Technical Report No. 2

Air Emissions Inventory for the Greater Metropolitan Region in New South Wales

2008 Calendar Year

Biogenic and Geogenic Emissions: Results

ACKNOWLEDGMENTS

This study was performed with the help of organisations and individuals who should be recognised for their efforts.

Data provided by other government departments and service providers, including the Australian Bureau of Agricultural and Resource Economics and Sciences, Bureau of Transport Statistics, Commonwealth Scientific and Industrial Research Organisation, International Fertilizer Industry Association, Primary Industries Division of the Department of Trade and Investment, Regional Infrastructure and Services, NSW Rural Fire Service, Office of Environment and Heritage and United States Department of Agriculture, were essential for the completion of this study.

The work of a number of individuals is acknowledged, including Mr Nick Agapides, Manager Major Air Projects and Mr Kelsey Bawden, Senior Technical Policy Advisor, for their efforts in project scoping and management, developing emission estimation methodologies, collecting activity data, developing databases, estimating emissions and preparing this report.

© Copyright State of NSW and the Environment Protection Authority

The Environment Protection Authority and the State of NSW are pleased to allow this material to be reproduced in whole or in part for educational and non-commercial use, provided the meaning is unchanged and its source, publisher and authorship are acknowledged.

Published by: Environment Protection Authority 59-61 Goulburn Street PO Box A290 Sydney South 1232 Phone: (02) 9995 5000 (switchboard) Phone: 131 555 (environment information and publications requests) Fax: (02) 9995 5999 TTY: (02) 9211 4723

Email: <u>info@environment.nsw.gov.au</u> Website: <u>www.epa.nsw.gov.au</u>

ISBN 978-1-74293-463-1 EPA 2012/0046

August 2012

EXECUTIVE SUMMARY

An air emissions inventory project for biogenic and geogenic sources has taken over 2 years to complete. The base year of the biogenic and geogenic inventory represents activities that took place during the 2008 calendar year. The area included in the inventory covers the greater Sydney, Newcastle and Wollongong regions, known collectively as the Greater Metropolitan Region (GMR).

The inventory region defined as the GMR measures 210 km (east-west) by 273 km (north-south). The inventory region is defined in Table ES-1 and shown in Figure ES-1.

Table ES-1: Definition of Greater Metropolitan, Sydney, Newcastle and Wollongong regions

Region	South-west corne	r MGA ¹ coordinates	North-east corner MGA coordinates				
in gion	Easting (km)	ng (km) Northing (km) Ea		Northing (km)			
Greater Metropolitan	210	6159	420	6432			
Sydney	261	6201	360	6300			
Newcastle	360	6348	408	6372			
Wollongong	279	6174	318	6201			

The biogenic and geogenic air emissions inventory includes emissions from the following sources/activities:

- Agricultural burning;
- Bushfires;
- Prescribed burning;
- Fugitive/windborne from agricultural lands and unpaved roads;
- > Microbial activity and chemical processes of nitrification and denitrification in soil;
- > Fertiliser application to agricultural lands;
- > Tree canopy and grass (i.e. cut and uncut); and
- Marine aerosol.

The pollutants inventoried include criteria pollutants specified in the Ambient Air Quality NEPM (NEPC, 2003), air toxics associated with the National Pollutant Inventory NEPM (NEPC, 2008) and the Air Toxics NEPM (NEPC, 2004), and any other pollutants associated with state-specific programs, i.e. Load Based Licensing (Protection of the Environment Operations (General) Regulation 2009 (PCO, 2010)) and the Protection of the Environment Operations (Clean Air) Regulation 2010 (PCO, 2011).

Load Based Licensing (Protection of the Environment Operations (General) Regulation 2009 (PCO, 2010)) and the Protection of the Environment Operations (Clean Air) Regulation 2010 (PCO, 2011).

Figure ES-1: Definition of Greater Metropolitan, Sydney, Newcastle and Wollongong regions

Table ES-2 presents total estimated annual emissions (for selected substances) from all biogenic and geogenic sources in the whole GMR and the Sydney, Newcastle and Wollongong regions. Total estimated annual emissions are also presented for the region defined as Non Urban. This region is the area of the GMR minus the combined areas of the Sydney, Newcastle and Wollongong regions. The selected substances were chosen because they:

- Are the most common air pollutants found in airsheds according to the National Pollutant Inventory NEPM (NEPC, 2008);
- Are referred to in National Environment Protection Measures (NEPMs) for Ambient Air Quality (NEPC, 2003) and Air Toxics (NEPC, 2004); and
- > Have been classified as priority air pollutants (NEPC, 2006).

						-						_
Table	EC 2.	Total	actimated	annual	omiccione	from	hingon	ic and	googonia	CONTROOS IN	a aaah	rogion
Iavie	LO-2.	TULAI	estimateu	aiiiiuai	eniissions	mom	Diugen	ic anu	geogenic	sources n	I Each	region
							0		0 0			0

Substance	Emissions (tonne/year)								
Subsunce	Newcastle	Non Urban	Sydney	Wollongong	GMR				
1,3-BUTADIENE	0.24	23	4.39	0.48	28				
ACETALDEHYDE	16	865	201	14	1,095				
CARBON MONOXIDE	301	28,545	5,484	603	34,934				
LEAD & COMPOUNDS	0.10	2.16	0.46	$8.89 imes 10^{-3}$	2.73				
OXIDES OF NITROGEN	126	8,319	1,296	71	9 <i>,</i> 811				
PARTICULATE MATTER ≤ 10 µm	689	28,719	3,901	327	33,635				
PARTICULATE MATTER ≤ 2.5 µm	121	6,176	951	90	7,338				
POLYCYCLIC AROMATIC HYDROCARBONS	$8.44\times10^{\text{-}2}$	7.41	1.37	0.14	9.00				
SULFUR DIOXIDE	2.72	259	50	5.49	317				
TOTAL SUSPENDED PARTICULATE	2,422	99,401	12,940	1,096	115,859				
TOTAL VOLATILE ORGANIC COMPOUNDS	3,404	130,284	32,468	3,482	169,637				

Figure ES-2 shows the proportions of total estimated annual emissions (for selected substances) from biogenic and geogenic sources in the whole GMR and the Sydney, Newcastle, Wollongong and Non Urban regions.

2008 Calendar Year Biogenic and Geogenic Emissions: Results Executive Summary

Figure ES-2: Proportions of total estimated annual emissions from biogenic and geogenic sources in each region

Table ES-3, Table ES-4, Table ES-5, Table ES-6 and Table ES-7 present total estimated annual emissions (for selected substances) from each biogenic and geogenic source type in the whole GMR and the Sydney, Newcastle, Wollongong and Non Urban regions, respectively.

Figure ES-3, Figure ES-4, Figure ES-5, Figure ES-6 and Figure ES-7 show the proportions of total estimated annual emissions (for selected substances) from each biogenic and geogenic source type in the whole GMR and the Sydney, Newcastle, Wollongong and Non Urban regions, respectively.

				5 0	0.0	71							
	Emissions (tonne/year)												
Substance	Agricultural burning	Bushfires	Prescribed burning	Agricultural lands (fugitive/ windborne)	Unpaved roads (fugitive/ windborne)	Soil nitrification and denitrification	Tree canopy	Uncut grass	Cut grass	Marine aerosol	Biogenic and Geogenic Total		
1,3-BUTADIENE	0.28	5.87	22	-	-	-	-	-	-	-	28		
ACETALDEHYDE	-	-	-	-	-	-	-	1,009	86	-	1,095		
CARBON MONOXIDE	325	7,338	27,271	-	-	-	-	-	-	-	34,934		
LEAD & COMPOUNDS	5.11×10^{-4}	$7.37\times10^{\text{-}2}$	0.27	1.55×10^{-2}	2.36	-	-	-	-	-	2.73		
OXIDES OF NITROGEN	12	217	806	-	-	8,778	-	-	-	-	9,811		
PARTICULATE MATTER ≤ 10 µm	42	739	2,747	114	1,559	-	-	-	-	28,435	33,635		
PARTICULATE MATTER ≤ 2.5µm	40	627	2,331	20	206	-	-	-	-	4,114	7,338		
POLYCYCLIC AROMATIC HYDROCARBONS	0.73	1.75	6.52	-	-	-	-	-	-	-	9.00		
SULFUR DIOXIDE	1.79	67	248	-	-	-	-	-	-	-	317		
TOTAL SUSPENDED PARTICULATE	43	752	2,796	250	2,624	-	-	-	-	109,395	115,859		
TOTAL VOLATILE ORGANIC COMPOUNDS	24	514	1,909	-	-	-	160,150	5,007	2,033	-	169,637		

Table ES-3: Total estimated annual emissions by biogenic and geogenic source type in the GMR

Executive Summary

Figure ES-3: Proportions of total estimated annual emissions by biogenic and geogenic source type in the GMR

			5	0 0	0	51	5 5	0					
	Emissions (tonne/year)												
Substance	Agricultural burning	Bushfires	Prescribed burning	Agricultural lands (fugitive/ windborne)	Unpaved roads (fugitive/ windborne)	Soil nitrification and denitrification	Tree canopy	Uncut grass	Cut grass	Marine aerosol	Biogenic and Geogenic Total		
1,3-BUTADIENE	2.40×10^{-2}	0.64	3.72	-	-	-	-	-	-	-	4.39		
ACETALDEHYDE	-	-	-	-	-	-	-	136	64	-	201		
CARBON MONOXIDE	28	806	4,650	-	-	-	-	-	-	-	5,484		
LEAD & COMPOUNDS	$4.43 imes 10^{-5}$	$8.10\times10^{\text{-}3}$	$4.67\times10^{\text{-}2}$	1.40×10^{-3}	0.40	-	-	-	-	-	0.46		
OXIDES OF NITROGEN	1.00	24	137	-	-	1,133	-	-	-	-	1,296		
PARTICULATE MATTER ≤ 10 μm	3.63	81	468	10	263	-	-	-	-	3,074	3,901		
PARTICULATE MATTER ≤ 2.5µm	3.46	69	397	1.77	35	-	-	-	-	445	951		
POLYCYCLIC AROMATIC HYDROCARBONS	6.37 × 10-2	0.19	1.11	-	-	-	-	-	-	-	1.37		
SULFUR DIOXIDE	0.16	7.34	42	-	-	-	-	-	-	-	50		
TOTAL SUSPENDED PARTICULATE	3.69	83	477	23	443	-	-	-	-	11,912	12,940		
TOTAL VOLATILE ORGANIC COMPOUNDS	2.10	56	326	-	-	-	29,881	677	1,526	-	32,468		

Table ES-4: Total estimated annual emissions by biogenic and geogenic source type in the Sydney region

Executive Summary

Figure ES-4: Proportions of total estimated annual emissions by biogenic and geogenic source type in the Sydney region

			,	0 0	0	51		0				
	Emissions (tonne/year)											
Substance	Agricultural burning	Bushfires	Prescribed burning	Agricultural lands (fugitive/ windborne)	Unpaved roads (fugitive/ windborne)	Soil nitrification and denitrification	Tree canopy	Uncut grass	Cut grass	Marine aerosol	Biogenic and Geogenic Total	
1,3-BUTADIENE	5.21×10^{-3}	$6.0 imes 10^{-2}$	0.18	-	-	-	-	-	-	-	0.24	
ACETALDEHYDE	-	-	-	-	-	-	-	11	5.14	-	16	
CARBON MONOXIDE	6.13	75	220	-	-	-	-	-	-	-	301	
LEAD & COMPOUNDS	9.62 × 10 ⁻⁶	$7.54\times10^{\text{-}4}$	2.21×10^{-3}	1.17×10^{-3}	9.70 × 10-2	-	-	-	-	-	0.10	
OXIDES OF NITROGEN	0.22	2.22	6.50	-	-	117	-	-	-	-	126	
PARTICULATE MATTER ≤ 10 µm	0.79	7.56	22	8.54	64	-	-	-	-	586	689	
PARTICULATE MATTER ≤ 2.5µm	0.75	6.42	19	1.48	8.46	-	-	-	-	85	121	
POLYCYCLIC AROMATIC HYDROCARBONS	1.38 × 10-2	$1.79\times10^{\text{-}2}$	$5.26 imes 10^{-2}$	-	-	-	-	-	-	-	$8.44 \times 10^{\text{-}2}$	
SULFUR DIOXIDE	3.37 × 10-2	0.68	2.00	-	-	-	-	-	-	-	2.72	
TOTAL SUSPENDED PARTICULATE	0.80	7.70	23	19	108	-	-	-	-	2,264	2,422	
TOTAL VOLATILE ORGANIC COMPOUNDS	0.46	5.26	15	-	-	-	3,207	53	122	-	3,404	

Table ES-5: Total estimated annual emissions by biogenic and geogenic source type in the Newcastle region

Executive Summary

Figure ES-5: Proportions of total estimated annual emissions by biogenic and geogenic source type in the Newcastle region

			, 0	0 0 91		0	0 0				
	Emissions (tonne/year)										
Substance	Bushfires	Prescribed burning	Unpaved roads (fugitive/ windborne)	Soil Nitrification and denitrification	Tree canopy	Uncut grass	Cut grass	Marine aerosol	Biogenic and Geogenic Total		
1,3-BUTADIENE	5.22×10^{-3}	0.48	-	-	-	-	-	-	0.48		
ACETALDEHYDE	-	-	-	-	-	10	3.46	-	14		
CARBON MONOXIDE	6.53	597	-	-	-	-	-	-	603		
LEAD & COMPOUNDS	6.56×10^{-5}	$5.99 imes 10^{-3}$	2.83 × 10-3	-	-	-	-	-	8.89 × 10 ⁻³		
OXIDES OF NITROGEN	0.19	18	-	53	-	-	-	-	71		
PARTICULATE MATTER ≤ 10 µm	0.66	60	1.86	-	-	-	-	264	327		
PARTICULATE MATTER ≤ 2.5µm	0.56	51	0.25	-	-	-	-	38	90		
POLYCYCLIC AROMATIC HYDROCARBONS	$1.56\times10^{\text{-}3}$	0.14	-	-	-	-	-	-	0.14		
SULFUR DIOXIDE	$5.94 imes 10^{-2}$	5.43	-	-	-	-	-	-	5.49		
TOTAL SUSPENDED PARTICULATE	0.67	61	3.14	-	-	-	-	1,031	1,096		
TOTAL VOLATILE ORGANIC COMPOUNDS	0.46	42	-	-	3,307	51	82	-	3,482		

Table ES-6: Total estimated annual emissions by biogenic and geogenic source type in the Wollongong region

Executive Summary

Figure ES-6: Proportions of total estimated annual emissions by biogenic and geogenic source type in the Wollongong region

			<u> </u>	0 0	0	51		0				
	Emissions (tonne/year)											
Substance	Agricultural burning	Bushfires	Prescribed burning	Agricultural lands (fugitive/ windborne)	Unpaved roads (fugitive/ windborne)	Soil nitrification and denitrification	Tree canopy	Uncut grass	Cut grass	Marine aerosol	Biogenic and Geogenic Total	
1,3-BUTADIENE	0.25	5.16	17	-	-	-	-	-	-	-	23	
ACETALDEHYDE	-	-	-	-	-	-	-	852	13	-	865	
CARBON MONOXIDE	291	6,451	21,803	-	-	-	-	-	-	-	28,545	
LEAD & COMPOUNDS	$4.57\times10^{\text{-}4}$	$6.48\times10^{\text{-}2}$	0.22	1.29 × 10-2	1.87	-	-	-	-	-	2.16	
OXIDES OF NITROGEN	10	191	644	-	-	7,474	-	-	-	-	8,319	
PARTICULATE MATTER ≤ 10 µm	37	650	2,196	95	1,230	-	-	-	-	24,511	28,719	
PARTICULATE MATTER ≤ 2.5µm	36	551	1,864	16	163	-	-	-	-	3,546	6,176	
POLYCYCLIC AROMATIC HYDROCARBONS	0.66	1.54	5.21	-	-	-	-	-	-	-	7.41	
SULFUR DIOXIDE	1.60	59	198	-	-	-	-	-	-	-	259	
TOTAL SUSPENDED PARTICULATE	38	661	2,235	209	2,070	-	-	-	-	94,188	99,401	
TOTAL VOLATILE ORGANIC COMPOUNDS	22	452	1,526	-	-	-	123,756	4,226	303	-	130,284	

Table ES-7: Total estimated annual emissions by biogenic and geogenic source type in the Non Urban region

Executive Summary

Figure ES-7: Proportions of total estimated annual emissions by biogenic and geogenic source type in the Non Urban region

CONTENTS

ЕΧ	ECU	FIVE SUMMARY	i
LI	ST OI	TABLES	xviii
LI	ST OI	FIGURES	xxiii
1	INT	RODUCTION	1
•			2
2		ENTORY SPECIFICATIONS	2
	2.1	The Inventory Year	2
	2.2	The Inventory Region	2
	2.3	Grid Coordinate System	3
	2.4	Emission Sources Considered	
	2.5	Pollutants Evaluated	4
	2.6	Methodology Overview	5
	2.6.2	1 Identify Sources	5
	2.6.2	2 Select Emission Estimation Methodologies	6
	2.6.3	3 Acquire Activity, Spatial and Temporal Data	10
	2.6.4	4 Design and Implement Emission Estimation Techniques	
3	DA	TA SOURCES AND RESULTS	
	3.1	Agricultural Burning	
	3.1.	1 Emission Source Description	
	3.1.2	2 Emission Estimation Methodology	19
	3.1.3	3 Activity Data	21
	3.1.4	4 Emission and Speciation Factors	22
	3.1.5	5 Spatial Distribution of Emissions	
	3.1.0	5 Temporal Variation of Emissions	
	3.1.2	7 Emission Estimates	
	3.2	Bushfires and Prescribed Burning	
	3.2.3	1 Emission Source Description	
	3.2.2	2 Emission Estimation Methodology	
	3.2.3	3 Activity Data	
	3.2.4	4 Emission and Speciation Factors	38
	3.2.5	5 Spatial Distribution of Emissions	39
	3.2.0	6 Temporal Variation of Emissions	44
	3.2.2	7 Emission Estimates	50
	3.3	Fugitive/Windborne from Agricultural Lands and Unpaved Roads	52
	3.3.	1 Emission Source Description	52
	3.3.2	2 Emission Estimation Methodology	53
	3.3.3	3 Activity Data	57
	3.3.4	Emission and Speciation Factors	73
	3.3.5	5 Spatial Distribution of Emissions	
	3.3.0	<i>Temporal Variation of Emissions</i>	79
	3.3.	7 Emission Estimates	83

3.4.1 En 3.4.2 En 3.4.3 Ac 3.4.3 Ac 3.4.4 En 3.4.5 Sp 3.4.6 Te 3.4.7 En 3.5 Tree Ca 3.5.1 En 3.5.2 En 3.5.3 Ac 3.5.4 En 3.5.5 Sp 3.5.6 Te 3.5.7 En 3.6 Marine 3.6.1 En 3.6.2 En 3.6.3 Ac 3.6.4 En 3.6.3 Ac 3.6.4 En 3.6.5 Sp 3.6.6 Te 3.6.7 En 4 EMISSION 5 REFERENC	Geogenic Sources	
 3.4.1 En 3.4.2 En 3.4.3 Ac 3.4.3 Ac 3.4.4 En 3.4.5 Sp 3.4.6 Te 3.4.7 En 3.5 Tree Ca 3.5.1 En 3.5.2 En 3.5.2 En 3.5.3 Ac 3.5.4 En 3.5.5 Sp 3.5.6 Te 3.5.7 En 3.6 Marine 3.6.1 En 3.6.2 En 3.6.2 En 3.6.3 Ac 3.6.4 En 3.6.5 Sp 3.6.6 Te 3.6.7 En 4 EMISSION 5 REFERENCE 	Appendix A: Estimated Annual Emissions of all Substances from Biogenic and	
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	5 REFERENCES	178
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	EMISSIONS SUMMARY	164
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	3.6.7 <i>Emission Estimates</i>	162
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	3.6.6 Temporal Variation of Emissions	161
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	3.6.5 Spatial Distribution of Emissions	159
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	3.6.4 Emission and Speciation Factors	157
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	3.6.3 Activity Data	154
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	3.6.2 Emission Estimation Methodology	148
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	3.6.1 Emission Source Description	147
3.4.1 En 3.4.2 En 3.4.3 Ac 3.4.4 En 3.4.5 Sp 3.4.6 Te 3.4.7 En 3.5 Tree Ca 3.5.1 En 3.5.2 En 3.5.3 Ac 3.5.4 En 3.5.5 Sp 3.5.6 Te 3.5.7 En	3.6 Marine Aerosol	147
3.4.1 En 3.4.2 En 3.4.3 Ac 3.4.4 En 3.4.5 Sp 3.4.6 Te 3.4.7 En 3.5 Tree Ca 3.5.1 En 3.5.2 En 3.5.3 Ac 3.5.4 En 3.5.5 Sp 3.5.6 Te	3.5.7 Emission Estimates	145
3.4.1 En 3.4.2 En 3.4.3 Ac 3.4.4 En 3.4.5 Sp 3.4.6 Te 3.4.7 En 3.5 Tree Ca 3.5.1 En 3.5.2 En 3.5.3 Ac 3.5.4 En 3.5.5 Sn	3.5.6 Temporal Variation of Emissions	
3.4.1 En 3.4.2 En 3.4.3 Ac 3.4.4 En 3.4.5 Sp 3.4.6 Te 3.4.7 En 3.5 Tree Ca 3.5.1 En 3.5.2 En 3.5.3 Ac 3.5.4 En	3.5.5 Spatial Distribution of Emissions	125
3.4.1 En 3.4.2 En 3.4.3 Ac 3.4.4 En 3.4.5 Sp 3.4.6 Te 3.4.7 En 3.5 Tree Ca 3.5.1 En 3.5.2 En	3.5.4 Emission and Speciation Factors	117
3.4.1 En 3.4.2 En 3.4.3 Ac 3.4.4 En 3.4.5 Sp 3.4.6 Te 3.4.7 En 3.5 Tree Ca 3.5.1 En 3.5.2 En	3.5.2 Emission Estimation Methodology	113
3.4.1 En 3.4.2 En 3.4.3 Ac 3.4.4 En 3.4.5 Sp 3.4.6 Te 3.4.7 En 3.5 Tree Ca	3.5.1 Emission Source Description	113
3.4.1 En 3.4.2 En 3.4.3 Ac 3.4.4 En 3.4.5 Sp 3.4.6 Te 3.4.7 En	3.5 Tree Canopy, Uncut Grass and Cut Grass	113
3.4.1 En 3.4.2 En 3.4.3 Ac 3.4.4 En 3.4.5 Sp 3.4.6 Te	3.4.7 Emission Estimates	111
3.4.1 En 3.4.2 En 3.4.3 Ac 3.4.4 En 3.4.5 Sp	3.4.6 Temporal Variation of Emissions	108
3.4.1 En 3.4.2 En 3.4.3 Ac 3.4.4 En	3.4.5 Spatial Distribution of Emissions	101
3.4.1 En 3.4.2 En 3.4.3 Ac	3.4.4 Emission and Speciation Factors	100
3.4.1 En 3.4.2 En	3.4.3 Activity Data	
3.4.1 En	3.4.2 Emission Estimation Methodology	88
	3.4.1 Emission Source Description	85
3.4 Soil Ni	3.4 Soil Nitrification and Denitrification	85

LIST OF TABLES

Table ES-1: Definition of Greater Metropolitan, Sydney, Newcastle and Wollongong regions i
Table ES-2: Total estimated annual emissions from biogenic and geogenic sources in each region iii
Table ES-3: Total estimated annual emissions by biogenic and geogenic source type in the GMR vi
Table ES-4: Total estimated annual emissions by biogenic and geogenic source type in the Sydney region
Table ES-5: Total estimated annual emissions by biogenic and geogenic source type in the Newcastle regionx
Table ES-6: Total estimated annual emissions by biogenic and geogenic source type in the Wollongong region
Table ES-7: Total estimated annual emissions by biogenic and geogenic source type in the Non Urban regionxiv
Table 2-1: Definition of Greater Metropolitan, Sydney, Newcastle and Wollongong regions 2
Table 2-2: Biogenic and geogenic estimation methodologies and emission factor data
Table 2-3: Biogenic and geogenic activity data 10
Table 2-4: Biogenic and geogenic spatial data
Table 2-5: Biogenic and geogenic temporal data 13
Table 3-1: Agricultural burning emission estimation methodologies
Table 3-2: Field crop attributes 21
Table 3-3: Agricultural burning activity data
Table 3-4: Field crop harvest in the GMR 21
Table 3-5: Agricultural burning emission and speciation factors 22
Table 3-6: Agricultural burning emission factors 26
Table 3-7: Agricultural burning spatial data
Table 3-8: Agricultural burning spatial distribution of cropping area by LGA and region
Table 3-9: Agricultural burning temporal data
Table 3-10: Field crop harvest period in NSW 30

Table 3-11: Agricultural burning hourly temporal profile	31
Table 3-12: Agricultural burning daily temporal profile	32
Table 3-13: Agricultural burning monthly temporal profile	33
Table 3-14: Agricultural burning emissions by activity	34
Table 3-15: Agricultural burning emissions by source type	35
Table 3-16: Bushfires and prescribed burning emission estimation methodologies	36
Table 3-17: Fuel loads and burning efficiencies for bushfires and prescribed burning	37
Table 3-18: Bushfires and prescribed burning activity data	37
Table 3-19: Bushfires and prescribed burning area and quantity in the GMR	38
Table 3-20: Bushfires and prescribed burning emission and speciation factors	38
Table 3-21: Bushfires and prescribed burning emission factors	39
Table 3-22: Bushfires and prescribed burning spatial data	40
Table 3-23: Bushfires spatial distribution of area burned by LGA and region	40
Table 3-24: Prescribed burning spatial distribution of area burned by LGA and region	41
Table 3-25: Bushfires and prescribed burning temporal data	45
Table 3-26: Bushfires hourly temporal profile	45
Table 3-27: Prescribed burning hourly temporal profile	46
Table 3-28: Bushfire area monthly temporal variation in the GMR	48
Table 3-29: Prescribed burning area monthly temporal variation in the GMR	49
Table 3-30: Bushfires and prescribed burning emissions by activity	50
Table 3-31: Bushfires and prescribed burning emissions by source type	51
Table 3-32: Agricultural lands and unpaved roads emission estimation methodologies	54
Table 3-33: Soil erodibility by soil type	55
Table 3-34: Surface roughness factor, unsheltered field width and unsheltered field width factor by source type	56
Table 3-35: Agricultural lands and unpaved roads activity data	57
Table 3-36: Agricultural lands and unpaved roads area in the GMR	58

Table 3-37: Area by soil type and region	58
Table 3-38: Monthly average meteorological data in the GMR	61
Table 3-39: Annual average meteorological data by region	63
Table 3-40: Monthly average crop canopy cover or postharvest soil cover by source type	69
Table 3-41: Monthly average vegetative cover factor by source type	71
Table 3-42: Agricultural lands and unpaved roads emission and speciation factors	73
Table 3-43: Agricultural lands and unpaved roads emission factors	74
Table 3-44: Agricultural lands and unpaved roads spatial data	74
Table 3-45: Agricultural lands spatial distribution by LGA and region	74
Table 3-46: Unpaved roads spatial distribution by LGA and region	77
Table 3-47: Agricultural lands and unpaved roads temporal data	80
Table 3-48: Agricultural lands and unpaved roads emissions by activity	84
Table 3-49: Agricultural lands and unpaved roads emissions by source type	84
Table 3-50: Landuse types in the GMR	86
Table 3-51: Soil nitrification and denitrification emission estimation methodologies	88
Table 3-52: Soil temperature correction factor constants by landuse category	90
Table 3-53: Nitric oxide emission factors for agricultural lands and natural landscapes by landuse type	90
Table 3-54: Ammonia emission factors by nitrogen fertiliser type and soil type	91
Table 3-55: Fraction of nitrogen fertiliser applied to each landuse type	92
Table 3-56: Ammonia emission factors for agricultural lands by landuse type	92
Table 3-57: Ammonia emission factors for natural landscapes by landuse type	93
Table 3-58: Nitrous oxide emission factor for nitrogen fertilisers	94
Table 3-59: Fraction of nitrogen fertiliser applied to each landuse type	94
Table 3-60: Nitrous oxide emission factors for agricultural lands by landuse type	94
Table 3-61: Nitrous oxide emission factors for natural landscapes by landuse type	95
Table 3-62: Soil nitrification and denitrification activity data	96

