USA.

http://www.epa.gov/ttn/chief/ap42/ch11/final/c11s12.pdf

USEPA (2006c), *AP* 42, *Fifth Edition, Volume* 1, *Chapter* 13: *Miscellaneous Sources,* 13.2.2 Unpaved Roads, Technology Transfer Network, Clearinghouse for Inventories & Emission Factors, United States Environmental Protection Agency, Office of Air Quality Planning and Standards, Research Triangle Park, NC 27711, USA.

http://www.epa.gov/ttn/chief/ap42/ch13/final/c13s0202.pdf

USEPA (2006d), *TANKS* 4.09D, Technology Transfer Network, Clearinghouse for Inventories & Emission Factors, United States Environmental Protection Agency, Office of Air Quality Planning and Standards, Research Triangle Park, NC 27711, USA.

http://www.epa.gov/ttn/chief/software/tanks/index.html

USEPA (2008a), AP 42, Fifth Edition, Volume 1, Chapter 1: External Combustion Sources: 1.5 Liquified Petroleum Gas Combustion. Technology Transfer Network, Clearinghouse for Inventories & Emission Factors, United States Environmental Protection Agency, Office of Air Quality Planning and Standards, Research Triangle Park, NC 27711, USA.

http://www.epa.gov/ttn/chief/ap42/ch01/final/c01s05.pdf

USEPA (2008b), AP 42, Fifth Edition, Volume 1, Chapter 5: Petroleum Industry: Chapter 5.2 Transportation and Marketing of Petroleum Liquids. Technology Transfer Network, Clearinghouse for Inventories & Emission Factors, United States Environmental Protection Agency, Office of Air Quality Planning and Standards, Research Triangle Park, NC 27711, USA.

http://www.epa.gov/ttn/chief/ap42/ch05/final/c05s02.pdf

USEPA (2008c), *SPECIATE v4.2*, Technology Transfer Network, Clearinghouse for Inventories & Emission Factors, United States Environmental Protection Agency, Office of Air Quality Planning and Standards, Research Triangle Park, NC 27711, USA.

http://www.epa.gov/ttn/chief/software/speciate/index.html

USEPA (2010), *The Clean Air Act Amendments of 1990 List of Hazardous Air Pollutants*, Technology Transfer Network, Air Toxics Website, United States Environmental Protection Agency, Office of Air Quality Planning and Standards, Research Triangle Park, NC 27711, USA. http://www.epa.gov/ttnatw01/orig189.html

USEPA (2011), AP 42, Fifth Edition, Volume 1, Chapter 13: Miscellaneous Sources: 13.2.1 Paved Roads, Technology Transfer Network, Clearinghouse for Inventories & Emission Factors, United States Environmental Protection Agency, Office of Air Quality Planning and Standards, Research Triangle Park, NC 27711, USA.

http://www.epa.gov/ttn/chief/ap42/ch13/final/c13s0201.pdf

Winetitles (2009), *Wine Industry Directory*, pers comm Raquel Williams Thu 6/08/2009 4:27 PM, PO Box 1006, Prospect East, South Australia 5082, Australia.

Van den Berg, M., Birnbaum, L., Bosveld, A., Brunström, B., Cook, P., Feeley, M., Giesy, J., Hanberg, A., Hasegawa, R., Kennedy, S., Kubiak, T., Larsen, J., van Leeuwen, F., Liem, A., Nolt, C., Peterson, R., Poellinger, L. Safe, S., Schrenk, D., Tillitt, D., Tysklind, M., Younes, M., Wærn, F. and Zacharewski, T (1998), *Toxic Equivalency Factors (TEFs) for PCBs, PCDDs, PCDFs for Humans and Wildlife,* Environmental Health Perspectives, Volume 106, Number 12, December 1998, pp 775 – 792, c/o Brogan & Partners, 14600 Weston Parkway, Cary, NC 27513, USA.