Table 3-63: Landuse area in the GMR by landuse type	96
Table 3-64: Nitrogen fertiliser consumption in Australia and the GMR by fertiliser type	97
Table 3-65: Monthly average temperature in the GMR	99
Table 3-66: Soil nitrification and denitrification emission and speciation factors	101
Table 3-67: Soil nitrification and denitrification emission factors	101
Table 3-68: Soil nitrification and denitrification spatial data	101
Table 3-69: Landuse category spatial distribution by LGA and region	102
Table 3-70: Soil nitrification and denitrification temporal data	109
Table 3-71: Soil nitrification and denitrification emissions by activity	111
Table 3-72: Soil nitrification and denitrification emissions by source type	112
Table 3-73: Tree canopy, uncut grass and cut grass emission estimation methodologies	115
Table 3-74: Lawn attributes	117
Table 3-75: Tree canopy, uncut grass and cut grass activity data	117
Table 3-76: Monthly average temperature in the GMR	120
Table 3-77: Residential and public open space lawn area and annual lawn mowing frequency	123
Table 3-78: Tree canopy, uncut grass and cut grass emission and speciation factors	123
Table 3-79: Cut grass VOC emission factor	125
Table 3-80: Cut grass VOC and organic air toxic speciation factors	125
Table 3-81: Tree canopy, uncut grass and cut grass spatial data	126
Table 3-82: Residential cut grass spatial distribution of lawn area by LGA and region	129
Table 3-83: Public open space cut grass spatial distribution of lawn area by LGA and region	132
Table 3-84: Tree canopy, uncut grass and cut grass temporal data	135
Table 3-85: Cut grass hourly and daily temporal variation in VOC emission rate during primary leaf wounding and secondary drying phase	140
Table 3-86: Cut grass event based hourly temporal variation in VOC emission rate	140
Table 3-87: Cut grass event based daily temporal variation in VOC emission rate	141
Table 3-88: Tree canopy, uncut grass and cut grass emissions by activity	146

Table 3-89: Tree canopy, uncut grass and cut grass emissions by source type	. 146
Table 3-90: Marine aerosol emission estimation methodologies	. 148
Table 3-91: Limits of integration for the G03, M86 and SH98 flux parameterisations for dry sea- salt $PM_{2.5}$, PM_{10} and TSP	154
Table 3-92: Marine aerosol activity data	. 155
Table 3-93: Monthly average wind speed in the GMR	. 156
Table 3-94: Marine aerosol emission and speciation factors	. 158
Table 3-95: Dry sea-salt $PM_{2.5}$, PM_{10} and TSP emission factors by wet droplet radius and dry particle diameter	158
Table 3-96: Marine aerosol spatial data	. 159
Table 3-97: Open-ocean area spatial distribution by region	159
Table 3-98: Marine aerosol temporal data	161
Table 3-99: Marine aerosol emissions by activity	163
Table 4-1: Total estimated annual emissions from biogenic and geogenic sources in each region	165
Table 4-2: Total estimated annual emissions by biogenic and geogenic source type in the GMR	168
Table 4-3: Total estimated annual emissions by biogenic and geogenic source type in the Sydney region	. 170
Table 4-4: Total estimated annual emissions by biogenic and geogenic source type in the Newcastle region	172
Table 4-5: Total estimated annual emissions by biogenic and geogenic source type in the Wollongong region	174
Table 4-6: Total estimated annual emissions by biogenic and geogenic source type in the Non Urban region	176

LIST OF FIGURES

Figure ES-1: Definition of Greater Metropolitan, Sydney, Newcastle and Wollongong regionsii
Figure ES-2: Proportions of total estimated annual emissions from biogenic and geogenic sources in each region
Figure ES-3: Proportions of total estimated annual emissions by biogenic and geogenic source type in the GMR
Figure ES-4: Proportions of total estimated annual emissions by biogenic and geogenic source type in the Sydney region
Figure ES-5: Proportions of total estimated annual emissions by biogenic and geogenic source type in the Newcastle region
Figure ES-6: Proportions of total estimated annual emissions by biogenic and geogenic source type in the Wollongong regionxiii
Figure ES-7: Proportions of total estimated annual emissions by biogenic and geogenic source type in the Non Urban region
Figure 2-1: Definition of Greater Metropolitan, Sydney, Newcastle and Wollongong regions
Figure 2-2: Grid coordinate system
Figure 2-3: Biogenic and Geogenic Emissions Data Management System v1.0 start-up form
Figure 3-1: Agricultural burning spatial distribution of cropping area by LGA and region
Figure 3-2: Agricultural burning spatial distribution of emissions
Figure 3-3: Field crop harvest period in NSW for selected crops
Figure 3-4: Agricultural burning hourly temporal profile
Figure 3-5: Agricultural burning daily temporal profile
Figure 3-6: Agricultural burning monthly temporal profile
Figure 3-7: Bushfires spatial distribution of area burned by LGA and region
Figure 3-8: Prescribed burning spatial distribution of area burned by LGA and region
Figure 3-9: Bushfires spatial distribution of emissions
Figure 3-10: Prescribed burning spatial distribution of emissions
Figure 3-11: Bushfires hourly temporal profile

Figure 3-12: Prescribed burning hourly temporal profile	47
Figure 3-13: Bushfire area daily temporal variation in the GMR	47
Figure 3-14: Prescribed burning area daily temporal variation in the GMR	48
Figure 3-15: Bushfire area monthly temporal variation in the GMR	49
Figure 3-16: Prescribed burning area monthly temporal variation in the GMR	50
Figure 3-17: Aeolian processes involved in wind erosion of soil particles	52
Figure 3-18: Area by soil type and region	59
Figure 3-19: Spatial distribution of soil type in the GMR	60
Figure 3-20: Monthly average temperature and precipitation in the GMR	62
Figure 3-21: Monthly average wind speed and Thornthwaite's precipitation-evaporation index in the GMR	62
Figure 3-22: Month-as-a-year climatic factor in the GMR	63
Figure 3-23: Gridded annual average temperature	64
Figure 3-24: Gridded annual average precipitation	65
Figure 3-25: Gridded annual average wind speed	66
Figure 3-26: Gridded annual Thornthwaite's precipitation-evaporation index	67
Figure 3-27: Gridded annual climatic factor	68
Figure 3-28: Crop canopy cover or postharvest soil cover for summer crop	69
Figure 3-29: Crop canopy cover or postharvest soil cover for winter crop	70
Figure 3-30: Crop canopy cover or postharvest soil cover for summer crop and winter crop	70
Figure 3-31: Vegetative cover factor for summer crop	72
Figure 3-32: Vegetative cover factor for winter crop	72
Figure 3-33: Vegetative cover factor for summer crop and winter crop	73
Figure 3-34: Agricultural lands spatial distribution by LGA and region	75
Figure 3-35: Agricultural lands spatial distribution of emissions	76
Figure 3-36: Unpaved roads spatial distribution by LGA and region	78
Figure 3-37: Unpaved roads spatial distribution of emissions xxiv	79

Figure 3-38: Agricultural lands hourly variation in particulate matter emissions	81
Figure 3-39: Unpaved roads hourly variation in particulate matter emissions	81
Figure 3-40: Agricultural lands daily variation in particulate matter emissions	82
Figure 3-41: Unpaved roads daily variation in particulate matter emissions	82
Figure 3-42: Agricultural lands monthly variation in particulate matter emissions	83
Figure 3-43: Unpaved roads monthly variation in particulate matter emissions	83
Figure 3-44: The nitrogen cycle	86
Figure 3-45: Landuse categories in the GMR	87
Figure 3-46: Landuse area in the GMR by landuse type	97
Figure 3-47: Spatial distribution of nitrogen fertiliser consumption in agricultural lands	98
Figure 3-48: Monthly average temperature in the GMR by hour of day	99
Figure 3-49: Gridded annual average temperature	100
Figure 3-50: Landuse category spatial distribution by LGA and region	107
Figure 3-51: Soil nitrification and denitrification spatial distribution of emissions	108
Figure 3-52: Soil nitrification and denitrification hourly variation in nitrogen compounds emissions	110
Figure 3-53: Soil nitrification and denitrification daily variation in nitrogen compounds emissions	110
Figure 3-54: Soil nitrification and denitrification monthly variation in nitrogen compounds missions	111
Figure 3-55: Hierarchy of tree canopy and uncut grass emission estimation	114
Figure 3-56: Tree canopy and uncut grass models – use of GIS data	118
Figure 3-57: BEI-GIS v3.02 genus specific speciated VOC emission rate, leaf area index, canopy height and leaf biomass	119
Figure 3-58: Monthly average temperature in the GMR by hour of day	120
Figure 3-59: Gridded annual average temperature	121
Figure 3-60: BEI-GIS v3.02 tree canopy and uncut grass model options	122
Figure 3-61: BEI-GIS v3.02 tree canopy and uncut grass annual emission of VOC, speciated VOC and organic air toxics in the GMR	124

Figure 3-62: Tree canopy spatial distribution of emissions	. 127
Figure 3-63: Uncut grass spatial distribution of emissions	. 128
Figure 3-64: Residential cut grass spatial distribution of lawn area by LGA and region	. 130
Figure 3-65: Residential cut grass spatial distribution of emissions	. 131
Figure 3-66: Public open space cut grass spatial distribution of lawn area by LGA	. 133
Figure 3-67: Public open space cut grass spatial distribution of emissions	. 134
Figure 3-68: Tree canopy and uncut grass hourly variation in VOC, speciated VOC and organic air toxics emissions	. 136
Figure 3-69: Tree canopy and uncut grass daily variation in VOC, speciated VOC and organic air toxics emissions	. 137
Figure 3-70: Tree canopy and uncut grass monthly variation in VOC, speciated VOC and organic air toxics emissions	. 138
Figure 3-71: Residential and public open space cut grass event based hourly and daily variation in VOC emission rate	. 142
Figure 3-72: Residential and public open space cut grass hourly variation in lawn mowing rate and VOC emission rate	. 143
Figure 3-73: Residential and public open space cut grass daily variation in lawn mowing rate and VOC emission rate	. 144
Figure 3-74: Residential and public open space cut grass monthly variation in lawn mowing rate and VOC emission rate	. 145
Figure 3-75: Physical processes involved in the generation of sea-salt aerosols include (a) indirect production by bubbles and (b) direct production by spumes	. 147
Figure 3-76: Modelled relationship and line of best fit between dry sea-salt particle radius (r_{dry}) and wet sea-salt droplet radius (r_{80})	. 153
Figure 3-77: Predicted particle mass and particle number using the G03, M86 and SH98 flux parameterisations for dry sea-salt $PM_{2.5}$, PM_{10} and TSP at a wind speed of 1 m/s	. 154
Figure 3-78: Open-ocean area in the GMR	. 155
Figure 3-79: Monthly average wind speed in the GMR by hour of day	. 156
Figure 3-80: Gridded annual average wind speed	. 157
Figure 3-81: Dry sea-salt PM _{2.5} , PM ₁₀ and TSP emission factors by wind speed	. 159
Figure 3-82: Marine aerosol spatial distribution of emissions	. 160

Figure 3-83: Marine aerosol hourly variation in PM _{2.5} , PM ₁₀ and TSP emissions	. 161
Figure 3-84: Marine aerosol daily variation in PM _{2.5} , PM ₁₀ and TSP emissions	. 162
Figure 3-85: Marine aerosol monthly variation in PM _{2.5} , PM ₁₀ and TSP emissions	. 162
Figure 4-1: Proportions of total estimated annual emissions from biogenic and geogenic sources in each region	. 166
Figure 4-2: Proportions of total estimated annual emissions by biogenic and geogenic source type in the GMR	. 169
Figure 4-3: Proportions of total estimated annual emissions by biogenic and geogenic source type in the Sydney region	. 171
Figure 4-4: Proportions of total estimated annual emissions by biogenic and geogenic source type in the Newcastle region	. 173
Figure 4-5: Proportions of total estimated annual emissions by biogenic and geogenic source type in the Wollongong region	. 175
Figure 4-6: Proportions of total estimated annual emissions by biogenic and geogenic source type in the Non Urban region	. 177

1 INTRODUCTION

An air emissions inventory project for biogenic and geogenic sources has taken over 2 years to complete. The base year of the biogenic and geogenic inventory represents activities that took place during the 2008 calendar year. The area included in the inventory covers the greater Sydney, Newcastle and Wollongong regions, known collectively as the Greater Metropolitan Region (GMR).

The purpose of this document is to present the emission estimation methodologies and results of the biogenic and geogenic air emissions inventory. The information is structured as follows:

- > A description of the biogenic and geogenic air emissions inventory specification (Section 2) including:
 - The inventory year (Section 2.1);
 - A description of the inventory region (Section 2.2);
 - A description of the grid coordinate system (Section 2.3);
 - A description of emission sources considered (Section 2.4);
 - A description of the pollutants evaluated (Section 2.5); and
 - A broad discussion of the methodology (Section 2.6).
- > The emission estimation methodology; and activity, spatial and temporal data presented by biogenic and geogenic source type (Section 3).
- > An emission summary (for selected substances) presented by biogenic and geogenic source type in the whole GMR and the Sydney, Newcastle, Wollongong and Non Urban regions (Section 3).
- > An emissions summary (for selected substances) presented for all biogenic and geogenic sources in the whole GMR and the Sydney, Newcastle, Wollongong and Non Urban regions (Section 4).
- > A complete list of references (Section 5).
- Total biogenic and geogenic emissions of all substances emitted in the whole GMR and the Sydney, Newcastle, Wollongong and Non Urban regions (Appendix A: Estimated Annual Emissions of all Substances from Biogenic and Geogenic Sources).

2 INVENTORY SPECIFICATIONS

2.1 The Inventory Year

The biogenic and geogenic air emissions inventory results presented in this report are based on activities that took place in the 2008 calendar year.

2.2 The Inventory Region

The inventory region defined as the GMR measures 210 km (east-west) by 273 km (north-south). The inventory region is defined in Table 2-1 and shown in Figure 2-1.

Region	South-west corner MGA ² coordinates		North-east corner MGA coordinates	
Region	Easting (km)	Northing (km)	Easting (km)	Northing (km)
Greater Metropolitan	210	6159	420	6432
Sydney	261	6201	360	6300
Newcastle	360	6348	408	6372
Wollongong	279	6174	318	6201

Table 2-1: Definition of Greater Metropolitan, Sydney, Newcastle and Wollongong regions

² Map Grid of Australia based on the Geocentric Datum of Australia 1994 (GDA94) (ICSM, 2006).

Air Emissions Inventory for the Greater Metropolitan Region of New South Wales 2. *Inventory Specifications*

Figure 2-1: Definition of Greater Metropolitan, Sydney, Newcastle and Wollongong regions

2.3 Grid Coordinate System

The grid coordinate system used for the biogenic and geogenic air emissions inventory uses 1 km by 1 km grid cells. The grid coordinates start from the bottom left corner having index number with

Easting (km) in the horizontal and Northing (km) in the vertical direction. The grid coordinate system is illustrated in Figure 2-2.

Figure 2-2: Grid coordinate system

2.4 Emission Sources Considered

The biogenic and geogenic air emissions inventory includes emissions from the following sources/activities:

- Agricultural burning;
- Bushfires;
- Prescribed burning;
- > Fugitive/windborne from agricultural lands and unpaved roads;
- > Microbial activity and chemical processes of nitrification and denitrification in soil;
- > Fertiliser application to agricultural lands;
- > Tree canopy and grass (i.e. cut and uncut); and
- > Marine aerosol.

2.5 Pollutants Evaluated

The following pollutants have been considered:

- Substances included in the National Environment Protection (National Pollutant Inventory) Measure (NEPC, 2008);
- Pollutants included in the National Environment Protection (Ambient Air Quality) Measure (NEPC, 2003);

- > Pollutants included in the National Environment Protection (Air Toxics) Measure (NEPC, 2004);
- Pollutants associated with the Protection of the Environment Operations (Clean Air) Regulation 2010 (PCO, 2011);
- Air pollutants associated with the *Protection of the Environment Operations (General) Regulation 2009* (PCO, 2010);
- > Speciation of oxides of nitrogen (i.e. NO and NO₂) for photochemical modelling (USEPA, 2003a)³;
- > Speciated organic compounds for photochemical modelling sourced from Carter (2010);
- Speciated particulate emissions (i.e. TSP (total suspended particulate), PM₁₀ (particulate matter with an aerodynamic diameter ≤ 10 µm) and PM_{2.5} (particulate matter with an aerodynamic diameter ≤ 2.5 µm));
- Environment Protection Authority of Victoria air toxic pollutants sourced from Hazardous Air Pollutants - A Review of Studies Performed in Australia and New Zealand (EPAV, 1999);
- Commonwealth Government Air Toxics Program Technical Advisory Group (13 March 2000) priority air pollutants (EA, 2001);
- > U.S. Environmental Protection Agency list of 189 Hazardous Air Pollutants (USEPA, 2010a);
- Air pollutants included in the Office of Environmental Human Health Assessment (OEHHA)/Air Resources Board (ARB) 'hot spots' list (CARB, 2011);
- > EPA regulated pollutants with design ground level concentrations (DEC, 2005);
- > USEPA 16 priority polycyclic aromatic hydrocarbons (PAH) (Keith et. al., 1979);
- > WHO97 polychlorinated dibenzo-p-dioxins (PCDD), polychlorinated dibenzofurans (PCDF) and polychlorinated biphenyls (PCB) (Van den Berg et. al., 1998); and
- Greenhouse gases (i.e. carbon dioxide, methane and nitrous oxide) included in the National Greenhouse Accounts (NGA) Factors (DCCEE, 2010).

2.6 Methodology Overview

This section contains a broad overview of the methodology used to develop the biogenic and geogenic air emissions inventory, while specific details are provided in Section 3.

The methodology used to develop the biogenic and geogenic air emissions inventory involves the following steps:

2.6.1 Identify Sources

Biogenic and geogenic sources considered in this report include all sources defined in Section 2.4 with the potential for air emissions in the GMR.

 $^{^3}$ The default NOx speciation profile used in the inventory is 95% NO and 5% NO2.

Biogenic and geogenic air emission sources have been identified from a number of different sources including:

- ARB's Emissions Inventory, Area-Wide Source Methodologies, Index of Methodologies by Major Category (CARB, 2008a);
- > EMEP/EEA air pollutant emission inventory guidebook 2009 (EEA, 2009);
- > USEPA AP 42, Fifth Edition, Compilation of Air Pollutant Emission Factors, Volume 1: Stationary Point and Area Sources (USEPA, 1995a);
- USEPA Emission Inventory Improvement Program, EIIP Technical Report Series, Volumes 1-10 (USEPA, 2007); and
- > USEPA 2008 National Emissions Inventory Data (USEPA, 2011).

2.6.2 Select Emission Estimation Methodologies

Emissions have been estimated by combining activity data with emission factors. The emissions have been allocated spatially to each 1 km by 1 km grid cell, and temporally to months, weekdays/weekend days and hours. Emissions have been estimated using estimation methodologies and emission factors sourced from references provided in Table 2-2.

Source type	Methodology or substance	Estimation methodologies and emission factor source	
Agricultural Burning	Methodology	 Area-Wide Source Methodologies, Section 7.17, Agricultural Burning and Other Burning Methodology (CARB, 2005a) Australian Methodology for the Estimation of Greenhouse Gas Emissions and Sinks 2006, Agriculture (DCC, 2007) 	
	Criteria pollutants: CO, NO _x , PM _{2.5} , PM ₁₀ , SO ₂ & VOC	- Area-Wide Source Methodologies, Section 7.17, Agricultural Burning and Other Burning Methodology (CARB, 2005a)	
	Criteria pollutants: TSP	- California Emission Inventory and Reporting System (CEIDARS), Particulate Matter (PM) Speciation Profiles (CARB, 2008b)	
	Speciated NO _x	- Technology Transfer Network - Clearinghouse for Inventories & Emissions Factors (USEPA, 2003a)	
	Speciated VOC	- California Emission Inventory and Reporting System (CEIDARS), Organic Gas Speciation Profiles (CARB, 2005b)	
	Organic air toxics	- California Emission Inventory and Reporting System (CEIDARS), Organic Gas Speciation Profiles (CARB, 2005b)	
	Metal air toxics	 California Emission Inventory and Reporting System (CEIDARS), Particulate Matter (PM) Speciation Profiles (CARB, 2007) 	
	Polycyclic aromatic	- Atmospheric Pollutant Emissions Factors from Open Burning of	
	hydrocarbons:	Agricultural and Forest Biomass by Wind Tunnel Simulations	
	РАН	Volumes 1 and 2 (CARB, 1996a; and CARB, 1996b)	
	Polychlorinated	- Australian Inventory of Dioxin Emissions 2004, National	
	dibenzo-p-dioxins and	Dioxins Program Technical Report No. 3 (Bawden et. al., 2004)	

Table 2-2: Biogenic and geogenic estimation methodologies and emission factor data
Air Emissions Inventory for the Greater Metropolitan Region of New South Wales 2. *Inventory Specifications*

Source type	Methodology or substance	Estimation methodologies and emission factor source
	Polychlorinated dibenzofurans: PCDD and PCDF	
	Ammonia	 Area-Wide Source Methodologies, Section 7.17 Agricultural Burning and Other Burning Methodology (CARB, 2005a)
	Greenhouse gases: CH4, CO2 and N2O	 California's 1990-2004 Greenhouse Gas Emissions Inventory and 1990 Emissions Level Technical Support Document (CARB, 2009a) Annex 3D. Agricultural Residue Burning (IPCC 3C1B) to the Technical Support Document for California's Greenhouse Gas Emissions Inventory and the 1990 Emissions Level (CARB, 2009b) AP 42, Fifth Edition, Volume I Chapter 2: Solid Waste Disposal, 2.5 Open Burning (USEPA, 1992)
	Methodology	 Area-Wide Source Methodologies, Section 9.3 Wildfires (CARB, 2004) Australian Methodology for the Estimation of Greenhouse Gas Emissions and Sinks 2006, Land Use, Land Use Change and Forestry (DCC, 2008)
	Criteria pollutants: CO, NO _x , PM _{2.5} , PM ₁₀ , SO ₂ & VOC	 Area-Wide Source Methodologies, Section 9.3 Wildfires (CARB, 2004) Wildland Fire Emissions Estimation System, Version 4 (VESTRA, 2003)
	Criteria pollutants: TSP	 California Emission Inventory and Reporting System (CEIDARS), Particulate Matter (PM) Speciation Profiles (CARB, 2008b)
	Speciated NO _x	- Technology Transfer Network - Clearinghouse for Inventories & Emissions Factors (USEPA, 2003a)
Bushfires	Speciated VOC	- California Emission Inventory and Reporting System (CEIDARS), Organic Gas Speciation Profiles (CARB, 2005b)
	Organic air toxics	- California Emission Inventory and Reporting System (CEIDARS), Organic Gas Speciation Profiles (CARB, 2005b)
	Metal air toxics	 California Emission Inventory and Reporting System (CEIDARS), Particulate Matter (PM) Speciation Profiles (CARB, 2007)
	Polycyclic aromatic hydrocarbons: PAH	- Atmospheric Pollutant Emissions Factors from Open Burning of Agricultural and Forest Biomass by Wind Tunnel Simulations Volumes 1 and 2 (CARB, 1996a; and CARB, 1996b)
	Polychlorinated dibenzo-p-dioxins and Polychlorinated dibenzofurans: PCDD and PCDF	- Australian Inventory of Dioxin Emissions 2004, National Dioxins Program Technical Report No. 3 (Bawden et. al., 2004)
	Ammonia	 Area-Wide Source Methodologies, Section 9.3 Wildfires (CARB, 2004) Wildland Fire Emissions Estimation System, Version 4 (VESTRA, 2003)
	Greenhouse gases: CH ₄ , CO ₂ and N ₂ O	- Wildland Fire Emissions Estimation System, Version 4 (VESTRA, 2003)

2008 Calendar Year Biogenic and Geogenic Emissions: Results 2. Inventory Specifications

Source type	Methodology or substance	Estimation methodologies and emission factor source	
	Methodology	 Area-Wide Source Methodologies, Section 7.16 Forest Management (CARB, 2006) Australian Methodology for the Estimation of Greenhouse Gas Emissions and Sinks 2006, Land Use, Land Use Change and Forestry (DCC, 2008) 	
	Criteria pollutants: CO, NO _x , PM _{2.5} , PM ₁₀ , SO ₂ & VOC	 Area-Wide Source Methodologies, Section 7.16 Forest Management (CARB, 2006) Wildland Fire Emissions Estimation System, Version 4 (VESTRA, 2003) 	
	Criteria pollutants: TSP	 California Emission Inventory and Reporting System (CEIDARS), Particulate Matter (PM) Speciation Profiles (CARB, 2008b) 	
	Speciated NO _x	- Technology Transfer Network - Clearinghouse for Inventories & Emissions Factors (USEPA, 2003a)	
	Speciated VOC	- California Emission Inventory and Reporting System (CEIDARS), Organic Gas Speciation Profiles (CARB, 2005b)	
Prescribed Burning	Organic air toxics	- California Emission Inventory and Reporting System (CEIDARS), Organic Gas Speciation Profiles (CARB, 2005b)	
	Metal air toxics	- California Emission Inventory and Reporting System (CEIDARS), Particulate Matter (PM) Speciation Profiles (CARB, 2007)	
	Polycyclic aromatic hydrocarbons: PAH	 Atmospheric Pollutant Emissions Factors from Open Burning of Agricultural and Forest Biomass by Wind Tunnel Simulations Volumes 1 and 2 (CARB, 1996a; and CARB, 1996b) 	
	Polychlorinated dibenzo-p-dioxins and Polychlorinated dibenzofurans: PCDD and PCDF	- Australian Inventory of Dioxin Emissions 2004, National Dioxins Program Technical Report No. 3 (Bawden et. al., 2004)	
	Ammonia	 Area-Wide Source Methodologies, Section 7.16 Forest Management (CARB, 2006) Wildland Fire Emissions Estimation System, Version 4 (VESTRA, 2003) 	
	Greenhouse gases: CH ₄ , CO ₂ and N ₂ O	 Wildland Fire Emissions Estimation System, Version 4 (VESTRA, 2003) 	
	Methodology	 Area-Wide Source Methodologies, Section 7.12 Windblown Dust Agricultural Lands (CARB, 1997a) 	
Fugitive/ Windhorme from	Criteria pollutants: PM _{2.5} and PM ₁₀	 California Emission Inventory and Reporting System (CEIDARS), Particulate Matter (PM) Speciation Profiles (CARB, 2008b) 	
Windborne from Agricultural Lands	Criteria pollutants: TSP	 Area-Wide Source Methodologies, Section 7.12 Windblown Dust Agricultural Lands (CARB, 1997a) 	
	Metal air toxics	 California Emission Inventory and Reporting System (CEIDARS), Particulate Matter (PM) Speciation Profiles (CARB, 2007) 	
Fugitive/ Windborne from	Methodology	 Area-Wide Source Methodologies, Section 7.13 Windblown Dust Unpaved Roads (CARB, 1997b) 	
Unpaved Roads	Criteria pollutants: PM _{2.5} and PM ₁₀	- California Emission Inventory and Reporting System (CEIDARS), Particulate Matter (PM) Speciation Profiles	

Air Emissions Inventory for the Greater Metropolitan Region of New South Wales 2. *Inventory Specifications*

Source type	Methodology or substance	Estimation methodologies and emission factor source	
		(CARB, 2008b)	
	Criteria pollutants: TSP	 Area-Wide Source Methodologies, Section 7.13 Windblown Dust Unpaved Roads (CARB, 1997b) 	
	Metal air toxics	- California Emission Inventory and Reporting System (CEIDARS), Particulate Matter (PM) Speciation Profiles (CARB, 2007)	
	Methodology	 Biogenic Sources Preferred Methods, Technical Report Series Volume 5, Emission Inventory Improvement Program (Radian, 1996) Review of Ammonia Emission Modeling Techniques for Natural Landscapes and Fertilized Soils (Battye et. al., 2004) AP 42, Fifth Edition, Volume I, Chapter 14: Greenhouse Gas Biogenic Sources, 14.1 Emission from Soils - Greenhouse Gases (USEPA, 2003b) 	
Soil	Criteria pollutants: NO _x	 Biogenic Sources Preferred Methods, Technical Report Series Volume 5, Emission Inventory Improvement Program (Radian, 1996) 	
	Speciated NO _x	 Biogenic Sources Preferred Methods, Technical Report Series Volume 5, Emission Inventory Improvement Program (Radian, 1996) 	
	Ammonia	- Review of Ammonia Emission Modeling Techniques for Natural Landscapes and Fertilized Soils (Battye et. al., 2004)	
	Greenhouse gases: N ₂ O	- AP 42, Fifth Edition, Volume I, Chapter 14: Greenhouse Gas Biogenic Sources, 14.1 Emission from Soils - Greenhouse Gases (USEPA, 2003b)	
	Methodology	 Biogenic Emissions in the Greater Sydney Region (Azzi et. al., 2004) 	
Tree Canopy	Criteria pollutants: VOC	 Biogenic Emissions in the Greater Sydney Region (Azzi et. al., 2004) Biogenic Emissions Inventory GIS Version 3.02 (Huber, 2005) 	
	Speciated VOC	 Biogenic Emissions in the Greater Sydney Region (Azzi et. al., 2004) Biogenic Emissions Inventory GIS Version 3.02 (Huber, 2005) 	
	Organic air toxics	 Biogenic Emissions in the Greater Sydney Region (Azzi et. al., 2004) Biogenic Emissions Inventory GIS Version 3.02 (Huber, 2005) 	
	Methodology	- Biogenic Emissions in the Greater Sydney Region (Azzi et. al., 2004)	
Uncut Grass	Criteria pollutants: VOC	 Biogenic Emissions in the Greater Sydney Region (Azzi et. al., 2004) Biogenic Emissions Inventory GIS Version 3.02 (Huber, 2005) 	
	Speciated VOC	 Biogenic Emissions in the Greater Sydney Region (Azzi et. al., 2004) Biogenic Emissions Inventory GIS Version 3.02 (Huber, 2005) 	
	Organic air toxics	 Biogenic Emissions in the Greater Sydney Region (Azzi et. al., 2004) Biogenic Emissions Inventory GIS Version 3.02 (Huber. 2005) 	
Cut Grass	Methodology	- Biogenic Emissions in the Greater Sydney Region (Azzi et. al., 2004)	

2008 Calendar Year Biogenic and Geogenic Emissions: Results 2. Inventory Specifications

Source type	Methodology or substance	Estimation methodologies and emission factor source
	Criteria pollutants: VOC	- Biogenic Emissions in the Greater Sydney Region (Azzi et. al., 2004)
	Speciated VOC	- Emissions of Volatile Organic Compounds (Primarily Oxygenated Species) from Pasture (Kirstine et. al., 1998)
	Organic air toxics	- Emissions of Volatile Organic Compounds (Primarily Oxygenated Species) from Pasture (Kirstine et. al., 1998)
	Methodology	 Initial Applications of Sea Salt Aerosol Emissions and Chemistry Algorithms in the CMAQ v4.5 - AERO4 Module (Shankar et. al., 2005) A Parameterization of Sea-Salt Aerosol Source Function for Sub- and Super-Micron Particles (Gong, 2003) A Model of Marine Aerosol Generation via Whitecaps and Wave Disruption (Monahan et. al., 1986) The Sea Spray Generation Function (Smith et. al., 1998)
Marine Aerosol	Criteria pollutants: PM _{2.5} and PM ₁₀	 A Parameterization of Sea-Salt Aerosol Source Function for Sub- and Super-Micron Particles (Gong, 2003) A Model of Marine Aerosol Generation via Whitecaps and Wave Disruption (Monahan et. al., 1986)
	Criteria pollutants: TSP	 A Parameterization of Sea-Salt Aerosol Source Function for Sub- and Super-Micron Particles (Gong, 2003) A Model of Marine Aerosol Generation via Whitecaps and Wave Disruption (Monahan et. al., 1986) The Sea Spray Generation Function (Smith et. al., 1998)

Detailed emission estimation methodologies for each biogenic and geogenic source are presented in Section 3.

2.6.3 Acquire Activity, Spatial and Temporal Data

Activity, spatial and temporal data have been acquired from a number of government departments and service providers. Emissions have been estimated using activity, spatial and temporal data sourced from the references provided in Table 2-3, Table 2-4 and Table 2-5.

Source type	Activity data	Activity data source
Agricultural Burning	Crop harvest (tonne and ha) by NSW agronomy district	- NSW Grains Report 2008 (NSW DPL 2008)
Bushfires	Bushfire area (ha)	 On-Park Wildfires 2008 Calendar Year (DECCW, 2009a) Off-Park Wildfires 2008 Calendar Year (RFS, 2009a)
Prescribed Burning	Prescribed burn area (ha)	 On-Park Prescribed Burns Entered into BRIMS for the 2008 Calendar Year (DECCW, 2009b) Off-Park Prescribed Burns Entered into BRIMS for the 2008 Calendar

Table 2-3: Biogenic and geogenic activity data

Air Emissions Inventory for the Greater Metropolitan Region of New South Wales 2. *Inventory Specifications*

Source type	Activity data	Activity data source
		Year (RFS, 2009b)
	Crop area (ha) by NSW agronomy district	- NSW Grains Report 2008 (NSW DPI, 2008)
Fugitive/ Windborne from Agricultural Lands	Soil erodibility (tonne/ha/year)	- Digital Atlas of Australian Soils (BRS , 1991)
	Hourly meteorological data (temperature (K), precipitation (mm) and wind speed (m/s)) required to calculate the climatic factor	- The Air Pollution Model (TAPM) Version 3 (Hurley, 2005)
	Unpaved road length (m)	- Unsealed Roads from the dtdb Cultural Lines Layer - Arc/Info Export Format (DEC, 2004a)
Fugitive/ Windborne from	Unpaved road width (m)	- Performance Based Standards Scheme Network Classification Guidelines (NTC, 2007)
Unpaved Roads	Soil erodibility (tonne/ha/year)	- Digital Atlas of Australian Soils (BRS , 1991)
	Hourly meteorological data (temperature (K), precipitation (mm) and wind speed (m/s)) required to calculate the climatic factor	- The Air Pollution Model (TAPM) Version 3 (Hurley, 2005)
	Land use area (ha)	- Land Use of Australia, Version 3 - 1996/1997 (BRS , 2006)
Soil	Nitrogen fertiliser consumption (tonne/year)	 Mean Annual Nitrogen Fertilisation (kgN ha-1 y-1) (BRS, 2001; and NLWRA, 2001) Consumption of Nitrogen Fertilizers in Australia in 2008 (TEA 2011)
	Hourly meteorological data (temperature (K)) required to calculate the temperature correction factor	- The Air Pollution Model (TAPM) Version 3 (Hurley, 2005)
Tree Canopy	Genus specific speciated VOC emission rate ($\mu g/g$ leaf biomass/h), leaf area index (LAI) (m ² /m ²), canopy height (m) and leaf biomass (g/m ²)	 Biogenic Emissions in the Greater Sydney Region (Azzi et. al., 2004) Biogenic Emissions Inventory GIS Version 3.02 (Huber, 2005)
	Hourly meteorological data (temperature (K)) required by the tree canopy model	- The Air Pollution Model (TAPM) Version 3 (Hurley, 2005)
Uncut Grass	Genus specific speciated VOC emission rate (μ g/g leaf biomass/h), leaf area index (LAI) (m ² /m ²) and leaf biomass (g/m ²)	 Biogenic Emissions in the Greater Sydney Region (Azzi et. al., 2004) Biogenic Emissions Inventory GIS Version 3.02 (Huber, 2005)
	Hourly meteorological data (temperature (K)) required by the uncut grass model	- The Air Pollution Model (TAPM) Version 3 (Hurley, 2005)
Cat Car	Residential lawn area (m ²) and annual lawn mowing frequency	- Domestic Lawn Mowing Pollution Survey (TR, 2009)
Cut Grass	Public open space lawn area (m²) annual monthly lawn mowing frequency	- Public Open Space Lawn Mowing Pollution Survey (DECC, 2007)

2008 Calendar Year Biogenic and Geogenic Emissions: Results 2. Inventory Specifications

Source type	Activity data	Activity data source
	Ocean area (m²)	- Gridded Ocean Area in the GMR (DECCW, 2009c)
Marine Aerosol	Hourly meteorological data (wind speed (m/s)) required by the open-ocean sea-salt aerosol model	- The Air Pollution Model (TAPM) Version 3 (Hurley, 2005)

Table 2-4: Biogenic and geogenic spatial data

Source type	Spatial data	Spatial data source
Agricultural Burning	GIS layer for crop area	- Land Use of Australia, Version 3 - 1996/1997 (BRS , 2006)
Bushfires	Bushfire location (latitude and longitude)	- On-Park Wildfires 2008 Calendar Year (DECCW, 2009a)
		- Off-Park Wildfires 2008 Calendar Year (RFS, 2009a)
		- On-Park Prescribed Burns Entered into BRIMS for the 2008 Calendar Year (DECCW, 2009b)
Prescribed Burning	Prescribed burn location (latitude and longitude)	 Off-Park Prescribed Burns Entered into BRIMS for the 2008 Calendar Year (RFS, 2009b)
Fugitive/ Windborne from Agricultural Lands	GIS layer for crop area combined with GIS layer for soil erodibility and gridded 1 km x 1 km climatic factor estimates	- Land Use of Australia, Version 3 - 1996/1997 (BRS , 2006)
		- Digital Atlas of Australian Soils (BRS , 1991)
		- The Air Pollution Model (TAPM) Version 3 (Hurley, 2005)
Fugitive/ Windborne from Unpaved Roads	GIS layer for unpaved road area combined with GIS layer for soil erodibility and gridded 1 km x 1 km climatic factor estimates	- Unsealed Roads from the dtdb Cultural Lines Layer - Arc/Info Export Format (DEC, 2004a)
		- Digital Atlas of Australian Soils (BRS , 1991)
		- The Air Pollution Model (TAPM) Version 3 (Hurley, 2005)
Soil	GIS layer for land use area combined with gridded 1 km x 1 km temperature correction factor estimates	- Land Use of Australia, Version 3 - 1996/1997 (BRS , 2006)
		- The Air Pollution Model (TAPM) Version 3 (Hurley, 2005)

Air Emissions Inventory for the Greater Metropolitan Region of New South Wales 2. *Inventory Specifications*

Source type	Spatial data	Spatial data source
Tree Canopy	GIS layer for genus specific speciated VOC emission rate, leaf area index, canopy height and leaf biomass combined with gridded 1 km x 1 km temperature estimates	 Biogenic Emissions in the Greater Sydney Region (Azzi et. al., 2004) Biogenic Emissions Inventory GIS Version 3.02 (Huber, 2005) The Air Pollution Model (TAPM) Version 3 (Hurley, 2005)
Uncut Grass	GIS layer for genus specific speciated VOC emission rate, leaf area index and leaf biomass combined with gridded 1 km x 1 km temperature estimates	 Biogenic Emissions in the Greater Sydney Region (Azzi et. al., 2004) Biogenic Emissions Inventory GIS Version 3.02 (Huber, 2005) The Air Pollution Model (TAPM) Version 3 (Hurley, 2005)
Cut Grass	Gridded 1 km x 1 km free standing dwelling estimates for residential lawn mowing	- Forecasts for Free Standing Dwelling from 2006 to 2036 (TDC, 2009)
	Gridded 1 km x 1 km population estimates (≥ 50 per grid cell) for public open space lawn mowing	- Forecasts for Population from 2006 to 2036 (TDC, 2009)
Marine Aerosol	Gridded 1 km x 1 km ocean proportion combined with gridded 1 km x 1 km wind speed estimates	 Gridded Ocean Area in the GMR (DECCW, 2009c) The Air Pollution Model (TAPM) Version 3 (Hurley, 2005)

Table 2-5: Biogenic and geogenic temporal data

Source type	Temporal data	Temporal data source
Agricultural	Monthly: Crop harvest time from crop calendar	- Australia State Crop Calendars (USDA, 2003)
Burning	Daily: Average working days Hourly: Average working hours	- Biogenic and Biomass Burning Emissions Inventory (EPAV, 2002)
Bushfires	Monthly: Bushfire date	- On-Park Wildfires 2008 Calendar Year (DECCW, 2009a)
	Daily: Bushfire date	- Off-Park Wildfires 2008 Calendar Year (RFS, 2009a)
	Hourly: Generic bushfire profile	- Biogenic and Biomass Burning Emissions Inventory (EPAV, 2002)
Prescribed Burning	Monthly: Prescribed burn date Daily: Prescribed burn date	 On-Park Prescribed Burns Entered into BRIMS for the 2008 Calendar Year (DECCW, 2009b) Off Bark Prescribed Burns Entered
		- Off-Park Prescribed Burns Entered

Source type	Temporal data	Temporal data source
		into BRIMS for the 2008 Calendar Year (RFS, 2009b)
	Hourly: Generic prescribed burn profile	- Biogenic and Biomass Burning Emissions Inventory (EPAV, 2002)
Fugitive/ Windborne from Agricultural Lands	Monthly, daily and hourly: Gridded 1 km x 1 km climatic factor combined with vegetative cover factor estimates	 The Air Pollution Model (TAPM) Version 3 (Hurley, 2005) Australia State Crop Calendars (USDA, 2003)
Fugitive/ Windborne from Unpaved Roads	Monthly, daily and hourly: Gridded 1 km x 1 km climatic factor estimates	- The Air Pollution Model (TAPM) Version 3 (Hurley, 2005)
Soil	Monthly, daily and hourly: Gridded 1 km x 1 km temperature correction factor estimates	- The Air Pollution Model (TAPM) Version 3 (Hurley, 2005)
Tree Canopy	Monthly, daily and hourly: Gridded 1 km x 1 km leaf temperature as a function of ambient temperature estimates	 Biogenic Emissions in the Greater Sydney Region (Azzi et. al., 2004) Biogenic Emissions Inventory GIS Version 3.02 (Huber, 2005) The Air Pollution Model (TAPM) Version 3 (Hurley, 2005)
Uncut Grass	Monthly, daily and hourly: Gridded 1 km x 1 km leaf temperature as a function of ambient temperature estimates	 Biogenic Emissions in the Greater Sydney Region (Azzi et. al., 2004) Biogenic Emissions Inventory GIS Version 3.02 (Huber, 2005) The Air Pollution Model (TAPM) Version 3 (Hurley, 2005)
Cut Grass	Monthly: Lawn mowing frequency combined with gridded 1 km x 1 km temperature correction factor estimates	 Domestic lawn mowing: Domestic Lawn Mowing Pollution Survey (TR, 2009) Public open space lawn mowing: Public Open Space Lawn Mowing Pollution Survey (DECC, 2007) The Air Pollution Model (TAPM) Version 3 (Hurley, 2005) Modeling Terrestrial Biogenic Sources of Oxygenated Organic Emissions (Potter et. al., 2003)
Cut Grass	Daily and hourly: Lawn mowing frequency combined with exponential decay for initial leaf wounding followed by leaf drying emission phases	 Domestic lawn mowing: Domestic Lawn Mowing Pollution Survey (TR, 2009) Public open space lawn mowing: Public Open Space Lawn Mowing Pollution Survey (DECC, 2007) Biogenic Emissions in the Greater Sydney Region (Azzi et. al., 2004) Emissions of Volatile Organic Compounds (Primarily Oxygenated

Air Emissions Inventory for the Greater Metropolitan Region of New South Wales 2. *Inventory Specifications*

Source type	Temporal data	Temporal data source
		<i>Species) from Pasture</i> (Kirstine et. al., 1998)
Marine Aerosol	Monthly, daily and hourly: Gridded 1 km x 1 km wind speed estimates	- The Air Pollution Model (TAPM) Version 3 (Hurley, 2005)

A detailed discussion of the activity, spatial and temporal data acquired for each biogenic and geogenic source is presented in Section 3.

2.6.4 Design and Implement Emission Estimation Techniques

All emissions have been calculated within the *Biogenic and Geogenic Emissions Data Management System* v1.0, which is a Microsoft® AccessTM 2003 relational database that includes all the data necessary for estimating emissions to air from biogenic and geogenic sources, including: activity data; emission factors; particulate matter (PM) and volatile organic compound (VOC) speciation profiles; spatial allocation data; and hourly, daily and monthly temporal variation data. The *Biogenic and Geogenic Emissions Data Management System* v1.0 start-up form is shown in Figure 2-3.

Figure 2-3: Biogenic and Geogenic Emissions Data Management System v1.0 start-up form

In general, emissions have been estimated using Equation 1:

、

$$\mathbf{E}_{i,j} = \mathbf{A}_j \times \mathbf{E} \mathbf{F}_{i,j} \times \left(\mathbf{1} - \mathbf{E} \mathbf{R}_{i,j} / \mathbf{100} \right)$$

Equation 1

where:			
E _{i,j}	=	Emissions of substance i from source j	(kg/year)
Aj	=	Activity rate for source j	(activity unit/year)
$\mathrm{EF}_{\mathrm{i},\mathrm{j}}$	=	Emission factor for substance i from source j	(kg/activity unit)
$ER_{i,j}$	=	Emission reduction efficiency for substance i for source j	(%)

Detailed emission estimation techniques for each biogenic and geogenic source are presented in Section 3.

3 DATA SOURCES AND RESULTS

This section presents the: detailed emission estimation methodologies; activity, spatial and temporal data sources used; and the associated emission estimates for the 2008 calendar year for the following biogenic and geogenic sources:

- Agricultural burning;
- Bushfires;
- Prescribed burning;
- > Fugitive/windborne from agricultural lands and unpaved roads
- > Microbial activity and chemical processes of nitrification and denitrification in soil;
- Fertiliser application to agricultural lands;
- > Tree canopy and grass (i.e. cut and uncut); and
- > Marine aerosol.

For each biogenic and geogenic source type, the information in this section is structured as follows:

- > Emission Source Description;
- Emission Estimation Methodology;
- Activity Data;
- > Emission and Speciation Factors;
- Spatial Distribution of Emissions;
- > Temporal Variation of Emissions; and
- > Emission Estimates.

Biogenic and geogenic emissions have been estimated by combining activity data with emission factors. The emissions have been allocated spatially to each 1 km by 1 km grid cell, and temporally to months, weekdays/weekend days and hours. Activity, spatial and temporal data have been acquired from a number of government departments and service providers. All emissions have been calculated within the *Biogenic and Geogenic Emissions Data Management System v1.0*, which is a Microsoft® Access[™] 2003 relational database that includes all the data necessary for estimating emissions to air from biogenic and geogenic sources, including: activity data; emission factors; particulate matter (PM) and volatile organic compound (VOC) speciation profiles; spatial allocation data; and hourly, daily and monthly temporal variation data.

Where reference is made to:

- Combustion products, this includes CO, NO_x, PM_{2.5}, PM₁₀, TSP, SO₂ and VOC (total and speciated); and
- > *Particulate matter*, this includes PM_{2.5}, PM₁₀ and TSP.

In this section total estimated emissions are presented for each biogenic and geogenic source type in the whole GMR and the Sydney, Newcastle and Wollongong regions. Total estimated emissions are also presented for the region defined as Non Urban. This region is the area of the GMR minus the combined areas of the Sydney, Newcastle and Wollongong regions. Emissions are presented for the following pollutants only:

- ▶ 1,3-Butadiene
- > Acetaldehyde
- Carbon monoxide (CO)
- Lead & compounds
- Oxides of nitrogen (NO_x)
- ▶ Particulate matter $\leq 10 \ \mu m \ (PM_{10})$
- ▶ Particulate matter $\leq 2.5 \,\mu m \,(PM_{2.5})$
- > Polycyclic aromatic hydrocarbons (PAH)
- \succ Sulfur dioxide (SO₂)
- > Total suspended particulate (TSP)
- > Total volatile organic compounds (VOC).

These substances were selected since they:

- Are the most common air pollutants found in airsheds according to the National Pollutant Inventory NEPM (NEPC, 2008);
- Are referred to in National Environment Protection Measures (NEPMs) for Ambient Air Quality (NEPC, 2003) and Air Toxics (NEPC, 2004); and
- > Have been classified as priority air pollutants (NEPC, 2006).

Total biogenic and geogenic emissions of all substances emitted in the whole GMR and the Sydney, Newcastle, Wollongong and Non Urban regions are presented in Appendix A: Estimated Annual Emissions of all Substances from Biogenic and Geogenic Sources.

3.1 Agricultural Burning

3.1.1 Emission Source Description

The biogenic and geogenic air emissions inventory includes emissions of combustion products from open burning of agricultural residues (i.e. crop stubble) after field crops are harvested.

To estimate emissions from these sources, the following have been considered:

> NSW grains report

The NSW Grains Report contains crop production information highlights, seasonal conditions and outlook and information on specific summer and winter crops. The area and quantity of summer and winter field crops harvested in each NSW agronomy district have been obtained for the 2008 calendar year (NSW DPI, 2008) and used to estimate the quantity of crop stubble burned in the GMR.

> Crop type

The inventory includes emissions of combustion products from open burning of agricultural residues as follows:

Summer crops

- Grain Sorghum;
- o Maize; and
- o Soybean.

Winter crops

- o Barley;
- o Canola.
- Lupin Angust;
- Oats;
- o Triticale; and
- 0 Wheat.

3.1.2 Emission Estimation Methodology

Table 3-1 summarises the emission estimation methodologies used for agricultural burning.

Table 3-1. Agricultural	hurning omission	actimation methodologies	
Table 5-1. Agricultural	burning emission	estimation methodologies	

Emission source		Emission estimation methodology source
	-	Area-Wide Source Methodologies, Section 7.17, Agricultural
Emissions of combustion products from open		Burning and Other Burning Methodology (CARB, 2005a)
burning of agricultural residues	-	Australian Methodology for the Estimation of Greenhouse Gas
		Emissions and Sinks 2006, Agriculture (DCC, 2007)

Emissions of combustion products from open burning of agricultural residues have been estimated using fuel consumption based emission factors combined with activity rates. Activity rates include crop type and quantity of agricultural residue burned (NSW DPI, 2008). Emissions have been determined using Equation 2 (CARB, 2005a; and DCC, 2007):

Equation 2

$\mathbf{E}_{i,j} =$	P	$\times \mathbf{R}_{j}$	×	\mathbf{S}_{j}	×	DM _j	×	\mathbf{Z}_{i}	×	Fj	×	$\mathbf{EF_i}$,i
----------------------	---	-------------------------	---	------------------	---	-----------------	---	------------------	---	----	---	-----------------	----

where:			
E _{i,j}	=	Emissions of substance i from crop type j	(kg/year)
P_j	=	Annual production of crop type j	(tonne/year)
R _j	=	Residue to crop ratio for crop type j (Table 3-2) (Appendix L, Table	(kg residue/kg
		L.1; DCC, 2007)	crop)
Sj	=	Fraction of crop residue remaining at burning for crop type j (Table	(kg residue/kg
		3-2) (Appendix L, Table L.1; DCC, 2007)	residue)
DM_j	=	Dry matter content for crop type j (Table 3-2) (Appendix L, Table	(kg dry
		L.1; DCC, 2007)	residue/kg
			residue)
Z	=	Residue burning efficiency for crop type j (Table 3-2) (Section 4F;	(kg residue
		DCC, 2007)	burned/kg
			residue)
Fj	=	Fraction burned of the annual production of crop type j (Table 3-2)	(ha burned/ha
		(Appendix L, Table L.1; DCC, 2007)	harvested)
EF _{i,j}	=	Emission factor for substance i and crop type j	(kg/tonne)
i	=	Substance (either "criteria pollutants", "speciated NO_x ", "speciated	(-)
		VOC", "organic air toxics", "metal air toxics", "PAH", "PCDD and	
		PCDF", "ammonia" or "greenhouse gases")	
j	=	Crop type (either "grain sorghum", "maize", "soybean", "barley",	(-)
		"canola", "lupin angust", "oats", "triticale" or "wheat")	

Table 3-2 presents crop attributes used to estimate emissions of combustion products from open burning of agricultural residues (DCC, 2007).

Crop type	R (kg residue/kg crop)	S (kg residue/kg residue)	DM (kg dry residue/kg residue)	Z (kg residue burned/kg residue)	F (ha burned/ha harvested)
Grain Sorghum	1.5	0.5	0.8	0.96	0.23
Maize	1.5	1.0	0.8	0.96	0.30
Soybean	2.1	0.5	0.8	0.96	0.24
Barley	1.5	0.5	0.8	0.96	0.23
Canola	1.5	0.5	0.8	0.96	0.08
Lupin Angust	1.5	0.5	0.8	0.96	0.08
Oats	1.5	0.5	0.8	0.96	0.23
Triticale	1.5	0.5	0.8	0.96	0.23
Wheat	1.5	0.5	0.9	0.96	0.23

Table 3-2: Field crop attributes

3.1.3 Activity Data

Table 3-3 summarises the activity data used for agricultural burning.

Table 3-3: Agricultural burning activity data

Activity data	Activity data source
Crop harvest (tonne and ha) by NSW agronomy district	- NSW Grains Report 2008 (NSW DPI, 2008)

The area and quantity of summer and winter field crops harvested in each NSW agronomy district (i.e. North West, Central West, South West, Tablelands and Coastal) have been obtained for the 2008 calendar year (NSW DPI, 2008). Since the Tablelands agronomy district forms part of the GMR, 50% of the harvest area and quantity from this region has been used to estimate the quantity of crop stubble burned in the GMR. Table 3-4 presents the area and quantity of field crops harvested in the GMR.

Table 3-4: Field crop harvest in the GMR

Cron type	2008 harvest ⁴			
cloptype	Area (ha)	Quantity (tonne)		
Grain Sorghum	80	215		
Maize	400	2,800		
Soybean	125	162.5		
Barley	175	397.5		
Canola	650	1,100		
Lupin Angust	500	1,000		

⁴ Crop harvest in the GMR assumes 50% of crop harvest in the Tablelands agronomy district (NSW DPI, 2008).

Crop ture	2008 harvest ⁴			
Clop type	Area (ha)	Quantity (tonne)		
Oats	6,900	16,545		
Triticale	2,785	7,525.5		
Wheat	4,010	11,775		
Grand Total	15,625	41,520.5		

3.1.4 *Emission and Speciation Factors*

Table 3-5 summarises the emission and speciation factors used for agricultural burning.

Substance	Emission source	Emission and speciation factor source
	Grain Sorghum	 Sorghum - Area-Wide Source Methodologies, Section 7.17, Agricultural Burning and Other Burning Methodology (CARB, 2005a)
	Maize	 Corn - Area-Wide Source Methodologies, Section 7.17, Agricultural Burning and Other Burning Methodology (CARB, 2005a)
	Soybean	- Bean/Pea - Area-Wide Source Methodologies, Section 7.17, Agricultural Burning and Other Burning Methodology (CARB, 2005a)
Criteria pollutants: CO, NO _x , PM _{2.5} , PM ₁₀ , SO ₂ & VOC	Barley	 Barley - Area-Wide Source Methodologies, Section 7.17, Agricultural Burning and Other Burning Methodology (CARB, 2005a)
	Canola, Lupin Angust and Triticale	 Other field crops - Area-Wide Source Methodologies, Section 7.17, Agricultural Burning and Other Burning Methodology (CARB, 2005a)
	Oats	- Oats - Area-Wide Source Methodologies, Section 7.17, Agricultural Burning and Other Burning Methodology (CARB, 2005a)
	Wheat	 Wheat - Area-Wide Source Methodologies, Section 7.17, Agricultural Burning and Other Burning Methodology (CARB, 2005a)
	Grain Sorghum, Soybean, Canola, Lupin Angust, Triticale and Oats	- PMPROF 430 - California Emission Inventory and Reporting System (CEIDARS), Particulate Matter (PM) Speciation Profiles (CARB, 2008b)
Criteria pollutants:	Maize	- PMPROF 434 - California Emission Inventory and Reporting System (CEIDARS), Particulate Matter (PM) Speciation Profiles (CARB, 2008b)
101	Barley	- PMPROF 433 - California Emission Inventory and Reporting System (CEIDARS), Particulate Matter (PM) Speciation Profiles (CARB, 2008b)
	Wheat	- PMPROF 432 - California Emission Inventory and Reporting System (CEIDARS), Particulate Matter (PM) Speciation Profiles (CARB, 2008b)

Table 3-5: Agricultural burning emission and speciation factors

Substance	Emission source	Emission and speciation factor source
Speciated NO _x	Grain Sorghum, Soybean, Canola, Lupin Angust, Triticale, Oats, Maize, Barley and Wheat	- Technology Transfer Network - Clearinghouse for Inventories & Emissions Factors (USEPA, 2003a)
Speciated VOC	Grain Sorghum, Soybean, Canola, Lupin Angust, Triticale, Oats, Maize, Barley and Wheat	- ORGPROF 307 - California Emission Inventory and Reporting System (CEIDARS), Organic Gas Speciation Profiles (CARB, 2005b)
Organic air toxics	Grain Sorghum, Soybean, Canola, Lupin Angust, Triticale, Oats, Maize, Barley and Wheat	- ORGPROF 307 - California Emission Inventory and Reporting System (CEIDARS), Organic Gas Speciation Profiles (CARB, 2005b)
Metal air toxics	Grain Sorghum, Soybean, Canola, Lupin Angust, Triticale, Oats, Maize, Barley and Wheat	- PMPROF 430 - California Emission Inventory and Reporting System (CEIDARS), Particulate Matter (PM) Speciation Profiles (CARB, 2007)
	Grain Sorghum, Soybean, Canola, Lupin Angust, Triticale and Oats	 Average of Barley Straw, Corn Stover, Rice Straw and Wheat Straw - Atmospheric Pollutant Emissions Factors from Open Burning of Agricultural and Forest Biomass by Wind Tunnel Simulations Volumes 1 and 2 (CARB, 1996a; and CARB, 1996b)
Polycyclic aromatic hydrocarbons:	Maize	 Corn Stover - Atmospheric Pollutant Emissions Factors from Open Burning of Agricultural and Forest Biomass by Wind Tunnel Simulations Volumes 1 and 2 (CARB, 1996a; and CARB, 1996b)
РАН	Barley	- Barley Straw - Atmospheric Pollutant Emissions Factors from Open Burning of Agricultural and Forest Biomass by Wind Tunnel Simulations Volumes 1 and 2 (CARB, 1996a; and CARB, 1996b)
	Wheat	- Wheat Straw - Atmospheric Pollutant Emissions Factors from Open Burning of Agricultural and Forest Biomass by Wind Tunnel Simulations Volumes 1 and 2 (CARB, 1996a; and CARB, 1996b)
Polychlorinated dibenzo-p-dioxins and Polychlorinated	Grain Sorghum, Soybean, Canola, Lupin Angust, Triticale, Oats, Maize and Barley	- Agricultural residue burning - coarse grains - Australian Inventory of Dioxin Emissions 2004, National Dioxins Program Technical Report No. 3 (Bawden et. al., 2004)
dibenzofurans: PCDD and PCDF	Wheat	- Agricultural residue burning – wheat - Australian Inventory of Dioxin Emissions 2004, National Dioxins Program Technical Report No. 3 (Bawden et. al., 2004)
	Grain Sorghum	 Sorghum - Area-Wide Source Methodologies, Section 7.17, Agricultural Burning and Other Burning Methodology (CARB, 2005a)
Ammonia	Maize	 Corn - Area-Wide Source Methodologies, Section 7.17, Agricultural Burning and Other Burning Methodology (CARB, 2005a)
	Soybean	 Bean/Pea - Area-Wide Source Methodologies, Section 7.17, Agricultural Burning and Other Burning Methodology (CARB, 2005a)
	Barley	- Barley - Area-Wide Source Methodologies, Section 7.17,

Substance	Emission source	Emission and speciation factor source
		Agricultural Burning and Other Burning Methodology (CARB, 2005a)
	Canola, Lupin Angust	- Other field crops - Area-Wide Source Methodologies, Section
	and	7.17, Agricultural Burning and Other Burning Methodology
	Triticale	(CARB, 2005a)
		- Oats - Area-Wide Source Methodologies, Section 7.17,
	Oats	Agricultural Burning and Other Burning Methodology
		(CARB, 2005a)
		- Wheat - Area-Wide Source Methodologies, Section 7.17,
	Wheat	Agricultural Burning and Other Burning Methodology
		(CARB, 2005a)
	Grain Sorghum	- Sorghum - AP 42, Fifth Edition, Volume I Chapter 2: Solid
	Chuit borghuit	Waste Disposal, 2.5 Open Burning (USEPA, 1992)
		- California's 1990-2004 Greenhouse Gas Emissions Inventory
		and 1990 Emissions Level Technical Support Document
		(CARB, 2009a)
	Maize	- Corn - Annex 3D. Agricultural Residue Burning (IPCC
		3C1B) to the Technical Support Document for California's
	Soybean	Greenhouse Gas Emissions Incentory and the 1950 Emissions
		Level (CARD, 20090) Begn/Deg AD 42 Eith Edition Volume I Chapter 2: Solid
		Waste Disnosal 2.5 Open Burning (USEPA 1992)
		- California's 1990-2004 Greenhouse Gas Emissions Inventory
	Barley	and 1990 Emissions Level Technical Support Document
		(CARB, 2009a)
		- Barley - Annex 3D. Agricultural Residue Burning (IPCC
	5	3C1B) to the Technical Support Document for California's
		Greenhouse Gas Emissions Inventory and the 1990 Emissions
		Level (CARB, 2009b)
Greenhouse gases:		Average of Barley, Corn, Oats, Rice, Sorghum, Bean/Pea and
CH ₄		Wheat:
		- California's 1990-2004 Greenhouse Gas Emissions Inventory
		and 1990 Emissions Level Technical Support Document
	Canola, Lupin Angust	(CARB, 2009a)
	and Triticale	- Annex 3D. Agricultural Residue Burning (IPCC 3C1B) to
		the Technical Support Document for California's Greenhouse
		Gas Emissions Inventory and the 1990 Emissions Level
		(CARB, 2009D) AD 42 Fifth Edition Volume L Chamter 2: Solid Maste
		- AP 42, Fifth Edition, Volume I Chapter 2: Solid VVasie
		- Oats - AP 42 Fifth Edition Volume I Chanter 2: Solid Waste
	Oats	Disnosal 2.5 Onen Burning (USEPA, 1992)
		- California's 1990-2004 Greenhouse Gas Emissions Inventory
		and 1990 Emissions Level Technical Support Document
		(CARB, 2009a)
	Wheat	- Wheat - Annex 3D. Agricultural Residue Burning (IPCC
		3C1B) to the Technical Support Document for California's
		Greenhouse Gas Emissions Inventory and the 1990 Emissions
		Level (CARB, 2009b)
Greenhouse gases:	Grain Sorghum, Soybean,	Average of Barley Straw, Corn Stover, Rice Straw and Wheat
CO ₂ and N ₂ O	Canola, Lupin Angust,	Straw:

Substance	Emission source	Emission and speciation factor source
	Triticale and Oats	 California's 1990-2004 Greenhouse Gas Emissions Inventory and 1990 Emissions Level Technical Support Document (CARB, 2009a) Annex 3D. Agricultural Residue Burning (IPCC 3C1B) to the Technical Support Document for California's Greenhouse Gas Emissions Inventory and the 1990 Emissions Level (CARB, 2009b)
	Maize	 California's 1990-2004 Greenhouse Gas Emissions Inventory and 1990 Emissions Level Technical Support Document (CARB, 2009a) Corn - Annex 3D. Agricultural Residue Burning (IPCC 3C1B) to the Technical Support Document for California's Greenhouse Gas Emissions Inventory and the 1990 Emissions Level (CARB, 2009b)
	Barley	 California's 1990-2004 Greenhouse Gas Emissions Inventory and 1990 Emissions Level Technical Support Document (CARB, 2009a) Barley - Annex 3D. Agricultural Residue Burning (IPCC 3C1B) to the Technical Support Document for California's Greenhouse Gas Emissions Inventory and the 1990 Emissions Level (CARB, 2009b)
	Wheat	 California's 1990-2004 Greenhouse Gas Emissions Inventory and 1990 Emissions Level Technical Support Document (CARB, 2009a) Wheat - Annex 3D. Agricultural Residue Burning (IPCC 3C1B) to the Technical Support Document for California's Greenhouse Gas Emissions Inventory and the 1990 Emissions Level (CARB, 2009b)

Air Emissions Inventory for the Greater Metropolitan Region of New South Wales 3. *Data Sources and Results*

2008 Calendar Year Biogenic and Geogenic Emissions: Results

3. Data Sources and Results

Table 3-6 presents emission factors for agricultural burning by crop type.

Emission source		Emission factors (kg/tonne)										
	NO _x	N ₂ O	NH ₃	SO_2	PM ₁₀	PM _{2.5}	VOC	CH ₄	СО	CO ₂	РАН	PCDF and PCDF
Grain Sorghum	2.25	0.150	0.608	0.300	8.85	8.45	2.55	1.00	38.49	1,207.18	0.1081	8.20×10^{-10}
Maize	1.65	0.100	0.560	0.200	5.70	5.45	3.30	1.75	35.44	1,309.65	0.0533	8.20×10^{-10}
Soybean	2.60	0.150	1.169	0.050	6.85	6.50	7.10	3.86	73.98	1,207.18	0.1081	8.20×10^{-10}
Barley	2.55	0.200	1.451	0.050	7.15	6.90	7.50	2.47	91.83	1,169.69	0.1417	8.20×10^{-10}
Canola	2.24	0.150	0.900	0.305	7.95	7.59	5.36	2.08	56.96	1,207.18	0.1081	8.20×10^{-10}
Lupin Angust	2.24	0.150	0.900	0.305	7.95	7.59	5.36	2.08	56.96	1,207.18	0.1081	8.20×10^{-10}
Oats	2.25	0.150	1.074	0.300	10.35	9.85	5.15	2.95	67.98	1,207.18	0.1081	8.20×10^{-10}
Triticale	2.24	0.150	0.900	0.305	7.95	7.59	5.36	2.08	56.96	1,207.18	0.1081	8.20×10^{-10}
Wheat	2.15	0.100	0.976	0.450	5.30	5.05	3.80	1.82	61.78	1,189.68	0.2183	$8.20 imes 10^{-10}$

Table 3-6: Agricultural burning emission factors

3.1.5 Spatial Distribution of Emissions

Table 3-7 summarises the data used for spatially allocating emissions from agricultural burning.

Tuble 57. Agricultural burning spatial data							
Emission source	Spatial data	Spatial data source					
Emissions of combustion products from open	GIS layer for	- Land Use of Australia, Version 3 -					
burning of agricultural residues	crop area	1996/1997 (BRS , 2006)					

Table 3-7: Agricultural burning spatial data

Emissions from agricultural burning have been spatially distributed according to the proportion of cropping area in each 1 km by 1 km grid cell (BRS, 2006). The proportion of cropping area by LGA and region is presented in Table 3-8 and shown in Figure 3-1.

	2008 proportion of cropping area (%)						
LUA	Newcastle	Non Urban	Sydney	Grand Total			
Blue Mountains	-	-	1.39	1.39			
Camden	-	-	1.73	1.73			
Cessnock	1.42	1.03	-	2.45			
Dungog	-	1.76	-	1.76			
Gosford	-	-	9.31 × 10-2	9.31 × 10-2			
Goulburn Mulwaree	-	0.25	-	0.25			
Hawkesbury	-	0.70	2.78	3.48			
Hornsby	-	-	0.26	0.26			
Kiama	-	0.34	-	0.34			
Lithgow	-	28.04	-	28.04			
Maitland	0.11	1.30	-	1.41			
Mid-western Regional	-	3.87	-	3.87			
Muswellbrook	-	15.40	-	15.40			
N/A	4.45 × 10 ⁻³	-	-	$4.45\times10^{\text{-}3}$			
Newcastle	1.70 × 10 ⁻²	-	-	$1.70\times10^{\text{-}2}$			
Oberon	-	2.14	-	2.14			
Port Stephens	0.33	0.46	-	0.79			
Shellharbour	-	0.69	-	0.69			
Singleton	-	6.42	-	6.42			
Upper Hunter	-	4.11	-	4.11			
Upper Lachlan	-	12.91	-	12.91			
Wingecarribee	-	9.66	0.10	9.76			
Wollondilly	-	-	2.33	2.33			
Wyong	-	0.35	-	0.35			
Grand Total	1.88	89.43	8.68	100.00			

Table 3-8: Agricultural burning spatial distribution of cropping area by LGA and region

Figure 3-1: Agricultural burning spatial distribution of cropping area by LGA and region

Figure 3-2 shows the spatial distribution of agricultural burning emissions.

Air Emissions Inventory for the Greater Metropolitan Region of New South Wales 3. *Data Sources and Results*

Figure 3-2: Agricultural burning spatial distribution of emissions

3.1.6 Temporal Variation of Emissions

Table 3-9 summarises the data used to estimate the temporal variation in emissions from agricultural burning.

Emission source	Temporal data	Temporal data source
	Monthly: Crop harvest time from crop calendar	- Australia State Crop Calendars (USDA, 2003)
Emissions of combustion products from open burning of agricultural residues	Daily: Average working days Hourly: Average working hours	- Biogenic and Biomass Burning Emissions Inventory (EPAV, 2002)

Table 3-9: Agricultural burning temporal data

The monthly temporal variation in emissions from agricultural burning have been estimated from NSW crop calendar data (USDA, 2003), while the daily and hourly temporal variation in emissions have been estimated from generic temporal profiles (EPAV, 2002).

Since open burning of agricultural residues occurs at crop harvesting, agricultural burning emissions have been allocated to the harvest months for each field crop. The harvest period for each field crop is presented in Table 3-10 and shown in Figure 3-3 for selected field crops.

Crop type	Harvest period						
Crop type	Start	End	Duration (month)				
Grain Sorghum	March	June	4				
Maize	January	July	7				
Soybean	March	April	2				
Barley	October	December	3				
Canola	August	September	2				
Lupin Angust	August	September	2				
Oats	October	December	3				
Triticale	August	September	2				
Wheat	November	January	3				

Table 3-10: Field crop harvest period in NSW

Air Emissions Inventory for the Greater Metropolitan Region of New South Wales 3. Data Sources and Results

Figure 3-3: Field crop harvest period in NSW for selected crops

Weekend day emissions are estimated to be 80% of weekday emissions, while hourly emissions are constant between 8 am and 8 pm. This is based on information obtained from Grains Council of Australia and Agforce Queensland (EPAV, 2002).

Hourly temporal variation profiles are presented in Table 3-11 and shown in Figure 3-4.

Hour	Week day and weekend proportion (%)	Hour	Week day and weekend proportion (%)
1	-	13	8.33
2	-	14	8.33
3	-	15	8.33
4	-	16	8.33
5	-	17	8.33
6	-	18	8.33
7	-	19	8.33
8	-	20	8.33
9	8.33	21	-
10	8.33	22	-
11	8.33	23	-
12	8.33	24	-

Table 3-11: Agricultural burning hourly temporal profile

Figure 3-4: Agricultural burning hourly temporal profile

Daily temporal variation profiles are presented in Table 3-12 and shown in Figure 3-5.

Day	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday	Sunday
Proportion (%)	15.15	15.15	15.15	15.15	15.15	12.12	12.12

Table 3-12: Agricultural burning daily temporal profile

Air Emissions Inventory for the Greater Metropolitan Region of New South Wales 3. Data Sources and Results

Figure 3-5: Agricultural burning daily temporal profile

Monthly temporal variation profiles are presented in Table 3-13 and shown in Figure 3-6.

Month		Crop type											
	Barley	Canola	Grain Sorghum	Lupin Angust	Maize	Oats	Soybean	Triticale	Wheat				
January	-	-	-	-	14.29	-	-	-	33.33				
February	-	-	-	-	14.29	-	-	-	-				
March	-	-	25.00	-	14.29	-	50.00	-	-				
April	-	-	25.00	-	14.29	-	50.00	-	-				
May	-	-	25.00	-	14.29	-	-	-	-				
June	-	-	25.00	-	14.29	-	-	-	-				
July	-	-	-	-	14.29	-	-	-	-				
August	-	50.00	-	50.00	-	-	-	50.00	-				
September	-	50.00	-	50.00	-	-	-	50.00	-				
October	33.33	-	-	-	-	33.33	-	-	-				
November	33.33	-	-	-	-	33.33	-	-	33.33				
December	33.33	-	-	-	-	33.33	-	-	33.33				
Grand Total	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00				

T-1-1- 2	1 1 2.	A mark and I have			a 1	Lama a anal	the second se
rable 5)-1.00	Agricultur	ai burn	ing m	onthiv	temporal	profile
					<i>j</i>	ren porter	Prome

Figure 3-6: Agricultural burning monthly temporal profile

3.1.7 *Emission Estimates*

Table 3-14 presents annual emissions of selected substances from agricultural burning by activity.

Activity	Substance	Emissions (kg/year)				
	Substance	Newcastle	Non Urban	Sydney	GMR	
	1,3-BUTADIENE	5.21	247	24	277	
	CARBON MONOXIDE	6,128	290,886	28,238	325,252	
	LEAD & COMPOUNDS	9.62 × 10 ⁻³	0.46	$4.43 imes 10^{-2}$	0.51	
	OXIDES OF NITROGEN	218	10,351	1,005	11,574	
	PARTICULATE MATTER ≤ 10 µm	789	37,439	3,634	41,862	
Agricultural Burning	PARTICULATE MATTER ≤ 2.5 µm	752	35,676	3,463	39,891	
	POLYCYCLIC AROMATIC HYDROCARBONS	14	656	64	733	
	SULFUR DIOXIDE	34	1,599	155	1,788	
	TOTAL SUSPENDED PARTICULATE	802	38,058	3,694	42,554	
	TOTAL VOLATILE ORGANIC COMPOUNDS	456	21,656	2,102	24,214	

Table 3-14	Agricultural	hurning	emissions	by activity	
1 abic 5-14.	Agricultural	Juining	chilissions	by activity	

Table 3-15 presents annual emissions of selected substances from agricultural burning by source type.

Source type	Substance	Emissions (kg/year)				
Source type	Substance	Newcastle	Non Urban	Sydney	GMR	
	1,3-BUTADIENE	0.75	36	3.46	40	
	CARBON MONOXIDE	711	33,732	3,274	37,717	
	LEAD & COMPOUNDS	1.37×10^{-3}	6.52 × 10 ⁻²	6.33 × 10-3	$7.29 imes 10^{-2}$	
	OXIDES OF NITROGEN	33	1,558	151	1,742	
	PARTICULATE MATTER ≤ 10 µm	113	5,350	519	5,982	
Summer Crop	PARTICULATE MATTER ≤ 2.5 µm	108	5,113	496	5,717	
Cummer Crop	POLYCYCLIC AROMATIC HYDROCARBONS	1.09	52	5.04	58	
	SULFUR DIOXIDE	3.84	182	18	204	
	TOTAL SUSPENDED PARTICULATE	114	5,432	527	6,073	
	TOTAL VOLATILE ORGANIC COMPOUNDS	66	3,120	303	3,488	
	1,3-BUTADIENE	4.46	212	21	237	
	CARBON MONOXIDE	5,417	257,154	24,963	287,535	
	LEAD & COMPOUNDS	8.25×10^{-3}	0.39	$3.80 imes 10^{-2}$	0.44	
	OXIDES OF NITROGEN	185	8,793	854	9,832	
	PARTICULATE MATTER ≤ 10 µm	676	32,089	3,115	35,880	
Winter Crop	PARTICULATE MATTER ≤ 2.5 µm	644	30,563	2,967	34,173	
white crop	POLYCYCLIC AROMATIC HYDROCARBONS	13	604	59	675	
	SULFUR DIOXIDE	30	1,417	138	1,585	
	TOTAL SUSPENDED PARTICULATE	687	32,626	3,167	36,481	
	TOTAL VOLATILE ORGANIC COMPOUNDS	390	18,536	1,799	20,726	

Table 3-15: Agricultural burning emissions by source type

3.2 Bushfires and Prescribed Burning

3.2.1 Emission Source Description

The biogenic and geogenic air emissions inventory includes emissions of combustion products from bushfires and prescribed burning. Bushfires are large-scale events where a variety of vegetation is burnt as a result of natural (e.g. lightning strike) or human (e.g. arson) activity. Prescribed burning or hazard reduction burning is a planned vegetation management fire that is conducted during favourable weather conditions.

To estimate emissions from these sources, the following have been considered:

> On-Park DECCW and off-park RFS wildfire data

On-park (DECCW, 2009a) and off-park (RFS, 2009a) bushfires activity data for the 2008 calendar year has been obtained for NSW. The bushfires activity data includes: ignition date; local government area (LGA); area burned; and location (i.e. easting and northing coordinates).

> On-Park DECCW and off-park RFS BRIMS prescribed burn data

On-park (DECCW, 2009b) and off-park (RFS, 2009b) prescribed burning activity data for the 2008 calendar year has been obtained for NSW. The bushfire activity data includes: ignition date; local government area (LGA); area burned; and location (i.e. easting and northing coordinates).

> Fire type

The inventory includes emissions of combustion products from:

- Bushfires; and
- Prescribed burning.

3.2.2 Emission Estimation Methodology

Table 3-16 summarises the emission estimation methodologies used for bushfires and prescribed burning.

Emission source	Emission estimation methodology source
Emissions of combustion products	- Area-Wide Source Methodologies, Section 9.3 Wildfires (CARB, 2004)
from hugh fires	- Australian Methodology for the Estimation of Greenhouse Gas Emissions and
from businities	Sinks 2006, Land Use, Land Use Change and Forestry (DCC, 2008)
	- Area-Wide Source Methodologies, Section 7.16 Forest Management (CARB,
Emissions of combustion products	2006)
from prescribed burning	- Australian Methodology for the Estimation of Greenhouse Gas Emissions and
	Sinks 2006, Land Use, Land Use Change and Forestry (DCC, 2008)

Table 3-16: Bushfires and prescribed burning emission estimation methodologies

Emissions of combustion products from bushfires and prescribed burning have been estimated using fuel consumption based emission factors combined with activity rates. Activity rates include fire type 36

and area burned (DECCW, 2009a; DECCW, 2009b; RFS, 2009a; and RFS, 2009b). Emissions have been determined using Equation 3 (CARB, 2004; CARB, 2006; and DCC, 2008):

$$\mathbf{E}_{i,j} = \mathbf{A}_j \times \mathbf{FL}_j \times \mathbf{Z}_j \times \mathbf{EF}_{i,j}$$
Equation 3

where:			
E _{i,j}	=	Emissions of substance i from fire type j	(kg/year)
Aj	=	Annual area burned by fire type j	(ha/year)
FL_j	=	Fuel loading for fire type j (Table 3-17) (Section 5V, Table 3 and	(tonne dry
		Table 4; DCC, 2008)	vegetation
			burned/ha
			vegetation)
Z_j	=	Vegetation burning efficiency for fire type j (Table 3-17) (Section	(kg vegetation
		5V, Table 5; DCC, 2008)	burned/kg
			vegetation)
EF _{i,j}	=	Emission factor for substance i and fire type j	(kg/tonne)
i	=	Substance (either "criteria pollutants", "speciated NO_x ", "speciated	(-)
		VOC", "organic air toxics", "metal air toxics", "PAH", "PCDD and	
		PCDF", "ammonia" or "greenhouse gases")	
j	=	Fire type (either "bushfires" or "prescribed burning")	(-)

Table 3-17 presents fuel loads and burning efficiencies used to estimate emissions of combustion products from bushfires and prescribed burning (DCC, 2008).

Table 3-17: Fuel loads and burning efficiencies for bushfires and	prescribed	burning
---	------------	---------

Fire type	FL (tonne dry vegetation burned/ha vegetation)	Z (kg vegetation burned/kg vegetation)
Bushfires	36.4	0.72
Prescribed burning	18.2	0.42

3.2.3 Activity Data

Table 3-18 summarises the activity data used for bushfires and prescribed burning.

Activity data	Activity data source
Bushfire area (ba)	- On-Park Wildfires 2008 Calendar Year (DECCW, 2009a)
Dustille alea (lia)	- Off-Park Wildfires 2008 Calendar Year (RFS, 2009a)
Proscribed hum area (ba)	- On-Park Prescribed Burns Entered into BRIMS for the 2008 Calendar Year (DECCW, 2009b)
Trescribed burn area (na)	- <i>Off-Park Prescribed Burns Entered into BRIMS for the 2008 Calendar Year</i> (RFS, 2009b)

Table 3-18: Bushfires and prescribed burning activity data

The areas burned by bushfires and prescribed burning in NSW have been obtained for the 2008 calendar year (DECCW, 2009a; DECCW, 2009b; RFS, 2009a; and RFS, 2009b). The local government area (LGA) and location (i.e. easting and northing coordinates) of each fire type have been used to estimate the vegetation area burned by bushfires and prescribed burning in the GMR, while fuel loading and vegetation burning efficiency by fire type (DCC, 2008) have been used to estimate the vegetation quantity burned by bushfires and prescribed burning in the GMR. Table 3-19 presents the vegetation area and quantity burned by bushfires and prescribed burning in the GMR.

Table 3-19: Bushfires and prescribed burning area and quantity in the GMR

Fire type	2008 statistics				
The type	Area (ha)	Quantity ⁵ (tonne)			
Bushfires	2,248	58,910			
Prescribed burning	28,640	218,923			
Grand Total	30,888	277,833			

3.2.4 Emission and Speciation Factors

Table 3-20 summarises the emission and speciation factors used for bushfires and prescribed burning.

Substance	Emission source	Emission and speciation factor source
Criteria pollutants:	Bushfires	 Area-Wide Source Methodologies, Section 9.3 Wildfires (CARB, 2004) Wildland Fire Emissions Estimation System, Version 4 (VESTRA, 2003)
CO, NO _x , PM _{2.5} , PM ₁₀ , SO ₂ & VOC	Prescribed burning	 Area-Wide Source Methodologies, Section 7.16 Forest Management (CARB, 2006) Wildland Fire Emissions Estimation System, Version 4 (VESTRA, 2003)
Criteria pollutants: TSP	Bushfires and Prescribed burning	 PMPROF 460 - California Emission Inventory and Reporting System (CEIDARS), Particulate Matter (PM) Speciation Profiles (CARB, 2008b)
Speciated NO _x	Bushfires and Prescribed burning	- Technology Transfer Network - Clearinghouse for Inventories & Emissions Factors (USEPA, 2003a)
Speciated VOC	Bushfires and Prescribed burning	- ORGPROF 307 - California Emission Inventory and Reporting System (CEIDARS), Organic Gas Speciation Profiles (CARB, 2005b)
Organic air toxics	Bushfires and	- ORGPROF 307 - California Emission Inventory and Reporting System

Table 3-20: Bushfires and prescribed burning emission and speciation factors

⁵ (Quantity_j = $A_j \times FL_j \times Z_j$). where: A_j = Annual area burned by fire type j (ha/year); FL_j = Fuel loading for fire type j (tonne dry vegetation burned/ha vegetation); and Z_j = Vegetation burning efficiency for fire type j (kg vegetation burned/kg vegetation); and j = Fire type (either "bushfires" or "prescribed burning") (DCC, 2008).

Air Emissions Inventory for the Greater Metropolitan Region of New South Wales 3. *Data Sources and Results*

Substance	Emission source	Emission and speciation factor source
	Prescribed burning	(CEIDARS), Organic Gas Speciation Profiles (CARB, 2005b)
Metal air toxics	Bushfires and Prescribed burning	 PMPROF 460 - California Emission Inventory and Reporting System (CEIDARS), Particulate Matter (PM) Speciation Profiles (CARB, 2007)
Polycyclic aromatic hydrocarbons: PAH	Bushfires and Prescribed burning	 Average of Douglas Fir Slash and Ponderosa Pine Slash - Atmospheric Pollutant Emissions Factors from Open Burning of Agricultural and Forest Biomass by Wind Tunnel Simulations Volumes 1 and 2 (CARB, 1996a; and CARB, 1996b)
Polychlorinated dibenzo-p-dioxins and	Bushfires	 Wildfires – forest fuel - Australian Inventory of Dioxin Emissions 2004, National Dioxins Program Technical Report No. 3 (Bawden et. al., 2004)
Polychlorinated dibenzofurans: PCDD and PCDF	Prescribed burning	 Prescribed burning – forest fuel - Australian Inventory of Dioxin Emissions 2004, National Dioxins Program Technical Report No. 3 (Bawden et. al., 2004)
	Bushfires	 Area-Wide Source Methodologies, Section 9.3 Wildfires (CARB, 2004) Wildland Fire Emissions Estimation System, Version 4 (VESTRA, 2003)
Ammonia	Prescribed burning	 Area-Wide Source Methodologies, Section 7.16 Forest Management (CARB, 2006) Wildland Fire Emissions Estimation System, Version 4 (VESTRA, 2003)
Greenhouse gases:	Bushfires	 Area-Wide Source Methodologies, Section 9.3 Wildfires (CARB, 2004) Wildland Fire Emissions Estimation System, Version 4 (VESTRA, 2003)
CH_4 , CO_2 and N_2O	Prescribed burning	 Area-Wide Source Methodologies, Section 7.16 Forest Management (CARB, 2006) Wildland Fire Emissions Estimation System, Version 4 (VESTRA, 2003)

Table 3-21 presents emission factors for bushfires and prescribed burning.

	Emission factors (kg/tonne)											
Emission source	NO _x	N ₂ O	NH3	SO_2	PM ₁₀	PM _{2.5}	VOC	CH_4	СО	CO ₂	РАН	PCDF and PCDF
Bushfires	3.68	0.217	1.246	1.134	12.55	10.65	8.72	4.98	124.57	1,557.64	0.0298	$4.40\times10^{\text{-}10}$
Prescribed burning	3.68	0.217	1.246	1.134	12.55	10.65	8.72	4.98	124.57	1,557.64	0.0298	8.50 × 10 ⁻¹⁰

Table 3-21: Bushfires and prescribed burning emission factors

3.2.5 Spatial Distribution of Emissions

Table 3-22 summarises the data used for spatially allocating emissions from bushfires and prescribed burning.

Emission source	Spatial data	Spatial data source
Emissions of combustion products from bushfires	Bushfire location (latitude and longitude)	 On-Park Wildfires 2008 Calendar Year (DECCW, 2009a) Off-Park Wildfires 2008 Calendar Year (RFS, 2009a)
Emissions of combustion products from prescribed burning	Prescribed burn location (latitude and longitude)	 On-Park Prescribed Burns Entered into BRIMS for the 2008 Calendar Year (DECCW, 2009b) Off-Park Prescribed Burns Entered into BRIMS for the 2008 Calendar Year (RFS, 2009b)

Table 3-22: Bushfires and prescribed burning spatial data

Emissions from bushfires and prescribed burning have been spatially distributed according to the area burned at each fire location (DECCW, 2009a; DECCW, 2009b; RFS, 2009a; and RFS, 2009b). The latitude and longitude (i.e. geographical coordinates) have been converted to MGA easting and northing in km (i.e. gridded coordinates) using Redfearn's formula (ICSM, 2006) and then assigned to each 1 km by 1 km grid cell. The bushfire area by LGA and region is presented in Table 3-23 and shown in Figure 3-7.

ICA	2008 bushfire area (ha)								
LUA	Newcastle	Non Urban	Sydney	Wollongong	Grand Total				
Port Stephens	-	676.00	-	-	676.00				
Wyong	-	629.80	-	-	629.80				
Great Lakes	-	320.00	-	-	320.00				
Lithgow	-	125.00	-	-	125.00				
Wingecarribee	-	111.30	-	-	111.30				
Wollondilly	-	10.50	92.00	-	102.50				
Cessnock	-	89.30	-	-	89.30				
Gosford	-	-	75.01	-	75.01				
Penrith	-	-	40.00	-	40.00				
Hawkesbury	-	10.00	19.25	-	29.25				
Newcastle	23.00	-	-	-	23.00				
Blue Mountains	-	4.00	2.50	-	6.50				
Campbelltown	-	-	6.00	-	6.00				
Liverpool	-	-	6.00	-	6.00				
Ku-ring-gai	-	-	3.00	-	3.00				
Camden	-	-	2.00	-	2.00				
Wollongong	-	-	-	2.00	2.00				
Sutherland	-	-	1.00	-	1.00				
Ryde	-	-	0.13	-	0.13				
Grand Total	23.00	1,975.90	246.89	2.00	2,247.79				

Table 3-23: Bushfires spatial distribution of area burned by LGA and region

Figure 3-7: Bushfires spatial distribution of area burned by LGA and region

The prescribed burning area by LGA and region is presented in Table 3-24 and shown in Figure 3-8.

LGA	2008 prescribed burning area (ha)					
	Newcastle	Non Urban	Sydney	Wollongong	Grand Total	
Lithgow	-	6,770.86	-	-	6,770.86	
Muswellbrook	-	5,068.01	-	-	5,068.01	
Hawkesbury	-	4,342.70	122.08	-	4,464.78	
Blue Mountains	-	-	3,697.62	-	3,697.62	
Oberon	-	3,138.58	-	-	3,138.58	
Wingecarribee	-	1,147.89	-	626.60	1,774.49	
Upper Hunter	-	1,046.83	-	-	1,046.83	
Bathurst Regional	-	604.12	-	-	604.12	
Gosford	-	361.73	133.24	-	494.97	
Warringah	-	-	378.43	-	378.43	
Singleton	-	251.00	-	-	251.00	
Cessnock	207.83	42.54	-	-	250.37	
Wollondilly	-	-	166.95	-	166.95	
Wyong	-	105.43	-	-	105.43	
Baulkham Hills	-	-	92.22	-	92.22	
Penrith	-	-	85.43	-	85.43	
Hornsby	-	-	76.91	-	76.91	
Campbelltown	-	-	54.22	-	54.22	
Ku-ring-gai	-	-	29.50	-	29.50	

Table 3-24: Prescribed burning spatial distribution of area	burned by LGA	and region

2008 Calendar Year Biogenic and Geogenic Emissions: Results 3. Data Sources and Results

LGA	2008 prescribed burning area (ha)					
	Newcastle	Non Urban	Sydney	Wollongong	Grand Total	
Port Stephens	23.43	3.97	-	-	27.40	
Sutherland	-	-	21.33	-	21.33	
Blacktown	-	-	15.69	-	15.69	
Lake Macquarie	-	14.59	-	-	14.59	
Camden	-	-	4.42	-	4.42	
Wollongong	-	-	2.78	-	2.78	
Willoughby	-	-	0.91	-	0.91	
Pittwater	-	-	0.85	-	0.85	
Parramatta	-	-	0.81	-	0.81	
Liverpool	-	-	0.32	-	0.32	
Grand Total	231.26	22,898.24	4,883.69	626.60	28,639.80	

Figure 3-8: Prescribed burning spatial distribution of area burned by LGA and region

Figure 3-9 and Figure 3-10 show the spatial distribution of bushfires and prescribed burning emissions.
Air Emissions Inventory for the Greater Metropolitan Region of New South Wales 3. *Data Sources and Results*

Figure 3-9: Bushfires spatial distribution of emissions

Figure 3-10: Prescribed burning spatial distribution of emissions

3.2.6 Temporal Variation of Emissions

Table 3-25 summarises the data used to estimate the temporal variation in emissions from bushfires and prescribed burning.

Emission source	Temporal data	Temporal data source
Emissions of combustion products from bushfires	Monthly: Bushfire date Daily: Bushfire date	 On-Park Wildfires 2008 Calendar Year (DECCW, 2009a) Off-Park Wildfires 2008 Calendar Year (RFS, 2009a)
	Hourly: Generic bushfire profile	- Biogenic and Biomass Burning Emissions Inventory (EPAV, 2002)
	Monthly: Prescribed burn date	- On-Park Prescribed Burns Entered into BRIMS for the 2008 Calendar Year (DECCW, 2009b)
Emissions of combustion products from prescribed burning	Daily: Prescribed burn date	- Off-Park Prescribed Burns Entered into BRIMS for the 2008 Calendar Year (RFS, 2009b)
	Hourly: Generic prescribed burn profile	- Biogenic and Biomass Burning Emissions Inventory (EPAV, 2002)

Table 3-25: Bushfires and prescribed burning temporal data

The monthly and daily temporal variation in emissions from bushfires and prescribed burning have been estimated from NSW ignition date data (DECCW, 2009a; DECCW, 2009b; RFS, 2009a; and RFS, 2009b), while the hourly temporal variation in emissions have been estimated from generic temporal profiles (EPAV, 2002).

Hourly temporal variation profiles for bushfires are presented in Table 3-26 and shown in Figure 3-11.

Hour	Week day and weekend proportion (%)	Hour	Week day and weekend proportion (%)
1	4.00	13	3.97
2	3.88	14	4.29
3	3.71	15	4.51
4	3.58	16	5.01
5	3.45	17	5.28
6	3.45	18	5.36
7	3.41	19	5.31
8	3.39	20	5.13
9	3.55	21	4.78
10	3.53	22	4.63
11	3.55	23	4.41
12	3.71	24	4.09

Table 3-26: Bushfires hourly temporal profile

Figure 3-11: Bushfires hourly temporal profile

Hourly temporal variation profiles for prescribed burning are presented in Table 3-27 and shown in Figure 3-12.

Hour	Week day and weekend proportion (%)	Hour	Week day and weekend proportion (%)
1	1.88	13	5.35
2	1.79	14	5.96
3	1.76	15	3.70
4	1.73	16	3.07
5	1.70	17	2.84
6	1.64	18	2.65
7	1.57	19	2.49
8	1.53	20	2.41
9	1.46	21	2.31
10	1.43	22	2.21
11	1.41	23	2.12
12	1.40	24	2.02

Table 3-27: Prescribed burning hourly temporal profile

Figure 3-12: Prescribed burning hourly temporal profile

Figure 3-13: Bushfire area daily temporal variation in the GMR

Figure 3-14 shows the daily temporal variation in prescribed burning area in the GMR.

Figure 3-14: Prescribed burning area daily temporal variation in the GMR

The monthly temporal variation in bushfire area in the GMR is presented in Table 3-28 and shown in Figure 3-15.

Month	2008 bushfire area (ha)
January	849.00
February	6.50
March	-
April	-
May	-
June	3.00
July	6.00
August	3.50
September	321.30
October	104.00
November	43.63
December	910.86
Grand Total	2,247.79

Table 3-28: Bushfire area monthly temporal variation in the GMR

Figure 3-15: Bushfire area monthly temporal variation in the GMR

The monthly temporal variation in prescribed burning area in the GMR is presented in Table 3-29 and shown in Figure 3-16.

Month	2008 prescribed burning area (ha)
January	7.11
February	0.39
March	14,521.08
April	10,766.11
May	1,503.38
June	1.06
July	23.87
August	61.71
September	824.05
October	200.04
November	696.58
December	34.39
Grand Total	28,639.80

Table	3-29:	Prescribed	burning	area monthl	v tempor	al variation	in the	GMR
Tuble	J 2.	rescribed	Juilling	area monum	y tempor	ai variation	111 6110	

Figure 3-16: Prescribed burning area monthly temporal variation in the GMR

3.2.7 *Emission Estimates*

Table 3-30 presents annual emissions of selected substances from bushfires and prescribed burning by activity.

Activity	Substance	Emissions (kg/year)					
intivity	oubstate	Newcastle	Non Urban	Sydney	Wollongong	GMR	
	1,3-BUTADIENE	236	22,595	4,363	482	27,677	
	CARBON MONOXIDE	295,289	28,254,084	5,456,211	603,172	34,608,757	
	LEAD & COMPOUNDS	2.97	284	55	6.06	348	
	OXIDES OF NITROGEN	8,723	834,624	161,176	17,818	1,022,340	
Bushfires and Prescribed Burning	PARTICULATE MATTER ≤ 10 µm	29,742	2,845,817	549,562	60,753	3,485,874	
	PARTICULATE MATTER ≤ 2.5 μm	25,239	2,414,976	466,362	51,555	2,958,132	
	POLYCYCLIC AROMATIC HYDROCARBONS	71	6,752	1,304	144	8,271	
	SULFUR DIOXIDE	2,688	257,151	49,659	5,490	314,987	
	TOTAL SUSPENDED PARTICULATE	30,272	2,896,505	559,351	61,835	3,547,963	
	TOTAL VOLATILE ORGANIC COMPOUNDS	20,670	1,977,786	381,935	42,222	2,422,613	

Table 3-30: Bushfires and prescribed burning emissions by activity

Table 3-31 presents annual emissions of selected substances from bushfires and prescribed burning by source type.

	Culture and	Emissions (kg/year)					
Source type	Substance	Newcastle	Non Urban	Sydney	Wollongong	GMR	
	1,3-BUTADIENE	60	5,159	645	5.22	5,868	
	CARBON MONOXIDE	75,087	6,450,621	806,009	6,529	7,338,247	
	LEAD &	0.75	65	8.10	6.56 × 10 ⁻²	74	
	OXIDES OF NITROGEN	2,218	190,551	23,809	193	216,771	
	PARTICULATE MATTER ≤ 10 μm	7,563	649,721	81,183	658	739,125	
Bushfires	PARTICULATE MATTER ≤ 2.5 μm	6,418	551,357	68,892	558	627,226	
	POLYCYCLIC AROMATIC HYDROCARBONS	18	1,542	193	1.56	1,754	
	SULFUR DIOXIDE	683	58,709	7,336	59	66,788	
	TOTAL SUSPENDED PARTICULATE	7,698	661,294	82,629	669	752,290	
	TOTAL VOLATILE ORGANIC COMPOUNDS	5,256	451,543	56,421	457	513,677	
	1,3-BUTADIENE	176	17,436	3,719	477	21,808	
	CARBON MONOXIDE	220,202	21,803,463	4,650,202	596,643	27,270,510	
	LEAD & COMPOUNDS	2.21	219	47	5.99	274	
	OXIDES OF NITROGEN	6,505	644,073	137,367	17,625	805,569	
	PARTICULATE MATTER ≤ 10 μm	22,179	2,196,095	468,379	60,095	2,746,749	
Prescribed Burning	PARTICULATE MATTER ≤ 2.5 μm	18,821	1,863,619	397,469	50,997	2,330,906	
	POLYCYCLIC AROMATIC HYDROCARBONS	53	5,211	1,111	143	6,517	
	SULFUR DIOXIDE	2,004	198,441	42,323	5,430	248,199	
	TOTAL SUSPENDED PARTICULATE	22,574	2,235,211	476,722	61,166	2,795,673	
	TOTAL VOLATILE ORGANIC COMPOUNDS	15,414	1,526,242	325,514	41,765	1,908,936	

Table 3-31: Bushfires and prescribed burning emissions by source type

3.3 Fugitive/Windborne from Agricultural Lands and Unpaved Roads

3.3.1 Emission Source Description

The biogenic and geogenic air emissions inventory includes emissions of fugitive windborne particulate matter from agricultural lands and unpaved roads.

To estimate emissions from these sources, the following have been considered:

> Soil erosion

Soil erosion occurs when wind forces overcome the gravitational and cohesive forces of soil particles on the ground surface. The wind transports these soil particles in three ways, depending on their size:

- *Creep* occurs when soil particles greater than 0.5 mm diameter are too heavy to be lifted, so they are rolled along the ground surface by wind drag or moved by collision with other soil particles;
- Saltation is the main process of suspending soil particles in the range 0.1 to 0.5 mm diameter, where they are lifted then fall back to the ground while moving in a hopping or bouncing fashion. These particles cause abrasion of the soil surface where they break into smaller particles in a process called attrition; and
- *Suspension* takes place when soil particles less than 0.1 mm diameter are ejected into the air by saltation and remain suspended.

Figure 3-17 shows the Aeolian processes involved in wind erosion of soil particles (OEH, 2011).

> NSW grains report

The *NSW Grains Report* contains crop production information highlights, seasonal conditions and outlook and information on specific summer and winter crops. The area of summer and winter field crops grown in each NSW agronomy district have been obtained for the 2008 calendar year (NSW DPI, 2008) and used to estimate the area of agricultural lands in the GMR.

> Unsealed roads

Unsealed roads GIS data has been used to estimate the total length of unpaved roads in the GMR (DEC, 2004a), while the average unpaved road width (NTC, 2007) has been used to estimate the area of unpaved roads in the GMR.

> Digital atlas of Australian soils

Soil type GIS data has been used to estimate the soil erodibility of agricultural lands and unpaved roads in the GMR (BRS, 1991).

> Meteorological data

Hourly average meteorological data including temperature, precipitation and wind speed have been generated for the GMR at 2 km by 2 km grid cells with *TAPM* (Hurley, 2005) and used to estimate Thornthwaite's precipitation-evaporation index (Thornthwaite, 1931) and the climatic factor (CARB, 1997a; and CARB, 1997b) at 1 km by 1 km grid cells.

> Source type

The inventory includes emissions of fugitive windborne particulate matter from agricultural lands and unpaved roads as follows:

Summer crops

- Grain Sorghum;
- *Maize; and*
- o Soybean.

Winter crops

- o Barley;
- o Canola.
- Lupin Angust;
- o Oats;
- Triticale; and
- 0 Wheat.

Unpaved roads

3.3.2 Emission Estimation Methodology

Table 3-32 summarises the emission estimation methodologies used for fugitive windborne particulate matter from agricultural lands and unpaved roads.

Table 3-32: Agricultural	lands and unpay	ved roads emission	estimation	methodologies
Table 5-52. Agricultural	lanus and unpa	veu roaus emission	commanon	memouologies

Emission source	Emission estimation methodology source
Fugitive windborne particulate matter	- Area-Wide Source Methodologies, Section 7.12 Windblown Dust -
from agricultural lands	Agricultural Lands (CARB, 1997a)
Fugitive windborne particulate matter	- Area-Wide Source Methodologies, Section 7.13 Windblown Dust -
from unpaved roads	Unpaved Roads (CARB, 1997b)

Emissions of fugitive windborne particulate matter from agricultural lands and unpaved roads have been estimated using the wind erosion equation (WEQ) combined with the area of agricultural lands (NSW DPI, 2008) and unpaved roads (DEC, 2004a; and NTC, 2007), soil erodibility (BRS, 1991) and meteorological data (Hurley, 2005) within Equation 4 (CARB, 1997a; and CARB, 1997b):

$\mathbf{E}_{i,j} = \mathbf{A}_i \times \mathbf{I}_j \times \mathbf{K}_i \times \mathbf{C} \times \mathbf{L}_i \times \mathbf{V}_{i,k} \times \mathbf{H}_i \times 1000$	Equation 4
---	------------

where:			
E _{i,j}	=	Emissions of TSP from source type i and soil type j	(kg/year)
A_i	=	Portion of total wind erosion losses that would be measured as TSP	(-)
		for source type i – 0.025 and 0.038 for agricultural lands and unpaved	
		roads, respectively (CARB, 1997a; and CARB, 1997b)	
\mathbf{I}_{j}	=	Soil erodibility for soil type j (Table 3-33) (Table A-1; USEPA, 1974)	(tonne/ha/year)
Ki	=	Surface roughness factor for source type i (Table 3-34) (Table A-2;	(-)
		USEPA, 1974)	
С	=	Climatic factor (Equation 5)	(-)
L'_i	=	Unsheltered field width factor for source type i (Table 3-34) (Equation	(-)
		7)	
$V'_{i,k}$	=	Vegetative cover factor for source type i and month k (Equation 8 and	
		Equation 9)	
H_i	=	Area of source type i	(ha)
i	=	Source type (either "grain sorghum", "maize", "soybean", "barley",	(-)
		"canola", "lupin angust", "oats", "triticale", "wheat" or "unpaved	
		roads")	
j	=	Soil type (either "brown duplex", "cracking clay", "gley duplex",	(-)
		"lake", "loams", "massive earths", "red duplex", "sands" or "yellow	
		duplex")	
k	=	Month (either "January", "February", "March", "April", "May",	(-)
		"June", "July", "August", "September", "October", "November" or	
		"December")	
1000	=	Conversion factor	(kg/tonne)

Table 3-33 presents soil erodibility by soil type used to estimates emissions of fugitive windborne particulate matter from agricultural lands and unpaved roads (USEPA, 1974).

Table 3-33: Soil erodibility by soil type

Soil type	Erodibility		
Join type	Ton/acre/year	tonne/ha/year	
Brown Duplex	86	193	
Cracking Clay	56	126	
Gley Duplex	86	193	
Lake	-	-	
Loams	56	126	
Massive Earths	38	85	
Red Duplex	86	193	
Sands	220	493	
Yellow Duplex	86	193	

The climatic factor has been estimated using annual average wind speed from *TAPM* (Hurley, 2005) and annual Thornthwaite's precipitation-evaporation index (Thornthwaite, 1931) from Equation 6 within Equation 5 (CARB, 1997a; and CARB, 1997b):

$$\mathbf{C} = \mathbf{0.0828} \times \left(\mathbf{WS}^3 / \mathbf{PE}^2 \right)$$

where:			
С	=	Climatic factor	(-)
WS	=	Annual average wind speed	(km/h)
PE	=	Annual Thornthwaite's precipitation-evaporation index (Equation 6)	(-)

Thornthwaite's precipitation-evaporation index (Thornthwaite, 1931) has been estimated using monthly average precipitation and temperature from *TAPM* (Hurley, 2005) within Equation 6 (CARB, 1997a; and CARB, 1997b):

$PE = \sum_{i=1}^{12} PE_i = \sum_{i=1}^{12} \left\{ 1.64 \times \right.$	$\left(\frac{P_{i}}{T_{i}+12.2}\right)^{10/9}$	Equation 6
---	--	------------

where:			
PE	=	Annual Thornthwaite's precipitation-evaporation index	(-)
PE_i	=	Thornthwaite's precipitation-evaporation index for month i	(-)
$\mathbf{P}_{\mathbf{i}}$	=	Average monthly precipitation (where all values less than 12.5 mm	(mm)
		have been assigned the value of 12.5 mm)	
T_i	=	Average monthly temperature	(°C)
i	=	Month (either "January", "February", "March", "April", "May",	(-)
		"June", "July", "August", "September", "October", "November" or	
		"December")	

The unsheltered field width factor for agricultural lands has been estimated using the unsheltered field width and the product of soil erodibility and surface roughness within Equation 7 (USEPA, 1974):

Equation 5

$-\log_{10}(1-L_i) = 1.8467 \times 10^{-7} (I_i K_i)^2 L_i$	$_{i} = 6.1213 \times 10^{-6} (I_{i}K_{i})L_{i} + 6.8760 \times 10^{-1}$	${}^{4}L_{i} + 3.3161 \times 10^{-3} (I_{i}K_{i})$)+ 0.0336 Equa	tion 7
		1 () 1		

where:			
L'i	=	Unsheltered field width factor for source type i (Table 3-34)	(-)
\mathbf{I}_{j}	=	Soil erodibility for soil type j (Table 3-33) (Table A-1; USEPA, 1974)	(tonne/ha/year)
Ki	=	Surface roughness factor for source type i (Table 3-34) (Table A-2;	(-)
		USEPA, 1974)	
Li	=	Unsheltered field width for source type i (Table 3-34) (Table A-2;	(m)
		USEPA, 1974)	
i	=	Source type (either "grain sorghum", "maize", "soybean", "barley",	(-)
		"canola", "lupin angust", "oats", "triticale", "wheat" or "unpaved	
		roads")	
j	=	Soil type (either "brown duplex", "cracking clay", "gley duplex",	(-)
		"lake", "loams", "massive earths", "red duplex", "sands" or "yellow	
		duplex")	

Table 3-34 presents surface roughness factor, unsheltered field width and unsheltered field width factor by source type used to estimates emissions of fugitive windborne particulate matter from agricultural lands and unpaved roads (CARB, 1997a; CARB, 1997b; NTC, 2007; and USEPA, 1974).

Table 3-34: Surface roughness factor, unsheltered field width and unsheltered field width factor by
source type

Source type	K (surface roughness factor)	L (unsheltered field width) (ft)	L (unsheltered field width) (m)	L' (unsheltered field width factor)
Barley	0.6	2,000	610	0.9376
Canola	0.5	1,000	305	0.7926
Grain Sorghum	0.5	2,000	610	0.9066
Lupin Angust	0.5	1,000	305	0.7926
Maize	0.6	2,000	610	0.9376
Oats	0.8	2,000	610	0.9708
Soybean	0.6	2,000	610	0.9376
Triticale	0.6	2,000	610	0.9376
Wheat	0.6	2,000	610	0.9376
Unpaved Road	1.0	25.86	7.88	0.3200

The vegetative cover factor for agricultural lands has been estimated using the crop canopy cover during the growing season within Equation 8 (CARB, 1997a):

$$V'_{i,k} = exp(-0.201 \times CC^{0.7366}_{k})$$

where:

 $V'_{i,k}$ = Vegetative cover factor for source type i and month k

(-)

Equation 8

Air Emissions Inventory for the Greater Metropolitan Region of New South Wales 3. Data Sources and Results

where:			
CC_k	=	Proportion of ground covered by crop canopy	(%)
i	=	Source type (either "grain sorghum", "maize", "soybean", "barley",	(-)
		"canola", "lupin angust", "oats", "triticale", "wheat" or "unpaved	
		roads")	
k	=	Month (either "January", "February", "March", "April", "May",	(-)
		"June", "July", "August", "September", "October", "November" or	
		"December")	

The vegetative cover factor for agricultural lands has been estimated using the postharvest soil cover during the harvest season within Equation 9 (CARB, 1997a):

$$V'_{i,k} = \exp(-0.0438 \times SC_k)$$
 Equation 9

where:			
V′ _{i,k}	=	Vegetative cover factor for source type i and month k	(-)
SC_k	=	Proportion of ground covered by vegetative debris	(%)
i	=	Source type (either "grain sorghum", "maize", "soybean", "barley",	(-)
		"canola", "lupin angust", "oats", "triticale", "wheat" or "unpaved	
		roads")	
k	=	Month (either "January", "February", "March", "April", "May",	(-)
		"June", "July", "August", "September", "October", "November" or	
		"December")	

3.3.3 Activity Data

Table 3-35 summarises the activity data used for fugitive windborne particulate matter from agricultural lands and unpaved roads.

Activity data	Activity data source
Crop area (ha) by NSW agronomy district	- NSW Grains Report 2008 (NSW DPI, 2008)
Unpaved road length (m)	- Unsealed Roads from the dtdb Cultural Lines Layer - Arc/Info Export Format (DEC, 2004a)
Unpaved road width (m)	- Performance Based Standards Scheme Network Classification Guidelines (NTC, 2007)
Soil erodibility (tonne/ha/year)	- Digital Atlas of Australian Soils (BRS , 1991)
Hourly meteorological data (temperature (K), precipitation (mm) and wind speed (m/s)) required to calculate the climatic factor	- The Air Pollution Model (TAPM) Version 3 (Hurley, 2005)

Table 3-35: Agricultural lands and unpaved roads activity data

The area of summer and winter field crops harvested in each NSW agronomy district (i.e. North West, Central West, South West, Tablelands and Coastal) have been obtained for the 2008 calendar year (NSW DPI, 2008). Since the Tablelands agronomy district forms part of the GMR, 50% of the harvest area from this region has been used to estimate the area of agricultural lands in the GMR. Unsealed

roads GIS data has been used to estimate the total length of unpaved roads in the GMR (DEC, 2004a), while the average unpaved road width (NTC, 2007) has been used to estimate the area of unpaved roads in the GMR. Table 3-36 presents the area of agricultural lands and unpaved roads in the GMR.

Source type		2008 area (ha)
	Grain Sorghum	80
	Maize	400
	Soybean	125
	Barley	175
Agricultural Lands ⁶	Canola	650
	Lupin Angust	500
	Oats	6,900
	Triticale	2,785
	Wheat	4,010
Agricultural Lands Total		15,625
Unpaved Roads Total ⁷		29,727
Grand Total		45,352

Table 3-36: Agricultural	lands and un	paved roads	area in the GMR

Soil erodibility is a function of soil particle diameter, which has been estimated for various soil types (USEPA, 1974). Soil type GIS data has been used to estimate the soil erodibility of agricultural lands and unpaved roads in the GMR (BRS, 1991). The proportion of land area covered by each soil type in each region is presented in Table 3-37 and shown in Figure 3-18.

Soil type	Proportion of soil type (%)								
John type	Newcastle	Non Urban	Sydney	Wollongong	Grand Total				
Brown Duplex	-	3.17×10^{-3}	-	-	3.17×10^{-3}				
Cracking Clay	-	0.30	-	-	0.30				
Gley Duplex	-	-	0.53	2.64 × 10 ⁻³	0.54				
Lake	-	$2.02\times10^{\text{-}2}$	4.76×10^{-2}	9.44 × 10 ⁻²	0.16				
Loams	0.49	7.85	0.68	$6.59\times10^{\text{-}2}$	9.09				
Massive Earths	6.57 × 10 ⁻²	41.82	9.12	1.61	52.61				
Red Duplex	-	5.71	4.17	-	9.88				
Sands	0.33	1.15	0.33	6.50 × 10 ⁻²	1.87				
Yellow Duplex	0.94	21.24	3.34	2.74×10^{-2}	25.54				
Grand Total	1.82	78.10	18.22	1.86	100.00				

Table 3-37: Area by soil type and region

⁶ Crop harvest in the GMR assumes 50% of crop harvest in the Tablelands agronomy district (NSW DPI, 2008).

⁷ The unpaved road length has been estimated to be 37,709 km (DEC, 2004a), while the average unpaved road width of 7.88 m (NTC, 2007) has been used to estimate the area of 29,727 ha.

Air Emissions Inventory for the Greater Metropolitan Region of New South Wales 3. Data Sources and Results

Figure 3-18: Area by soil type and region

Figure 3-19 shows the spatial distribution of soil type in the GMR.

Figure 3-19: Spatial distribution of soil type in the GMR

Hourly average meteorological data including temperature, precipitation and wind speed have been generated for the GMR at 2 km by 2 km grid cells with *TAPM* (Hurley, 2005) and used to estimate Thornthwaite's precipitation-evaporation index (Thornthwaite, 1931) and the climatic factor (CARB, 1997a; and CARB, 1997b) at 1 km by 1 km grid cells.

Monthly average temperature, precipitation, wind speed, Thornthwaite's precipitation-evaporation index (Thornthwaite, 1931) and the climatic factor (i.e. month-as-a-year and annual) in the GMR are presented in Table 3-38 and shown in Figure 3-20, Figure 3-21 and Figure 3-22.

		Monthly average meteorological data								
Month	Temperature (°C)		Precipitation (mm)		Wind speed (km/h)		Thornt precipitation inde	hwaite's n-evaporation x (PE)	Month-a climatio (C	s-a-year c factor) ⁸
January	24.	5	113	;	13.	1	6	5.8	0.17	775
February	23.	2	542)	12.	4	3	8.5	0.00)19
March	19.	2	268	;	10.8		20.5		0.0198	
April	14.	9	327		10.7		30.1		0.0029	
May	11.	1.9 336		, ,	11.8		33.5		0.00)54
June	9.7	7	74		12.8		6.8		0.0285	
July	8.3	3	66		12.7		6.5		0.04	1 73
August	9.0)	98		13.	8	1	0.2	0.02	274
September	11.	9	13		16.	5	1.3		0.57	712
October	15.	1	109)	13.	5	8	3.2	0.01	157
November	19.	8	159)	12.	7	1	0.9	0.02	205
December	24.	4	71		12.	9	3.7		0.08	819
Grand Total	Mean	16.0	Mean	181	Mean	12.8	Sum	176.9	Annual climatic factor Sum	0.0405

Table 3-38: Monthly average meteorological data in the GMR

⁸ When calculating the annual C factor, the monthly PE values have been summed for all of the months in the year. However, to calculate the month-as-a-year C factor, each month's PE has been multiplied by 12. Then each month's PE x 12 has been input into the C factor equation along with the mean monthly wind speed for that same month. The result is a C factor which would apply if the climate for that month were instead the year round climate. By then summing all of the monthly C factors for the year and then dividing each individual month by the sum, the month-as-a-year C factor has been normalised to 1. These normalised monthly numbers provide the climate based temporal profile. They have been multiplied by the annual WEQ results to produce monthly emissions (CARB, 1997a).

Figure 3-20: Monthly average temperature and precipitation in the GMR

Figure 3-21: Monthly average wind speed and Thornthwaite's precipitation-evaporation index in the GMR

Figure 3-22: Month-as-a-year climatic factor in the GMR

Annual average temperature, precipitation, wind speed, Thornthwaite's precipitation-evaporation index and the climatic factor by region are presented in Table 3-39, while the gridded annual average is shown in Figure 3-23, Figure 3-24, Figure 3-25, Figure 3-26 and Figure 3-27 for the GMR.

		Annual average meteorological data									
Region	Temperature (°C)	Precipitation (mm)	Wind speed (km/h)	Thornthwaite's precipitation-evaporation index (PE)	Annual climatic factor (C)						
Non Urban	15.7	203	13.3	202.1	0.0420						
Newcastle	18.6	75	10.7	56.1	0.0450						
Sydney	16.9	90	11.2	73.2	0.0374						
Wollongong	16.6	261	11.5	244.8	0.0042						
Grand Total	16.0	181	12.8	176.9	0.0405						

Table 3-39: An	nual average <mark>n</mark>	neteorological	data by region
	0	0	

Figure 3-23: Gridded annual average temperature

Air Emissions Inventory for the Greater Metropolitan Region of New South Wales 3. *Data Sources and Results*

Figure 3-24: Gridded annual average precipitation

Figure 3-25: Gridded annual average wind speed

Air Emissions Inventory for the Greater Metropolitan Region of New South Wales 3. Data Sources and Results

Figure 3-26: Gridded annual Thornthwaite's precipitation-evaporation index

2008 Calendar Year Biogenic and Geogenic Emissions: Results 3. Data Sources and Results

Figure 3-27: Gridded annual climatic factor

The monthly average crop canopy cover or postharvest soil cover by source type is presented in Table 3-40 and shown in Figure 3-28 and Figure 3-29 for summer and winter crops, respectively.

										-		
	Crop canopy cover or postharvest soil cover (%)9											
Month	Su	mmer cro	op			Winter	r crop			Unnavad		
	Grain Sorghum	Maize	Soybean	Barley	Canola	Lupin Angust	Oats	Triticale	Wheat	Roads		
January	50	67	75	5#	5#	5#	5#	100	100	-		
February	75	67	75	5#	5#	5#	5#	5#	5#	-		
March	88	67	100	5#	5#	5#	25	5#	5#	-		
April	100	88	100	5#	25	25	25	25	25	-		
May	100	88	5#	25	25	25	25	25	25	-		
June	100	100	5#	50	25	25	50	25	25	-		
July	5#	100	5#	50	100	100	75	25	25	-		
August	5#	5#	5#	75	100	100	75	50	50	-		
September	25	25	5#	75	5#	5#	75	75	75	-		
October	25	25	5#	88	5#	5#	88	75	75	-		
November	50	50	25	100	5#	5#	100	88	88	-		
December	50	50	25	100	5#	5#	100	88	88	-		

Figure 3-28: Crop canopy cover or postharvest soil cover for summer crop

⁹ These values are monthly average crop canopy cover, except those values marked with a hash (#) which are monthly average postharvest soil cover (CARB, 1997a).

Figure 3-29: Crop canopy cover or postharvest soil cover for winter crop

Figure 3-30 shows the crop harvest area weighted crop canopy cover or postharvest soil cover for summer and winter crops.

The monthly average vegetative cover factor by source type is presented in Table 3-41 and shown in Figure 3-31 and Figure 3-32 for summer and winter crops, respectively.

	Vegetative cover factor ¹⁰										
Month	Su	Summer crop			Winter crop						
	Grain Sorghum	Maize	Soybean	Barley	Canola	Lupin Angust	Oats	Triticale	Wheat	Roads	
January	0.0277	0.0119	0.0079	0.8033	0.8033	0.8033	0.8033	0.0025	0.0025	1.0000	
February	0.0079	0.0119	0.0079	0.8033	0.8033	0.8033	0.8033	0.8033	0.8033	1.0000	
March	0.0044	0.0119	0.0025	0.8033	0.8033	0.8033	0.1162	0.8033	0.8033	1.0000	
April	0.0025	0.0044	0.0025	0.8033	0.1162	0.1162	0.1162	0.1162	0.1162	1.0000	
May	0.0025	0.0044	0.8033	0.1162	0.1162	0.1162	0.1162	0.1162	0.1162	1.0000	
June	0.0025	0.0025	0.8033	0.0277	0.1162	0.1162	0.0277	0.1162	0.1162	1.0000	
July	0.8033	0.0025	0.8033	0.0277	0.0025	0.0025	0.0079	0.1162	0.1162	1.0000	
August	0.8033	0.8033	0.8033	0.0079	0.0025	0.0025	0.0079	0.0277	0.0277	1.0000	
September	0.1162	0.1162	0.8033	0.0079	0.8033	0.8033	0.0079	0.0079	0.0079	1.0000	
October	0.1162	0.1162	0.8033	0.0044	0.8033	0.8033	0.0044	0.0079	0.0079	1.0000	
November	0.0277	0.0277	0.1162	0.0025	0.8033	0.8033	0.0025	0.0044	0.0044	1.0000	
December	0.0277	0.0277	0.1162	0.0025	0.8033	0.8033	0.0025	0.0044	0.0044	1.0000	

Table 3-41: Monthly average vegetative cover factor by source type

¹⁰ The monthly average vegetative factor has been calculated from the data in Table 3-40 using Equation 8 for crop canopy cover and Equation 9 for postharvest soil cover (CARB, 1997a).

Figure 3-32: Vegetative cover factor for winter crop

Figure 3-33 shows the crop harvest area weighted vegetative cover factor for summer and winter crops.

Air Emissions Inventory for the Greater Metropolitan Region of New South Wales 3. *Data Sources and Results*

Figure 3-33: Vegetative cover factor for summer crop and winter crop

3.3.4 *Emission and Speciation Factors*

Table 3-42 summarises the emission and speciation factors used for fugitive windborne particulate matter from agricultural lands and unpaved roads.

Substance	Emission source	Emission and speciation factor source
Criteria pollutants: PM _{2.5} and PM ₁₀		- PMPROF 418 - California Emission Inventory and Reporting System (CEIDARS), Particulate Matter (PM) Speciation Profiles (CARB, 2008b)
Criteria pollutants: TSP	Fugitive windborne particulate matter from agricultural lands	- Area-Wide Source Methodologies, Section 7.12 Windblown Dust - Agricultural Lands (CARB, 1997a)
Metal air toxics		 PMPROF 418 - California Emission Inventory and Reporting System (CEIDARS), Particulate Matter (PM) Speciation Profiles (CARB, 2007)
Criteria pollutants: PM _{2.5} and PM ₁₀		- PMPROF 416 - California Emission Inventory and Reporting System (CEIDARS), Particulate Matter (PM) Speciation Profiles (CARB, 2008b)
Criteria pollutants: TSP	Fugitive windborne particulate matter from unpaved roads	- Area-Wide Source Methodologies, Section 7.13 Windblown Dust - Unpaved Roads (CARB, 1997b)
Metal air toxics		 PMPROF 416 - California Emission Inventory and Reporting System (CEIDARS), Particulate Matter (PM) Speciation Profiles (CARB, 2007)

Table 3-42: Agricultural lands and unpaved roads emission and speciation factors

Table 3-43 presents emission factors for fugitive windborne particulate matter from agricultural lands and unpaved roads.

Emission source	Emissio	on factors (kg	/ha/year)
	PM _{2.5}	PM ₁₀	TSP
Fugitive windborne particulate matter from agricultural lands	0.3568	2.0621	4.5390
Fugitive windborne particulate matter from unpaved roads	6.9371	52.4517	88.2579

Table 3-43: Agricultural lands and unpaved roads emission factors

3.3.5 Spatial Distribution of Emissions

Table 3-44 summarises the data used for spatially allocating emissions of fugitive windborne particulate matter from agricultural lands and unpaved roads.

Emission source	Spatial data	Spatial data source
Fugitive windborne particulate matter from agricultural lands	GIS layer for crop area combined with GIS layer for soil erodibility and gridded 1 km x 1 km climatic factor estimates	 Land Use of Australia, Version 3 1996/1997 (BRS, 2006) Digital Atlas of Australian Soils (BRS, 1991) The Air Pollution Model (TAPM) Version 3 (Hurley, 2005)
Fugitive windborne particulate matter from unpaved roads	GIS layer for unpaved road area combined with GIS layer for soil erodibility and gridded 1 km x 1 km climatic factor estimates	 Unsealed Roads from the dtdb Cultural Lines Layer - Arc/Info Export Format (DEC, 2004a) Digital Atlas of Australian Soils (BRS, 1991) The Air Pollution Model (TAPM) Version 3 (Hurley, 2005)

Table 3-44: Agricultural lands and unpaved roads spatial data

Emissions of fugitive windborne particulate matter from agricultural lands have been spatially distributed according to the proportion of cropping area in each 1 km by 1 km grid cell (BRS, 2006). The proportion of cropping area by LGA and region is presented in Table 3-45 and shown in Figure 3-34.

IGA		2008 proportion of cropping area (%)							
	Newcastle	Non Urban	Sydney	Grand Total					
Blue Mountains	-	-	1.39	1.39					
Camden	-	-	1.73	1.73					
Cessnock	1.42	1.03	-	2.45					
Dungog	-	1.76	-	1.76					

Table 3-45: Agricultural lands spatial distribution by LGA and region

Air Emissions Inventory for the Greater Metropolitan Region of New South Wales 3. *Data Sources and Results*

LGA	2008 proportion of cropping area (%)						
	Newcastle	Non Urban	Sydney	Grand Total			
Gosford	-	-	9.31 × 10-2	9.31 × 10-2			
Goulburn Mulwaree	-	0.25	-	0.25			
Hawkesbury	-	0.70	2.78	3.48			
Hornsby	-	-	0.26	0.26			
Kiama	-	0.34	-	0.34			
Lithgow	-	28.04	-	28.04			
Maitland	0.11	1.30	-	1.41			
Mid-western Regional	-	3.87	-	3.87			
Muswellbrook	-	15.40	-	15.40			
N/A	4.45 × 10-3	-	-	$4.45\times10^{\text{-3}}$			
Newcastle	1.70 × 10-2	-	-	1.70×10^{-2}			
Oberon	-	2.14	-	2.14			
Port Stephens	0.33	0.46	-	0.79			
Shellharbour	-	0.69	-	0.69			
Singleton	-	6.42	-	6.42			
Upper Hunter	-	4.11	-	4.11			
Upper Lachlan	-	12.91	-	12.91			
Wingecarribee	-	9.66	0.10	9.76			
Wollondilly	-	-	2.33	2.33			
Wyong	-	0.35	-	0.35			
Grand Total	1.88	89.43	8.68	100.00			

Figure 3-34: Agricultural lands spatial distribution by LGA and region

Figure 3-35 shows the spatial distribution of fugitive windborne particulate matter emissions from agricultural lands.

Figure 3-35: Agricultural lands spatial distribution of emissions

Emissions of fugitive windborne particulate matter from unpaved roads have been spatially distributed according to the proportion of unpaved road length in each 1 km by 1 km grid cell (DEC, 2004a). The proportion of unpaved road length by LGA and region is presented in Table 3-46 and shown in Figure 3-36.

	2008 proportion of unpaved road length (%)					
LGA	Newcastle	Non Urban	Sydney	Wollongong	Grand Total	
Ashfield	-	-	$1.84 imes 10^{-2}$	-	1.84×10^{-2}	
Auburn	-	-	5.28×10^{-2}	-	5.28 × 10-2	
Bankstown	-	-	6.70×10^{-2}	-	6.70 × 10-2	
Bathurst Regional	-	0.19	-	-	0.19	
Baulkham Hills	-	1.67×10^{-2}	1.02	-	1.04	
Blacktown	-	-	0.47	-	0.47	
Blue Mountains	-	2.13	1.43	-	3.57	
Botany Bay	-	-	1.28×10^{-2}	-	1.28×10^{-2}	
Burwood	-	-	6.80×10^{-3}	-	6.80 × 10 ⁻³	
Camden	-	-	0.65	-	0.65	
Campbelltown	-	-	1.25	-	1.25	
Canada Bay	-	-	5.25×10^{-2}	-	5.25 × 10-2	
Canterbury	-	-	$4.57\times10^{\text{-}2}$	-	4.57×10^{-2}	
Cessnock	0.59	7.30	-	-	7.89	
Dungog	-	5.14	-	-	5.14	
Fairfield	-	-	0.20	-	0.20	
Gosford	-	2.30	0.95	-	3.25	
Goulburn Mulwaree	-	0.38	-	-	0.38	
Great Lakes	-	4.87	-	-	4.87	
Hawkesbury	-	2.91	2.80	-	5.71	
Holroyd	-	-	6.79 × 10-2	-	6.79 × 10-2	
Hornsby	-	4.42×10^{-2}	1.28	-	1.32	
Hunters Hill	-	-	3.91 × 10 ⁻³	-	3.91 × 10 ⁻³	
Hurstville	-	-	9.63 × 10 ⁻³	-	9.63 × 10 ⁻³	
Kiama	-	0.44	-	-	0.44	
Kogarah	-	-	2.34×10^{-2}	-	2.34×10^{-2}	
Ku-ring-gai	-	-	0.28	-	0.28	
Lake Macquarie	1.02	3.24	-	-	4.26	
Lane Cove	-	-	4.82×10^{-2}	-	4.82×10^{-2}	
Leichhardt	-	-	9.54×10^{-3}	-	9.54 × 10-3	
Lithgow	-	9.26	-	-	9.26	
Liverpool	-	-	0.82	-	0.82	
Maitland	$8.14\times10^{\text{-}2}$	1.08	-	-	1.16	
Manly	-	-	$3.75 imes 10^{-2}$	-	3.75 × 10-2	
Marrickville	-	-	2.83×10^{-2}	-	2.83 × 10-2	
Mid-western Regional	-	4.08	-	-	4.08	
Mosman	-	-	$7.58 imes 10^{-3}$	-	7.58×10^{-3}	
Muswellbrook	-	3.09	-	-	3.09	
N/A	7.12 × 10 ⁻³	4.78×10^{-2}	$8.86\times10^{\text{-}2}$	1.38×10^{-2}	0.16	
Newcastle	0.50	-	-	-	0.50	
North Sydney	-	-	1.52 × 10 ⁻²	-	1.52×10^{-2}	
Oberon	-	3.81	-	-	3.81	
Parramatta	-	-	7.19 × 10 ⁻²	-	7.19 × 10-2	

Table 3-46: Unpaved roads spatial distribution by LGA and region

2008 Calendar Year Biogenic and Geogenic Emissions: Results 3. Data Sources and Results

LGA	2008 proportion of unpaved road length (%)					
	Newcastle	Non Urban	Sydney	Wollongong	Grand Total	
Penrith	-	-	1.27	-	1.27	
Pittwater	-	-	0.21	-	0.21	
Port Stephens	0.45	2.84	-	-	3.28	
Randwick	-	-	$9.96 imes 10^{-2}$	-	9.96 × 10 ⁻²	
Rockdale	-	-	$4.45\times10^{\text{-2}}$	-	4.45×10^{-2}	
Ryde	-	-	0.11	-	0.11	
Shellharbour	-	0.30	-	$2.48\times10^{\text{-}2}$	0.32	
Shoalhaven	-	0.14	-	-	0.14	
Singleton	-	7.97	-	-	7.97	
Strathfield	-	-	$1.34 imes 10^{-2}$	-	1.34×10^{-2}	
Sutherland	-	-	1.28	-	1.28	
Sydney	-	-	$5.85 imes 10^{-2}$	-	5.85×10^{-2}	
Unincorporated	-	-	$7.0 imes 10^{-2}$	-	7.0 × 10 ⁻²	
Upper Hunter	-	0.82	-	-	0.82	
Upper Lachlan	-	1.62	-	-	1.62	
Warringah	-	-	0.47	-	0.47	
Waverley	-	-	$2.64 imes 10^{-2}$	-	2.64×10^{-2}	
Willoughby	-	-	$4.98\times10^{\text{-2}}$	-	4.98×10^{-2}	
Wingecarribee	-	6.35	0.25	0.39	6.98	
Wollondilly	-	1.14	3.95	7.77×10^{-2}	5.17	
Wollongong	-	-	0.86	1.34	2.20	
Woollahra	-	-	$2.33 imes 10^{-2}$	-	2.33 × 10-2	
Wyong	-	3.37	-	-	3.37	
Grand Total	2.66	74.89	20.61	1.85	100.00	

Figure 3-36: Unpaved roads spatial distribution by LGA and region
Figure 3-37 shows the spatial distribution of fugitive windborne particulate matter emissions from unpaved roads.

Figure 3-37: Unpaved roads spatial distribution of emissions

3.3.6 Temporal Variation of Emissions

Table 3-47 summarises the data used to estimate the temporal variation in fugitive windborne particulate matter emissions from agricultural lands and unpaved roads.

Emission source	Temporal data	Temporal data source
Fugitive windborne particulate matter from agricultural lands	Monthly, daily and hourly: Gridded 1 km x 1 km climatic factor combined with vegetative cover factor estimates	 The Air Pollution Model (TAPM) Version 3 (Hurley, 2005) Australia State Crop Calendars (USDA, 2003)
Fugitive windborne particulate matter from unpaved roads	Monthly, daily and hourly: Gridded 1 km x 1 km climatic factor estimates	- The Air Pollution Model (TAPM) Version 3 (Hurley, 2005)

Table 3-47: Agricultural lands and unpaved roads temporal data

Hourly average meteorological data including temperature, precipitation and wind speed have been generated for the GMR at 2 km by 2 km grid cells with *TAPM* (Hurley, 2005) and used to estimate Thornthwaite's precipitation-evaporation index (Thornthwaite, 1931) and the climatic factor (CARB, 1997a; and CARB, 1997b) at 1 km by 1 km grid cells. The climatic factor has been combined with vegetative cover estimates (USDA, 2003) to determine the temporal variation in emissions from agricultural lands, while the climatic factor alone has been used to determine the temporal variation in emissions from unpaved roads.

Annual emissions from agricultural lands and unpaved roads have been estimated using the annual climatic factor within Equation 4 (CARB, 1997a). To calculate the annual climatic factor, the monthly Thornthwaite's precipitation-evaporation index values have been summed for all of the months in the year using Equation 5 (CARB, 1997a).

Monthly emissions from agricultural lands and unpaved roads have been estimated using the monthas-a-year climatic factor within Equation 4 (CARB, 1997a). To calculate the month-as-a-year climatic factor, each month's Thornthwaite's precipitation-evaporation index has been multiplied by 12. Each month's Thornthwaite's precipitation-evaporation index x 12 has been input into Equation 5 (CARB, 1997a) along with the mean monthly wind speed for that same month. The result is a climatic factor which would apply if the climate for that month were instead the year round climate. By then summing all of the monthly climatic factors for the year and then dividing each individual month by the sum, the month-as-a-year climatic factor has been normalised to 1. These normalised monthly numbers provide the climate based temporal profile. They have been multiplied by the annual emissions to produce monthly emissions (CARB, 1997a).

Hourly emissions from agricultural lands and unpaved roads have been estimated using the hour-asa-year climatic factor within Equation 4 (CARB, 1997a). To calculate the hour-as-a-year climatic factor, each month's Thornthwaite's precipitation-evaporation index has been multiplied by 12 and then by 24. Each hour's Thornthwaite's precipitation-evaporation index x 12 x 24 has been input into Equation 5 (CARB, 1997a) along with the mean hourly wind speed for that same hour. The result is a climatic factor which would apply if the climate for that hour were instead the year round climate. By then summing all of the hourly climatic factors for the year and then dividing each individual hour by the sum, the hour-as-a-year climatic factor has been normalised to 1. These normalised hourly numbers provide the climate based temporal profile. They have been multiplied by the annual emissions to produce hourly emissions (CARB, 1997a). While the temporal variation in emissions is different for each 1 km by 1 km grid cell where there are fugitive windborne particulate matter emissions from agricultural lands and unpaved roads, Figure 3-38, Figure 3-39, Figure 3-40, Figure 3-41, Figure 3-42 and Figure 3-43 show the hourly, daily and monthly variation in $PM_{2.5}$, PM_{10} and TSP emissions, respectively, in the GMR for all agricultural lands and unpaved roads.

Figure 3-38: Agricultural lands hourly variation in particulate matter emissions

Figure 3-39: Unpaved roads hourly variation in particulate matter emissions

Figure 3-41: Unpaved roads daily variation in particulate matter emissions

Figure 3-42: Agricultural lands monthly variation in particulate matter emissions

3.3.7 *Emission Estimates*

Table 3-48 presents annual fugitive windborne emissions of selected substances from agricultural lands and unpaved roads by activity.

Activity	Substance –	Emissions (kg/year)					
Activity		Newcastle	Non Urban	Sydney	Wollongong	GMR	
	LEAD & COMPOUNDS	98	1,878	400	2.83	2,379	
Fugitive Windborne	PARTICULATE MATTER ≤ 10 µm	72,502	1,325,123	273,311	1,865	1,672,801	
Agricultural Lands and	PARTICULATE MATTER ≤ 2.5 μm	9,937	179,118	36,565	247	225,866	
	TOTAL SUSPENDED PARTICULATE	126,425	2,278,852	465,204	3,138	2,873,619	

Table 3-48: Agricultural lands and unpaved roads emissions by activity

Table 3-49 presents annual fugitive windborne emissions of selected substances from agricultural lands and unpaved roads by source type.

	<u> </u>					
Source type	Substance	Emissions (kg/year)				
Source type	Substance	Newcastle	Non Urban	Sydney	Wollongong	GMR
	LEAD & COMPOUNDS	3.38×10^{-2}	0.37	$4.03\times10^{\text{-2}}$	-	0.45
	PARTICULATE MATTER	248	2,728	200		2 272
	≤ 10 µm	240		290	-	5,272
Summer Crop	PARTICULATE MATTER	13	472	51	_	566
	≤ 2.5 µm	-13	1/2	51	_	500
	TOTAL SUSPENDED	545	6.005	651	-	7 201
	PARTICULATE	010	0,005			7,201
	LEAD & COMPOUNDS	1.13	13	1.36	-	15
	PARTICULATE MATTER	8 295	92,022	9,959	-	110,275
	≤ 10 µm	0,290				
Winter Crop	PARTICULATE MATTER	1 435	15,921	1,723	-	19,079
	≤ 2.5 µm	1,100				
	TOTAL SUSPENDED	18.258	202,557	21,922	-	242,737
	PARTICULATE					
	LEAD & COMPOUNDS	97	1,865	399	2.83	2,364
	PARTICULATE MATTER	63,960	1 230 373	263,056	1,865	1 559 254
	≤ 10 µm	007700	1,200,070			1,007,201
Unpaved Roads	PARTICULATE MATTER	8,459	162,725	34,791	247	206,221
	≤ 2.5 µm	0,10,				
	TOTAL SUSPENDED	107.622	2.070.290	442,631	3,138	2,623,681
	PARTICULATE	10.,011	2,0,0,290			

Table 3-49: Agricultural lands and unpaved roads emissions by source type

3.4 Soil Nitrification and Denitrification

3.4.1 Emission Source Description

The biogenic and geogenic air emissions inventory includes emissions of nitrogen compounds (i.e. ammonia (NH_3), nitric oxide (NO) and nitrous oxide (N_2O)) from agricultural lands and natural landscapes.

To estimate emissions from these sources, the following have been considered:

> The nitrogen cycle

The nitrogen cycle refers to the circulation of nitrogen compounds through the earth's atmosphere, hydrosphere, biosphere and pedosphere. Nitrogen is added to soils mainly as chemical fertiliser and manure and through biological nitrogen fixation. Other sources of nitrogen may include man-made emissions from the combustion of fossil fuels and natural emissions from lightning (IFA, 2004).

Within the nitrogen cycle, nitrogen moves from the soil to the plant, and back from the plant to the soil, often with animals or humans as intermediaries. During each stage of the nitrogen cycle, nitrogen compounds undergo a number of transformations in the soil (e.g. mineralisation, immobilisation, fixation, nitrification and denitrification). These compounds are exchanged between the soil and the atmosphere (e.g. volatilisation, denitrification, biological nitrogen fixation and atmospheric deposition) and between the soil and the hydrosphere (e.g. leaching, erosion/runoff, drainage and irrigation). These fluxes and transformations constitute the nitrogen cycle (IFA, 2004).

In agricultural lands, the nitrogen cycle is significantly altered since substantial amounts of nitrogen are fixed in harvested products. As a result, nitrogen fertilisers are essential to balance nitrogen inputs and outputs, maintain or improve soil fertility and increase crop yield (IFA, 2004).

In natural ecosystems, the nitrogen cycle is a largely closed system, with balanced nitrogen inputs and outputs. However, the relatively small amount of nitrogen in most natural ecosystems limits biomass production (IFA, 2004).

Figure 3-44 shows the nitrogen cycle (IFA, 2004).

Figure 3-44: The nitrogen cycle

> Land use of Australia

Land use GIS data has been used to derive emission factors for nitrogen compounds (i.e. ammonia (NH_3) , nitric oxide (NO) and nitrous oxide (N_2O)) from agricultural lands and natural landscapes (BRS, 2006). Table 3-50 presents the landuse types, while Figure 3-45 shows the landuse categories in the GMR.

Landuse category	Landuse type
	Cropping
	Irrigated cropping
Agricultural	Irrigated perennial horticulture
Agricultural	Irrigated seasonal horticulture
	Perennial horticulture
	Seasonal horticulture
Forest	Managed resource protection
rotest	Nature conservation

Table 3-50: Landuse types in the GMR

Landuse category	Landuse type
	Other minimal use
	Plantation forestry
	Production forestry
	Grazing modified pastures
Grassland	Irrigated modified pastures
	Livestock grazing
	Intensive use
Urban	Residential
	Transport and communication
	Estuary/coastal waters
Wator	Lake
Water	Reservoir
	River
Wetland	Marsh/wetland

Figure 3-45: Landuse categories in the GMR

> Nitrogen fertiliser consumption

The quantities of nitrogen fertilisers consumed in Australia have been obtained for the 2008 calendar year (IFA, 2011). Mean annual nitrogen fertilisation GIS data (BRS, 2001; and NLWRA, 2001) have been used to estimate the proportion of nitrogen fertilisers consumed in the GMR. The inventory considers nitrogen fertiliser types as follows (Battye et. al., 2004; and IFA, 2011):

- Ammonium nitrate;
- Ammonium sulfate;
- Anhydrous ammonia;
- Calcium ammonium nitrate;
- o Mix;
- Monoammonium phosphate;
- Nitrogen solutions (urea & ammonium nitrate);
- Potassium nitrate; and
- o Urea.
- > Meteorological data

Hourly average meteorological data including temperature have been generated for the GMR at 2 km by 2 km grid cells with *TAPM* (Hurley, 2005) and used to estimate: soil temperature as a function of ambient temperature and landuse type; and the nitrogen compounds (i.e. ammonia (NH₃), nitric oxide (NO) and nitrous oxide (N₂O)) flux rate variation with temperature (USEPA, 1995b; and Radian, 1996) at 1 km by 1 km grid cells.

3.4.2 Emission Estimation Methodology

Table 3-51 summarises the emission estimation methodologies used for emissions of nitrogen compounds from agricultural lands and natural landscapes.

Emission source	Emission estimation methodology source
Emissions of nitrogen compounds from agricultural lands and natural landscapes	 Biogenic Sources Preferred Methods, Technical Report Series Volume 5, Emission Inventory Improvement Program (Radian, 1996) Review of Ammonia Emission Modeling Techniques for Natural Landscapes and Fertilized Soils (Battye et. al., 2004) AP 42, Fifth Edition, Volume I, Chapter 14: Greenhouse Gas Biogenic Sources, 14.1 Emission from Soils - Greenhouse Gases (USEPA, 2003b)

Table 3-51: Soil nitrification and denitrification emission estimation methodologies

Emissions of nitric oxide (NO) from agricultural lands and natural landscapes have been estimated using the *PCBEIS Version 2* methodology (USEPA, 1995b) combined with the area of each landuse

category (BRS, 2006) and hourly average temperature data (Hurley, 2005) in Equation 10 (Radian, 1996):

$$E_{NO,i} = \sum_{j=1}^{8760} \left(A_i \times EF_{NO,i} \times CF_i \times 10^{-9} \right)$$
 Equation 10

where:			
E _{NO,i}	=	Emissions of NO from landuse category i	(kg/year)
A_i	=	Area of landuse category i	(m ²)
EF _{NO,i}	=	Emission factor for NO and landuse category i	$(\mu g/m^2/h)$
CF_i	=	Soil temperature correction factor for landuse category i (Equation 11)	(-)
i	=	Landuse category (either "agricultural", "forest", "grassland", "urban",	(-)
		"water" or "wetland")	
j	=	Time interval	(h/year)
10-9	=	Conversion factor	(kg/µg)

The soil temperature correction factor for each landuse category has been estimated using soil temperature within Equation 11 (Radian, 1996):

$$CF_i = exp(0.071 \times T_{s,i})$$
 Equation 11

where:			
CF_i	=	Soil temperature correction factor for landuse category i	(-)
$T_{s,i}$	=	Soil temperature for landuse category i (Equation 12)	(°C)
i	=	Landuse category (either "agricultural", "forest", "grassland", "urban", "water" or	(-)
		"wetland")	

The soil temperature for each landuse category has been estimated using ambient temperature (Hurley, 2005) within Equation 12 (USEPA, 1995b):

$$T_{s,i} = K_{1,i} \times T_a + K_{2,i}$$
 Equation 12

where:			
T _{s,i}	=	Soil temperature for landuse category i	(°C)
$K_{1,i}$	=	Constant 1 for landuse category i (Table 3-51) (USEPA, 1995b)	(-)
Ta	=	Ambient temperature	(°C)
K _{2,i}	=	Constant 2 for landuse category i (Table 3-51) (USEPA, 1995b)	(°C)
i	=	Landuse category (either "agricultural", "forest", "grassland", "urban", "water" or	(-)
		"wetland")	

Table 3-52 presents soil temperature correction factor constants by landuse category.

-		0,
Landuse category	K _{1,i}	$\mathbf{K}_{2,\mathbf{i}}$
Agricultural	1.03	2.9
Forest	0.84	3.6
Grassland	0.66	8.8
Urban	0.66	8.8
Water	-	-
Wetland	0.92	4.4

Table 3-52: Soil temperature correction factor constants by landuse category

Table 3-53 presents nitric oxide emission factors for agricultural lands and natural landscapes by landuse type, which have been derived for the GMR.

Table 3-53: Nitric oxide emission factors for agricultural lands and natural landscapes by landuse type

Landuse category	Landuse type	Emission factor ¹¹ (µg NO/m²/h)
	Cropping	203.1
	Irrigated cropping	203.1
A gricultural	Irrigated perennial horticulture	
Agricultural	Irrigated seasonal horticulture	25.0
	Perennial horticulture	
	Seasonal horticulture	
	Managed resource protection	
	Nature conservation	
Forest	Other minimal use	4.5
	Plantation forestry	
	Production forestry	
	Grazing modified pastures	
Grassland	Irrigated modified pastures	58.0
	Livestock grazing	
	Intensive use	
Urban	Residential	19.8
	Transport and communication	
	Estuary/coastal waters	
Mator	Lake	
water	Reservoir	-
	River	
Wetland	Marsh/wetland	0.2

Emissions of ammonia (NH₃) from agricultural lands have been estimated using nitrogen fertiliser consumption based emission factors combined with activity rates. Activity rates include the quantity

¹¹ NO emission factors have been standardized to 30 °C and bright sunlight (USEPA, 1995b; and Radian, 1996).

of nitrogen fertiliser applied (BRS, 2001; NLWRA, 2001; and IFA, 2011) and the fraction applied to each landuse type (DCC, 2009). Emissions have been determined using Equation 13 (Battye et. al., 2004):

$\mathbf{E}_{\mathbf{NH}_3,i} = \mathbf{NFC}_j \times \mathbf{EF}_{\mathbf{NH}_3,j} \times \mathbf{F}_i$	Equation 13
--	-------------

where:			
E _{NH3,i}	=	Emissions of NH_3 from landuse type i	(kg/year)
NFCj	=	Consumption of nitrogen fertiliser type j	(tonne N/year)
EF _{NH3,j}	=	Emission factor for NH_3 and nitrogen fertiliser type j (Table 3-54)	(kg/tonne N)
		(Executive Summary, Table S3; Battye et. al., 2004)	
F_i	=	Fraction of nitrogen fertiliser applied to landuse type i (Table 3-55)	(tonne N/tonne N)
		(Appendix 6.H: Synthetic Fertilisers, Table 6.H2; DCC, 2009)	
i	=	Landuse type (either "cropping", "irrigated cropping", "irrigated	(-)
		perennial horticulture", "irrigated seasonal horticulture",	
		"perennial horticulture", "seasonal horticulture", "grazing	
		modified pastures" or "irrigated modified pastures")	
j	=	Fertiliser type (either "ammonium nitrate", "ammonium sulfate",	(-)
		"anhydrous ammonia", "calcium ammonium nitrate", "mix",	
		"monoammonium phosphate", " nitrogen solutions (urea &	
		ammonium nitrate", "potassium nitrate" or "urea")	

Table 3-54 presents ammonia emission factors by nitrogen fertiliser type and soil type (Battye et. al., 2004). Ammonia emission factors for Group II soil type have been used for the GMR (BRS, 1991).

	, ,	51	51	
Nitrogon fortilisor tuno	Emission factor (kg NH ₃ /tonne N)			
Mitogen fermiser type	Group I soil	Group II soil	Group III soil	
Ammonium nitrate	36	24	12	
Ammonium sulphate	182	121	61	
Anhydrous ammonia	48	48	48	
Calcium ammonium nitrate	36	24	12	
Mix	36	24	12	
Monoammonium phosphate	61	61	61	
Nitrogen solutions (urea & ammonium nitrate)	97	97	97	
Potassium nitrate	12	12	12	
Urea	242	182	182	

Table 3-54: Ammoni	a emission facto	rs by nitrogen	fertiliser type	and soil type
			· · · · · · · · · · · · · · · · ·	

Group I soil: Warm temperate areas with a large proportion of calcareous soils

Group II soil: Temperate and warm-temperate areas with some calcareous soils (or managed with soil pH>7) but with large areas of acidic soils

Group III soil: Temperate and cool-temperate areas with largely acidic soils

Table 3-55 presents the fraction of nitrogen fertiliser applied to each landuse type (DCC, 2009).

Landuse category	Landuse type	Fraction (tonne N/tonne N)	
	Cropping	0.20903	
	Irrigated cropping	0.24272	
Agricultural	Irrigated perennial horticulture		
Agricultural	Irrigated seasonal horticulture	0 12222	
	Perennial horticulture	0.13222	
	Seasonal horticulture		
Crassland	Grazing modified pastures	0.32034	
Grassianu	Irrigated modified pastures	0.09569	
Grand Total		1.00000	

Table 3-55: Fraction of nitrogen fertiliser applied to each landuse type

Table 3-57 presents ammonia emission factors for agricultural lands by landuse type, which have been derived for the GMR.

Landuse category	Landuse type	Emission factor (ng NH ₃ /m ² /s)	
	Cropping	22.1	
	Irrigated cropping	256.2	
Agricultural	Irrigated perennial horticulture		
Agricultural	Irrigated seasonal horticulture	10.3	
	Perennial horticulture	- 10.	
	Seasonal horticulture		
Crassland	Grazing modified pastures	5.1	
Grassianu	Irrigated modified pastures	6.6	

Table 3-56: Ammonia emission factors for agricultural lands by landuse type

Emissions of ammonia (NH₃) from natural landscapes have been estimated using area based emission factors combined with the area of each landuse type (BRS, 2006). Emissions have been determined using Equation 14 (Battye et. al., 2004):

$$E_{NH_{3,i}} = EF_{NH_{3,i}} \times A_i \times 3.1536 \times 10^7 \times 10^{-12}$$
 Equation 14

where:			
E _{NH3,i}	=	Emissions of NH_3 from landuse type i	(kg/year)
EF _{NH3} ,	=	Emission factor for NH_3 and landuse type i (Table 3-57) (Executive	$(ng/m^2/s)$
		Summary, Table S1; Battye et. al., 2004)	
A_i	=	Area of landuse type i	(m ²)
i	=	Landuse type (either "managed resource protection", "nature	(-)
		conservation", "other minimal use", "plantation forestry",	
		"production forestry", "livestock grazing", "intensive use",	
		"residential", "transport and communication", "estuary/coastal	
		waters", "lake", "reservoir", "river" or "marsh/wetland")	
3.1536	=	Time interval	(s/year)
x 10 ⁷			

where:			
10-12	=	Conversion factor	(kg/ng)

Table 3-57 presents ammonia emission factors for natural landscapes by landuse type, which have been derived for the GMR.

Landuse category	Landuse type	Emission factor (ng NH ₃ /m ² /s)
	Managed resource protection	
	Nature conservation	
Forest	Other minimal use	1.2
	Plantation forestry	
	Production forestry	
Grassland	Livestock grazing	0.9
	Intensive use	
Urban	Residential	0.3112
	Transport and communication	
	Estuary/coastal waters	
TATe how	Lake	
water	Reservoir	-
	River	
Wetland	Marsh/wetland	-

Table 3-57: Ammonia emission factors for natural landscapes by landuse type

Emissions of nitrous oxide (N₂O) from agricultural lands have been estimated using nitrogen fertiliser consumption based emission factors combined with activity rates. Activity rates include the quantity of nitrogen fertiliser applied (BRS, 2001; NLWRA, 2001; and IFA, 2011) and the fraction applied to each landuse type (DCC, 2009). Emissions have been determined using Equation 15 (USEPA, 1996):

$$\mathbf{E}_{\mathbf{N}_{2}\mathbf{O},i} = \mathbf{NFC}_{j} \times \mathbf{EF}_{\mathbf{N}_{2}\mathbf{O},j} \times \mathbf{F}_{i}$$

Equation 15

where:			
E _{N2O,i}	=	Emissions of N ₂ O from landuse type i	(kg/year)
NFCj	=	Consumption of nitrogen fertiliser type j	(tonne N/year)
EF _{N2O,j}	=	Emission factor for N_2O and nitrogen fertiliser type j (Table 3-58)	(kg/tonne N)
		(Section 14.1.2; USEPA, 1996)	
F_i	=	Fraction of nitrogen fertiliser applied to landuse type i (Table 3-59)	(tonne N/tonne N)
		(Appendix 6.H: Synthetic Fertilisers, Table 6.H2; DCC, 2009)	

¹² The GMR urban landuse category includes 1,014.9 km² domestic lawn area (TR, 2009) and 201.9 km² public open space lawn area (DECC, 2007). The total urban landuse category area is 3,569.3 km² (BRS, 2006) so the urban landuse category NH₃ emission factor is 1,216.9 x 0.9/3,569.3 = 0.31 ng/m²/s, where 0.9 ng/m²/s applies to grassland (Battye et. al., 2004).

where:			
i	=	Landuse type (either "cropping", "irrigated cropping", "irrigated	(-)
		perennial horticulture", "irrigated seasonal horticulture",	
		"perennial horticulture", "seasonal horticulture", "grazing	
		modified pastures" or "irrigated modified pastures")	
j	=	Fertiliser type (either "ammonium nitrate", "ammonium sulfate",	(-)
		"anhydrous ammonia", "calcium ammonium nitrate", "mix",	
		"monoammonium phosphate", " nitrogen solutions (urea &	
		ammonium nitrate", "potassium nitrate" or "urea")	

Table 3-58 presents the nitrous oxide emission factors for nitrogen fertilisers (USEPA, 1996).

Table 3-58: Nitrous oxide emission factor for nitrogen fertilisers

Nitrogen fertiliser type	Emission factor (kg N ₂ O/tonne N)
All	0.0184

Table 3-59 presents the fraction of nitrogen fertiliser applied to each landuse type (DCC, 2009).

Landuse category	Landuse type	Fraction (tonne N/tonne N)	
	Cropping	0.20903	
	Irrigated cropping	0.24272	
A amicultural	Irrigated perennial horticulture		
Agricultural	Irrigated seasonal horticulture	0 12222	
	Perennial horticulture	- 0.13222	
	Seasonal horticulture		
Crassland	Grazing modified pastures	0.32034	
Grassianu	Irrigated modified pastures	0.09569	
Grand Total		1.00000	

Table 3-59: Fraction of nitrogen fertiliser applied to each landuse type

Table 3-60 presents nitrous oxide emission factors for agricultural lands by landuse type, which have been derived for the GMR.

Landuse category	Landuse type	Emission factor (kg N ₂ O/ha/year)	
	Cropping	0.986	
Agricultural	Irrigated cropping	11.461	
	Irrigated perennial horticulture		
	Irrigated seasonal horticulture	0.450	
	Perennial horticulture	- 0.439	
	Seasonal horticulture		
Grassland	Grazing modified pastures	0.229	
	Irrigated modified pastures	0.294	

Table 3-60: Nitrous oxide emission factors for agricultural lands by landuse type

Emissions of nitrous oxide (N_2O) from natural landscapes have been estimated using area based emission factors combined with the area of each landuse type (BRS, 2006). Emissions have been determined using Equation 16 (USEPA, 1996):

Equation 16

=	Emissions of N ₂ O from landuse type i	(kg/year)
=	Emission factor for N_2O and landuse type i (Table 3-61) (Table	(kg/ha/year)
	14.1.2; USEPA, 1996)	
=	Area of landuse type i	(ha)
=	Landuse type (either "managed resource protection", "nature conservation", "other minimal use", "plantation forestry", "production forestry", "livestock grazing", "intensive use", "residential", "transport and communication", "estuary/coastal waters", "lake", "reservoir", "river" or "marsh/wetland")	(-)
	= =	 Emissions of N₂O from landuse type i Emission factor for N₂O and landuse type i (Table 3-61) (Table 14.1.2; USEPA, 1996) Area of landuse type i Landuse type (either "managed resource protection", "nature conservation", "other minimal use", "plantation forestry", "production forestry", "livestock grazing", "intensive use", "residential", "transport and communication", "estuary/coastal waters", "lake", "reservoir", "river" or "marsh/wetland")

Table 3-61 presents nitrous oxide emission factors for natural landscapes by landuse type, which have been derived for the GMR.

Landuse category	Landuse type	Emission factor (kg N ₂ O/ha/year)
	Managed resource protection	
	Nature conservation	
Forest	Other minimal use	0.631
	Plantation forestry	
	Production forestry	
Grassland	Livestock grazing	1.685
	Intensive use	
Urban	Residential	0.574^{13}
	Transport and communication	
	Estuary/coastal waters	
Water	Lake	
Water	Reservoir	-
	River	
Wetland	Marsh/wetland	-

Table 3-61: Nitrous oxide emission factors for natural landscapes by landuse type

¹³ The GMR urban landuse category includes 1,014.9 km² domestic lawn area (TR, 2009) and 201.9 km² public open space lawn area (DECC, 2007). The total urban landuse category area is 3,569.3 km² (BRS, 2006) so the urban landuse category N₂O emission factor is 1,216.9 x 1.685/3,569.3 = 0.574 kg/ha/year, where 1.685 kg/ha/year applies to grassland (USEPA, 1996).

3.4.3 Activity Data

Table 3-62 summarises the activity data used for emissions of nitrogen compounds from agricultural lands and natural landscapes.

Activity data	Activity data source	
Land use area (ha)	- Land Use of Australia, Version 3 - 1996/1997 (BRS , 2006)	
Nitrogen fertiliser consumption (tonne/year)	 Mean Annual Nitrogen Fertilisation (kgN ha-1 y- 1) (BRS, 2001; and NLWRA, 2001) Consumption of Nitrogen Fertilizers in Australia in 2008 (IFA ,2011) 	
Hourly meteorological data (temperature (K)) required to calculate the temperature correction factor	- The Air Pollution Model (TAPM) Version 3 (Hurley, 2005)	

Table 3-62: Soil nitrification and denitrification activity data

Land use GIS data has been used to derive emission factors for nitrogen compounds (i.e. ammonia (NH_3) , nitric oxide (NO) and nitrous oxide (N_2O)) from agricultural lands and natural landscapes (BRS, 2006). The area of agricultural lands and natural landscapes in the GMR by landuse type are presented in Table 3-63 and shown in Figure 3-46.

Landuse category	Landuse type	Area (ha)
	Cropping	26,883
	Irrigated cropping	2,687
Agricultural	Irrigated perennial horticulture	8,717
	Irrigated seasonal horticulture	11,942
	Perennial horticulture	15,500
	Seasonal horticulture	407
Agricultural Total		66,137
	Managed resource protection	579,650
	Nature conservation	705,930
Forest	Other minimal use	403,974
	Plantation forestry	6,404
	Production forestry	136,605
Forest Total		1,832,562
	Grazing modified pastures	177,466
Grassland	Irrigated modified pastures	41,272
	Livestock grazing	1,487,796
Grassland Total		1,706,535
	Intensive use	269,053
Urban	Residential	74,436
	Transport and communication	13,440
Urban Total		356,930
Water	Estuary/coastal waters	3,993

Table 3-63: Landuse area in the GMR by landuse type

Landuse category	Landuse type	Area (ha)
	Lake	6,845
	Reservoir	14,927
	River	8,102
Water Total		33,868
Wetland Marsh/wetland		3,875
Wetland Total		3,875
Grand Total		3,999,906

Figure 3-46: Landuse area in the GMR by landuse type

The quantities of nitrogen fertilisers consumed in Australia have been obtained for the 2008 calendar year (IFA, 2011). Mean annual nitrogen fertilisation GIS data (BRS, 2001; and NLWRA, 2001) have been used to estimate the proportion of nitrogen fertilisers consumed in the GMR. The consumption of nitrogen fertilisers in the GMR is approximately 0.8% of the total consumption in Australia. Table 3-64 presents nitrogen fertiliser consumption in Australia and the GMR by fertiliser type.

Fortiliser type	Nitrogen fertiliser consumption in 2008 (tonne N)		
i cruiser type	Australia	GMR	
Ammonium sulphate	69,000	570	
Anhydrous ammonia	30,000	248	
Calcium ammonium nitrate	2,000	17	
Mix	48,000	397	
Monoammonium phosphate	160,000	1,322	

Table 3-64: Nitrogen fertiliser consumption in Australia and the GMR by fertiliser type

Fartilisar turna	Nitrogen fertiliser consumption in 2008 (tonne N)		
retuisertype	Australia	GMR	
Nitrogen solutions (urea & ammonium nitrate)	95,000	785	
Potassium nitrate	1,000	8	
Urea	430,000	3,553	
Grand Total	835,000	6,900	

Figure 3-47 shows the spatial distribution of nitrogen fertiliser consumption in agricultural lands (i.e. crops and pastures) across Australia (BRS, 2001; and NLWRA, 2001).

Figure 3-47: Spatial distribution of nitrogen fertiliser consumption in agricultural lands

Hourly average meteorological data including temperature have been generated for the GMR at 2 km by 2 km grid cells with *TAPM* (Hurley, 2005) and used to estimate: soil temperature as a function of ambient temperature and landuse type; and the nitrogen compounds (i.e. ammonia (NH₃), nitric oxide (NO) and nitrous oxide (N₂O)) flux rate variation with temperature (USEPA, 1995b; and Radian, 1996) at 1 km by 1 km grid cells. Figure 3-48 shows the monthly average temperature in the GMR by hour of day.

Figure 3-48: Monthly average temperature in the GMR by hour of day

Monthly average temperatures are presented in Table 3-65, while the gridded annual average temperature is shown in Figure 3-49 for the GMR.

Month	Temperature (°C)
January	24.5
February	23.2
March	19.2
April	14.9
May	11.9
June	9.7
July	8.3
August	9.0
September	11.9
October	15.1
November	19.8
December	24.4
Grand Total	16.0

Table 3-65: Monthly average temperature in the GMR

Figure 3-49: Gridded annual average temperature

3.4.4 Emission and Speciation Factors

Table 3-66 summarises the emission and speciation factors used for nitrogen compounds from agricultural lands and natural landscapes.

Emission source	Substance	Emission and speciation factor source
	Criteria pollutants:	- Biogenic Sources Preferred Methods, Technical Report Series Volume 5, Emission Inventory Improvement Program (Redian, 1996)
Emissions of nitrogen compounds	Speciated NO _x	 Biogenic Sources Preferred Methods, Technical Report Series Volume 5, Emission Inventory Improvement Program (Radian, 1996)
landscapes	Ammonia	 Review of Ammonia Emission Modeling Techniques for Natural Landscapes and Fertilized Soils (Battye et. al., 2004)
	Greenhouse gases: N ₂ O	- AP 42, Fifth Edition, Volume I, Chapter 14: Greenhouse Gas Biogenic Sources, 14.1 Emission from Soils - Greenhouse Gases (USEPA, 2003b)

Table 3-66: Soil nitrification and denitrification emission and speciation factors

Table 3-67 presents emission factors for nitrogen compounds from agricultural lands and natural landscapes by landuse type

Table 3-67: Soil nitrification and denitrification emission factors

Tandusa catagory	Emission factors ¹⁴ (µg/m²/h)			
Landuse category	NO _x	N ₂ O	NH ₃	
Forest	6.90	4.32	7.20	
Grassland	88.93	5.31	17.12	
Agricultural	168.89	90.16	12.79	
Wetland	0.31	-	-	
Water	-	-	-	
Urban	30.32	1.10	6.56	

3.4.5 Spatial Distribution of Emissions

Table 3-68 summarises the data used for spatially allocating emissions of nitrogen compounds from agricultural lands and natural landscapes.

Emission source	Spatial data	Spatial data source
Emissions of nitrogen compounds	GIS layer for land use area combined with	- Land Use of Australia,
from agricultural lands and natural	gridded 1 km x 1 km temperature correction	Version 3 - 1996/1997
landscapes	factor estimates	(BRS , 2006)

 $^{^{14}}$ NO_x emission factors have been standardized to 30 °C and bright sunlight (USEPA, 1995b; and Radian, 1996). N₂O and NH₃ emission rates are hourly average (Battye et. al., 2004 and USEPA, 2003b).

Emission source	Spatial data	Spatial data source
		- The Air Pollution Model (TAPM) Version 3 (Hurley, 2005)

Emissions of nitrogen compounds from agricultural lands and natural landscapes have been spatially distributed according to the proportion of each landuse category area in each 1 km by 1 km grid cell (BRS, 2006). The proportion of each landuse category area by LGA and region is presented in Table 3-69 and shown in Figure 3-50.

Landuce esterorm		2008 proportion of landuse category area (%)					
Lanuuse category		Newcastle	Non Urban	Sydney	Wollongong	Grand Total	
	Baulkham Hills	-	-	0.21	-	0.21	
	Blue Mountains	-	-	1.28×10^{-2}	-	1.28×10^{-2}	
	Camden	-	-	1.28×10^{-2}	-	1.28×10^{-2}	
	Cessnock	2.42×10^{-2}	8.78×10^{-2}	-	-	0.11	
	Dungog	-	1.30×10^{-2}	-	-	1.30 × 10-2	
	Gosford	-	2.98×10^{-3}	3.08×10^{-2}	-	3.38×10^{-2}	
	Goulburn Mulwaree	-	1.86×10^{-3}	-	-	1.86×10^{-3}	
	Hawkesbury	-	9.93 × 10 ⁻³	3.67×10^{-2}	-	4.66 × 10-2	
	Hornsby	-	-	1.07×10^{-2}	-	1.07×10^{-2}	
	Kiama	-	3.14×10^{-3}	-	-	3.14×10^{-3}	
	Lithgow	-	0.21	-	-	0.21	
	Maitland	2.65×10^{-3}	2.77×10^{-2}	-	-	3.04×10^{-2}	
Agricultural	Mid-western Regional	-	3.12×10^{-2}	-	-	3.12×10^{-2}	
Agricultural	Muswellbrook	-	0.35	-	-	0.35	
	N/A	$3.29 imes 10^{-5}$	-	$4.29 imes 10^{-5}$	-	$7.58 imes 10^{-5}$	
	Newcastle	$1.26 imes 10^{-4}$	-	-	-	1.26×10^{-4}	
	Oberon	-	1.58×10^{-2}	-	-	1.58×10^{-2}	
	Penrith	-	-	$5.10 imes 10^{-2}$	-	5.10×10^{-2}	
	Port Stephens	$5.03 imes 10^{-3}$	3.38×10^{-3}	-	-	8.41×10^{-3}	
	Shellharbour	-	7.03×10^{-3}	-	-	7.03×10^{-3}	
	Singleton	-	0.19	-	-	0.19	
	Upper Hunter	-	3.04×10^{-2}	-	-	3.04×10^{-2}	
	Upper Lachlan	-	9.68 × 10-2	-	-	9.68 × 10-2	
	Wingecarribee	-	$8.67\times10^{\text{-}2}$	$7.43 imes 10^{-4}$	-	8.75×10^{-2}	
	Wollondilly	-	1.82×10^{-2}	$7.44\times10^{\text{-2}}$	-	9.26 × 10 ⁻²	
	Wyong	-	7.76×10^{-3}	-	-	7.76 × 10 ⁻³	
Agricultural Total		3.21×10^{-2}	1.19	0.44	-	1.65	
	Ashfield	-	-	2.36 × 10-2	-	2.36 × 10-2	
	Auburn	-	-	$5.48 imes 10^{-2}$	-	$5.48 imes 10^{-2}$	
Forest	Bankstown	-	-	0.15	-	0.15	
	Bathurst Regional	-	2.17×10^{-2}	-	-	2.17 × 10-2	
	Baulkham Hills	-	1.15×10^{-2}	0.27	-	0.28	

Table 3-69: Landuse category spatial distribution by LGA and region

Landuco catogory	ICA	2008 proportion of landuse category area (%)				
Lanuuse category	LGA	Newcastle	Non Urban	Sydney	Wollongong	Grand Total
	Blacktown	-	-	0.15	-	0.15
	Blue Mountains	-	1.64	0.81	-	2.45
	Botany Bay	-	-	$2.90 imes 10^{-2}$	-	2.90×10^{-2}
	Burwood	-	-	1.75×10^{-2}	-	1.75×10^{-2}
	Camden	-	-	6.32 × 10 ⁻³	-	6.32 × 10 ⁻³
	Campbelltown	-	-	0.16	-	0.16
	Canada Bay	-	-	3.41×10^{-2}	-	3.41×10^{-2}
	Canterbury	-	-	8.39 × 10 ⁻²	-	8.39 × 10 ⁻²
	Cessnock	4.94×10^{-2}	2.18	-	-	2.23
	Dungog	-	0.41	-	-	0.41
	Fairfield	-	-	0.16	-	0.16
	Gosford	-	0.68	0.40	-	1.09
	Goulburn Mulwaree	-	2.31 × 10 ⁻²	-	-	2.31×10^{-2}
	Great Lakes	-	0.82	-	-	0.82
	Hawkesbury	-	4.28	1.09	-	5.37
	Holroyd	-	-	8.89×10^{-2}	-	8.89 × 10-2
	Hornsby	-	1.04×10^{-2}	0.88	-	0.89
	Hunters Hill	-	-	6.06×10^{-3}	-	6.06×10^{-3}
	Hurstville	-	-	$5.95 imes 10^{-2}$	-	5.95×10^{-2}
	Kiama	-	0.13	-	-	0.13
	Kogarah	-	-	3.79×10^{-2}	-	3.79×10^{-2}
	Ku-ring-gai	-	-	0.18	-	0.18
	Lake Macquarie	0.26	0.40	-	-	0.66
	Lane Cove	-	-	2.52×10^{-2}	-	2.52×10^{-2}
	Leichhardt	-	-	$1.30\times10^{\text{-2}}$	-	$1.30 imes 10^{-2}$
	Lithgow	-	6.25	$6.25 imes 10^{-2}$	-	6.31
	Liverpool	-	-	$9.89 imes 10^{-2}$	-	9.89 × 10-2
	Maitland	$5.35\times10^{\text{-}4}$	$1.20 imes 10^{-2}$	-	-	1.25×10^{-2}
	Manly	-	-	$1.83 imes 10^{-3}$	-	1.83×10^{-3}
	Marrickville	-	-	$4.17\times10^{\text{-2}}$	-	4.17×10^{-2}
	Mid-western Regional	-	2.30	-	-	2.30
	Mosman	-	-	1.39×10^{-2}	-	1.39×10^{-2}
	Muswellbrook	-	2.76	-	-	2.76
	N/A	2.52×10^{-3}	2.23 × 10 ⁻³	8.03×10^{-3}	-	1.28×10^{-2}
	Newcastle	0.18	-	-	-	0.18
	North Sydney	-	-	$1.95 imes 10^{-2}$	-	$1.95 imes 10^{-2}$
	Oberon	-	2.14	-	-	2.14
	Parramatta	-	-	0.14	-	0.14
	Penrith	-	-	5.38×10^{-2}	-	5.38×10^{-2}
	Pittwater	-	-	8.74×10^{-2}	-	8.74×10^{-2}
	Port Stephens	0.23	0.65	-	-	0.88
	Randwick	-	-	5.89×10^{-2}	-	5.89 × 10-2
	Rockdale	-	-	5.70×10^{-2}	-	5.70 × 10 ⁻²
	Ryde	-	-	$9.17 imes 10^{-2}$	-	9.17 × 10 ⁻²

T en duce colorem		2008 proportion of landuse category area (%)				
Lanuuse category	LGA	Newcastle	Non Urban	Sydney	Wollongong	Grand Total
	Shellharbour	-	$3.33 imes 10^{-2}$	-	2.69×10^{-3}	3.60×10^{-2}
	Shoalhaven	-	7.66×10^{-2}	-	-	7.66×10^{-2}
	Singleton	-	4.42	-	-	4.42
	Strathfield	-	-	3.23×10^{-2}	-	3.23×10^{-2}
	Sutherland	-	-	0.39	-	0.39
	Sydney	-	-	$5.77 imes 10^{-2}$	-	$5.77 imes 10^{-2}$
	Unincorporated	-	-	$1.39\times10^{\text{-}2}$	-	$1.39\times10^{\text{-}2}$
	Upper Hunter	-	0.12	-	-	0.12
	Upper Lachlan	-	0.82	-	-	0.82
	Warringah	-	-	0.19	-	0.19
	Waverley	-	-	$1.68 imes 10^{-2}$	-	1.68×10^{-2}
	Willoughby	-	-	$4.51\times10^{\text{-}2}$	-	$4.51\times10^{\text{-}2}$
	Wingecarribee	-	2.31	0.13	0.40	2.84
	Wollondilly	-	2.65	1.44	6.21 × 10 ⁻²	4.15
	Wollongong	-	-	0.31	0.49	0.80
	Woollahra	-	-	$1.81 imes 10^{-2}$	-	1.81×10^{-2}
	Wyong	-	0.84	-	-	0.84
Forest Total		0.73	36.01	8.13	0.95	45.82
	Bankstown	-	-	$1.95 imes 10^{-2}$	-	1.95×10^{-2}
	Bathurst Regional	-	$8.33\times10^{\text{-}2}$	-	-	8.33 × 10-2
	Baulkham Hills	-	$1.93 imes 10^{-3}$	0.19	-	0.19
	Blacktown	-	-	$2.70\times10^{\text{-}2}$	-	2.70×10^{-2}
	Blue Mountains	-	$6.07 imes 10^{-2}$	$7.13 imes 10^{-2}$	-	0.13
	Camden	-	-	0.32	-	0.32
	Campbelltown	-	-	$1.75 imes 10^{-2}$	-	1.75×10^{-2}
	Cessnock	0.19	2.16	-	-	2.35
	Dungog	-	3.64	-	-	3.64
	Fairfield	-	-	3.88×10^{-3}	-	3.88×10^{-3}
	Gosford	-	0.49	7.73×10^{-2}	-	0.57
	Goulburn Mulwaree	-	0.32	-	-	0.32
Grassland	Great Lakes	-	2.18	-	-	2.18
	Hawkesbury	-	0.14	0.43	-	0.57
	Hornsby	-	1.96 × 10-2	5.32×10^{-2}	-	7.28×10^{-2}
	Kiama	-	0.25	-	-	0.25
	Ku-ring-gai	-	-	5.14×10^{-3}	-	5.14×10^{-3}
	Lake Macquarie	6.46×10^{-3}	5.30×10^{-2}	-	-	5.95×10^{-2}
	Lithgow	-	4.15	-	-	4.15
	Liverpool	-	-	7.05×10^{-2}	-	7.05×10^{-2}
	Maitland	4.86×10^{-2}	0.83	-	-	0.88
	Mid-western Regional	-	4.04	-	-	4.04
	Muswellbrook	-	4.34	-	-	4.34
	N/A	-	$1.79 imes 10^{-4}$	$7.65 imes 10^{-4}$	-	9.44×10^{-4}
	Newcastle	$6.75 imes 10^{-2}$	-	-	-	$6.75 imes 10^{-2}$
	Oberon	-	1.15	-	-	1.15

I and use sategory	ICA	2008 proportion of landuse category area (%)				%)
Lanuuse category	LGA	Newcastle	Non Urban	Sydney	Wollongong	Grand Total
	Penrith	-	-	$9.51 imes 10^{-2}$	-	$9.51 imes 10^{-2}$
	Port Stephens	$6.85 imes 10^{-2}$	0.84	-	-	0.91
	Ryde	-	-	$5.14\times10^{\text{-}3}$	-	$5.14 imes 10^{-3}$
	Shellharbour	-	0.23	-	$1.67 imes 10^{-2}$	0.25
	Shoalhaven	-	$2.46 imes 10^{-2}$	-	-	2.46×10^{-2}
	Singleton	-	7.40	-	-	7.40
	Sutherland	-	-	7.24×10^{-3}	-	$7.24 imes 10^{-3}$
	Upper Hunter	-	1.43	-	-	1.43
	Upper Lachlan	-	1.70	-	-	1.70
	Wingecarribee	-	3.05	$5.96 imes 10^{-2}$	$1.10\times10^{\text{-2}}$	3.12
	Wollondilly	-	0.15	1.65	-	1.80
	Wollongong	-	-	-	0.16	0.16
	Wyong	-	0.27	-	-	0.27
Grassland Total		0.39	38.99	3.11	0.18	42.66
	Ashfield	-	-	$6.93 imes 10^{-4}$	-	6.93×10^{-4}
	Auburn	-	-	2.11 × 10-2	-	2.11 × 10-2
	Bankstown	-	-	2.57×10^{-2}	-	2.57×10^{-2}
	Baulkham Hills	-	4.03×10^{-3}	0.31	-	0.32
	Blacktown	-	-	0.42	-	0.42
	Blue Mountains	-	0.20	0.78	-	0.98
	Botany Bay	-	-	$5.94 imes 10^{-3}$	-	5.94×10^{-3}
	Camden	-	-	0.15	-	0.15
	Campbelltown	-	-	0.60	-	0.60
	Canada Bay	-	-	5.89×10^{-3}	-	5.89×10^{-3}
	Canterbury	-	-	1.07×10^{-3}	-	1.07×10^{-3}
	Cessnock	$3.92 imes 10^{-2}$	0.17	-	-	0.21
	Dungog	-	2.05×10^{-2}	-	-	2.05×10^{-2}
	Fairfield	-	-	9.32 × 10-2	-	9.32 × 10-2
Urban	Gosford	-	0.35	0.19	-	0.53
UIDall	Hawkesbury	-	0.17	0.75	-	0.92
	Holroyd	-	-	1.11×10^{-2}	-	1.11×10^{-2}
	Hornsby	-	-	0.14	-	0.14
	Hurstville	-	-	$8.01 imes 10^{-3}$	-	8.01 × 10 ⁻³
	Kiama	-	1.42×10^{-2}	-	-	1.42×10^{-2}
	Kogarah	-	-	2.39×10^{-3}	-	2.39×10^{-3}
	Ku-ring-gai	-	-	$2.87 imes 10^{-2}$	-	2.87×10^{-2}
	Lake Macquarie	0.15	0.52	-	-	0.67
	Lane Cove	-	-	1.71×10^{-4}	-	1.71×10^{-4}
	Leichhardt	-	-	5.22×10^{-3}	-	5.22×10^{-3}
	Lithgow	-	0.11	-	-	0.11
	Liverpool	-	-	0.60	-	0.60
	Maitland	3.19 × 10 ⁻³	3.87×10^{-2}	-	-	4.19 × 10-2
	Manly	-	-	1.79 × 10 ⁻²	-	1.79 × 10 ⁻²
	Marrickville	-	-	3.30 × 10 ⁻³	-	3.30 × 10 ⁻³

I and use catagory	ICA	2008 proportion of landuse category area (%)				%)
Landuse Category	LUA	Newcastle	Non Urban	Sydney	Wollongong	Grand Total
	Mid-western Regional	-	7.80 × 10 ⁻³	-	-	7.80 × 10-3
	Muswellbrook	-	$1.30 imes 10^{-2}$	-	-	1.30 × 10-2
	N/A	-	$2.84 imes 10^{-3}$	$6.68 imes 10^{-4}$	6.16×10^{-6}	3.51×10^{-3}
	Newcastle	0.20	-	-	-	0.20
	North Sydney	-	-	$3.74\times10^{\text{-}3}$	-	3.74×10^{-3}
	Oberon	-	0.23	-	-	0.23
	Parramatta	-	-	8.43×10^{-3}	-	8.43×10^{-3}
	Penrith	-	-	0.78	-	0.78
	Pittwater	-	-	6.62×10^{-2}	-	6.62 × 10-2
	Port Stephens	2.62×10^{-2}	2.74×10^{-2}	-	-	5.36×10^{-2}
	Randwick	-	-	6.32×10^{-3}	-	6.32 × 10 ⁻³
	Rockdale	-	-	1.65×10^{-3}	-	1.65×10^{-3}
	Ryde	-	-	8.12×10^{-3}	-	8.12×10^{-3}
	Shellharbour	-	3.49 × 10-2	-	1.55×10^{-2}	5.04 × 10-2
	Shoalhaven	-	1.26×10^{-3}	-	-	1.26 × 10-3
	Singleton	-	3.12×10^{-2}	-	-	3.12 × 10-2
	Strathfield	-	-	1.82×10^{-4}	-	1.82×10^{-4}
	Sutherland	-	-	0.19	-	0.19
	Sydney	-	-	7.13 × 10-3	-	7.13 × 10-3
	Unincorporated	-	- 2 E(10-3	1.13 × 10-2	-	1.13×10^{-2}
	Upper Lachian	-	2.56 × 10 ⁻⁵	- 0.14	-	2.56 × 10 ⁻⁵
	Waverley	-	-	0.14 1.60 × 10-4	-	0.14 1.60 × 10-4
	Willoughby	-	-	1.09×10^{-3}		1.09×10^{-4}
	Wingecarribee		- 5.66 x 10-2	2.11 × 10 °	- 8.48 × 10-3	$2.11 \times 10^{\circ}$
	Wollondilly		5.00×10^{-1}	0.23	0.40×10^{-9}	0.31 × 10 -
	Wollongong		7.50 × 10	9.41 × 10-2	4.40 × 10	0.31
	Woollahra			3.41×10^{-1}	0.15	3.63 × 10-4
	Wyong		0 54	5.05 × 10		0.54
Urban Total	wyong	0.42	2.61	5.72	0.18	8.92
	Auburn	-	-	9.23×10^{-4}	-	9.23 × 10 ⁻⁴
	Baulkham Hills	-	-	6.0×10^{-3}	-	6.0 × 10 ⁻³
	Blacktown	-	-	5.24×10^{-4}	-	5.24×10^{-4}
	Campbelltown	-	-	7.56 × 10-3	-	7.56 × 10 ⁻³
	Canada Bay	-	-	4.50×10^{-3}	-	4.50×10^{-3}
	Cessnock	4.29×10^{-4}	6.15 × 10 ⁻³	-	-	6.58 × 10 ⁻³
	Dungog	-	5.11 × 10 ⁻³	-	-	5.11 × 10 ⁻³
Water	Fairfield	-	-	2.04×10^{-3}	-	2.04 × 10-3
	Gosford	-	6.35 × 10 ⁻²	3.0×10^{-2}	-	9.36 × 10 ⁻²
	Great Lakes	-	4.94×10^{-3}	-	-	4.94×10^{-3}
	Hawkesbury	-	3.66 × 10-3	1.20 × 10-2	-	1.57 × 10-2
	Hornsby	-	-	2.56×10^{-2}	-	2.56 × 10-2
	Hunters Hill	-	-	2.64×10^{-3}	-	2.64 × 10 ⁻³
	Kogarah	-	-	3.71×10^{-3}	-	3.71 × 10 ⁻³

I and use sategory	ICA	2008 proportion of landuse category area (%)				
Lanuuse category	LGA	Newcastle	Non Urban	Sydney	Wollongong	Grand Total
	Lake Macquarie	5.20×10^{-2}	$1.30 imes 10^{-2}$	-	-	6.50 × 10-2
	Lithgow	-	$7.74 imes 10^{-3}$	-	-	7.74×10^{-3}
	Mosman	-	-	$8.64 \times 10^{\text{-}6}$	-	8.64×10^{-6}
	Muswellbrook	-	$7.83 imes 10^{-3}$	-	-	7.83 × 10 ⁻³
	Newcastle	4.83×10^{-2}	-	-	-	4.83 × 10-2
	North Sydney	-	-	4.06×10^{-5}	-	4.06×10^{-5}
	Penrith	-	-	$1.54 imes 10^{-2}$	-	1.54×10^{-2}
	Port Stephens	2.16×10^{-2}	$7.70\times10^{\text{-}2}$	-	-	9.86 × 10 ⁻²
	Ryde	-	-	$6.65 imes 10^{-4}$	-	$6.65 imes 10^{-4}$
	Singleton	-	$1.05 imes 10^{-2}$	-	-	1.05×10^{-2}
	Sutherland	-	-	1.67×10^{-2}	-	1.67 × 10-2
	Unincorporated	-	-	4.17×10^{-3}	-	4.17×10^{-3}
	Warringah	-	-	2.60×10^{-4}	-	2.60×10^{-4}
	Willoughby	-	-	4.69×10^{-3}	-	4.69 × 10 ⁻³
	Wingecarribee	-	$3.75 imes 10^{-2}$	-	0.15	0.18
	Wollondilly	-	$5.85 imes 10^{-2}$	1.33×10^{-2}	-	7.17 × 10-2
	Wollongong	-	-	1.26×10^{-4}	0.11	0.11
	Wyong	-	$1.86 imes 10^{-2}$	-	-	1.86 × 10-2
Water Total		0.12	0.31	0.15	0.26	0.85
	Cessnock	-	2.60 × 10-3	-	-	2.60 × 10-3
Watland	Great Lakes	-	$3.97 imes 10^{-2}$	-	-	3.97×10^{-2}
Wettand	Maitland	-	7.79×10^{-3}	-	-	7.79 × 10 ⁻³
	Port Stephens	-	$4.67\times10^{\text{-}2}$	-	-	4.67 × 10-2
Wetland Total		-	9.69 × 10-2	-	-	9.69 × 10-2
Grand Total		1.68	79.21	17.54	1.57	100.00

Figure 3-50: Landuse category spatial distribution by LGA and region

Figure 3-51 shows the spatial distribution of nitrogen compounds emissions from agricultural lands and natural landscapes.

3.4.6 Temporal Variation of Emissions

Table 3-47 summarises the data used to estimate the temporal variation in emissions of nitrogen compounds from agricultural lands and natural landscapes.

Emission source	Temporal data	Temporal data source		
Emissions of nitrogen compounds from agricultural lands and natural	Monthly, daily and hourly: Gridded 1 km x 1 km temperature correction factor	- The Air Pollution Model (TAPM) Version 3		
landscapes	estimates	(Hurley, 2005)		

Table 3-70: Soil nitrification and denitrification temporal data

Hourly average meteorological data including temperature have been generated for the GMR at 2 km by 2 km grid cells with *TAPM* (Hurley, 2005) and used to estimate: soil temperature as a function of ambient temperature and landuse type; and the nitrogen compounds (i.e. ammonia (NH₃), nitric oxide (NO) and nitrous oxide (N₂O)) flux rate variation with temperature (USEPA, 1995b; and Radian, 1996) at 1 km by 1 km grid cells.

Annual emissions of nitric oxide (NO) from agricultural lands and natural landscapes have been estimated using the soil temperature correction factor within Equation 10 (Radian, 1996). Hourly emissions are calculated first and then summed to estimate annual, monthly and daily emissions.

Annual emissions of ammonia (NH₃) and nitrous oxide (N₂O) from agricultural lands and natural landscapes have been estimated using annual nitrogen fertiliser consumption data (IFA, 2011; BRS, 2001; and NLWRA, 2001) and area based emission factors by landuse type within Equation 13 (Battye et. al., 2004)/ Equation 15 (USEPA, 1996) and Equation 14 (Battye et. al., 2004)/Equation 16 (USEPA, 1996), respectively.

Hourly emissions of ammonia (NH₃) and nitrous oxide (N₂O) from agricultural lands and natural landscapes have been estimated by multiplying the results of Equation 13 (Battye et. al., 2004)/ Equation 15 (USEPA, 1996) and Equation 14 (Battye et. al., 2004)/Equation 16 (USEPA, 1996), respectively with the normalised hourly soil temperature correction factor. By summing all of the hourly soil temperature correction factors for the year and then dividing each individual hour by the sum, the hourly soil temperature correction factor has been normalised to 1. These normalised hourly numbers provide the temperature based temporal profile. Annual emissions are calculated first and then multiplied by the normalised hourly soil temperature correction factor to estimate monthly, daily and hourly emissions.

While the temporal variation in emissions is different for each 1 km by 1 km grid cell where there are emissions of nitrogen compounds from agricultural lands and natural landscapes, Figure 3-52, Figure 3-53 and Figure 3-54 show the hourly, daily and monthly variation in NH_3 , NO and N_2O emissions, respectively in the GMR for all agricultural lands and natural landscapes.

Figure 3-52: Soil nitrification and denitrification hourly variation in nitrogen compounds emissions

Air Emissions Inventory for the Greater Metropolitan Region of New South Wales 3. Data Sources and Results

Figure 3-54: Soil nitrification and denitrification monthly variation in nitrogen compounds emissions

3.4.7 *Emission Estimates*

Table 3-71 presents annual soil nitrification and denitrification emissions of selected substances from agricultural lands and natural landscapes by activity.

Activity			Emissions (kg/year)			
	Substance	Newcastle	Non Urban	Sydney	Wollongong	GMR
Soil Nitrification and Denitrification	OXIDES OF NITROGEN	116,947	7,474,416	1,133,469	52,686	8,777,518

Table 3-71: Soil nitrification and denitrification emissions by activity

Table 3-72 presents annual soil nitrification and denitrification emissions of selected substances from agricultural lands and natural landscapes by source type.

Source type	Substance	Emissions (kg/year)						
		Newcastle	Non Urban	Sydney	Wollongong	GMR		
Agricultural	OXIDES OF NITROGEN	13,237	461,357	175,246	-	649,841		
Forest	OXIDES OF NITROGEN	9,231	394,807	95,562	10,059	509,659		
Grassland	OXIDES OF NITROGEN	68,616	6,472,294	528,030	32,097	7,101,037		
Urban	OXIDES OF NITROGEN	25,863	145,893	334,631	10,530	516,917		
Water	OXIDES OF NITROGEN	-	-	-	-	-		
Wetland	OXIDES OF NITROGEN	-	65	-	-	65		

Table 3-72: Soil nitrification and denitrification emissions by source type

3.5 Tree Canopy, Uncut Grass and Cut Grass

3.5.1 *Emission Source Description*

The biogenic and geogenic air emissions inventory includes emissions of VOC from vegetation (i.e. tree canopy, uncut grass and cut grass).

To estimate emissions from these sources, the following have been considered:

> CSIRO Investigation Report ET/IR 686R and Biogenic Emissions Inventory GIS Version 3.02

The *CSIRO Investigation Report ET/IR 686R* (Azzi et. al., 2004) documents three models for estimating emissions of VOC from vegetation (i.e. tree canopy, uncut grass and cut grass).

The models for estimating emissions from tree canopy and uncut grass are incorporated into the *Biogenic Emissions Inventory GIS Version 1.01* (BEI-GIS v1.01) software package (Azzi et. al., 2004) and the *Chemical Transport Model* (Cope et. al., 2009). The *BEI-GIS v3.02* software package (Huber, 2005) is based on *BEI-GIS v1.01* and includes additional features as follows:

- Spatial extent includes GMR as option;
- Import *TAPM* meteorological data in either Microsoft[®] Windows *.csv or Microsoft[®] Access[™] 2003 *.mdb format; and
- Simulate any period of time from 1 day to 1 year.

To estimate tree canopy and uncut grass emissions, *BEI-GIS v3.02* requires the following GIS data:

- Genus specific speciated VOC emission rate (Q_{leaf});
- Leaf area index (LAI);
- Leaf biomass (B_m) ;
- Canopy height (h_c);
- Temperature (T);
- Geographical (i.e. latitude and longitude) or gridded (i.e. MGA easting and northing); and
- Time and date.

Figure 3-55 shows the hierarchy of tree canopy and uncut grass emission estimation within the *BEI-GIS v3.02* software package, which uses information collected at leaf level scale to estimate data at canopy, landscape and regional scales.

Figure 3-55: Hierarchy of tree canopy and uncut grass emission estimation

The model for estimating emissions from cut grass is incorporated into the *Biogenic and Geogenic Emissions Data Management System v1.0*, which is a Microsoft® AccessTM 2003 relational database. Domestic (TR, 2009) and commercial (DECC, 2007b) survey data have been used to determine lawn mowing and garden equipment frequency and duration of use on an hourly, daily, monthly and annual basis and the lawn area mowed so that cut grass emissions can be estimated (Azzi et. al., 2004).

> Domestic survey

A domestic survey of lawn mowing and garden equipment ownership and usage has been conducted, which includes each of the 64 local government areas (LGA)¹⁵ located in the GMR. The survey results include data about: equipment type, number and age; engine type and fuel used; frequency and duration of equipment use by hour, day and season; lawn area; and proportion of private and commercial usage (TR, 2009). The survey data have been used to determine residential lawn mowing and garden equipment frequency and duration of use on an hourly, daily, monthly and annual basis and the lawn area mowed so that cut grass emissions¹⁶ can be estimated (Azzi et. al., 2004).

¹⁵ The GMR includes 64 local government areas (LGA), plus two areas designated N/A and unincorporated. N/A areas are those located near the coastline and the majority area within the 1 km by 1 km grid cell lies over water. Unincorporated areas are those areas which are not under the responsibility of an incorporated local government. ¹⁶ Emissions have been estimated for 64 LGA plus the two areas designated N/A and unincorporated.
> Commercial survey

A commercial survey of lawn mowing and garden equipment ownership and usage has been conducted, which includes 5 golf courses and 9 LGA located in the GMR. The survey results include data about: equipment type, number and age; engine type and fuel used; and frequency and duration of equipment use by hour, day and season (DECC, 2007b). The survey data have been used to determine public open space lawn mowing and garden equipment frequency and duration of use on an hourly, daily, monthly and annual basis and the lawn area mowed so that cut grass emissions¹⁷ can be estimated (Azzi et. al., 2004).

> Meteorological data

Hourly average meteorological data including temperature have been generated for the GMR at 2 km by 2 km grid cells with *TAPM* (Hurley, 2005) and used to estimate: leaf temperature as a function of ambient temperature and flux rate variation with temperature for tree canopy and uncut grass (Azzi et. al., 2004; and Cope et. al., 2009); and flux rate variation with temperature for cut grass (Potter et. al., 2003) at 1 km by 1 km grid cells.

> Source type

The inventory includes emissions of includes emissions of VOC from vegetation as follows:

- *Tree canopy;*
- Uncut grass; and
- Cut grass.

3.5.2 Emission Estimation Methodology

Table 3-73 summarises the emission estimation methodologies used for emissions of VOC from vegetation (i.e. tree canopy, uncut grass and cut grass).

Emission source	Emission estimation methodology source
Emissions of VOC from tree canopy	- Biogenic Emissions in the Greater Sydney Region (Azzi et. al., 2004)
Emissions of VOC from uncut grass	- Biogenic Emissions in the Greater Sydney Region (Azzi et. al., 2004)
Emissions of VOC from cut grass	- Biogenic Emissions in the Greater Sydney Region (Azzi et. al., 2004)

Table 3-73: Tree canopy, uncut grass and cut grass emission estimation methodologies

Emissions of VOC from tree canopy and uncut grass have been estimated using *BEI-GIS v3.02* combined with hourly average temperature data (Hurley, 2005) in Equation 17 (Azzi et. al., 2004; and Cope et. al., 2009):

¹⁷ Emissions have been estimated for 59 LGA plus the two areas designated N/A and unincorporated.

$$E_{i,j} = \sum_{k=1}^{8760} \left(A_j \times B_{m,j} \times EF_{i,j} \times f\left(LAI_j, PAR_j, T_j \right) \times 10^{-9} \right)$$
Equation 17

where:			
E _{i,j}	=	Emissions of substance i from vegetation type j	(kg/year)
Aj	=	Area of vegetation type j	(m ²)
B _{m,j}	=	Leaf biomass for vegetation type j	(g leaf
			biomass/m ²)
EF _{i,j}	=	Emission factor for substance i from vegetation type j	(µg/g leaf
			biomass/h)
f(LAI _j ,	=	Equations which account for leaf area index (LAI),	(-)
PAR _j , T _j)		photosynthetically active radiation (PAR) and temperature (T)	
i	=	Substance (either "VOC", "speciated VOC" or "organic air	(-)
		toxics")	
j	=	Vegetation type (either "tree canopy" or "uncut grass")	(-)
k	=	Time interval	(h/year)
10-9	=	Conversion factor	(kg/µg)

Emissions of VOC from cut grass have been estimated using leaf biomass based emission factors combined with activity rates. Activity rates include residential (TR, 2009) and public open space (DECC, 2007b) lawn mowing and garden equipment frequency and duration of use on an hourly, daily, monthly and annual basis and the lawn area mowed. Emissions have been determined using Equation 18 (Azzi et. al., 2004):

$$\mathbf{E}_{i,j} = \mathbf{A}_{j} \times \left(\mathbf{B}_{m} - \mathbf{B}_{m}^{o}\right) \times \mathbf{EF}_{i} \times 10^{-3}$$
 Equation 18

where:			
E _{i,j}	=	Emissions of substance i from source type j	(kg/year)
Aj	=	Area of lawn mowed for source type j	(m ² /year)
B_m	=	Maximum potential leaf biomass before lawn mowing (Table	(g leaf biomass/m ²)
		3-74) (Table 6.3; Azzi et. al., 2004)	
B^{o}_{m}	=	Basal leaf biomass after lawn mowing (Table 3-74) (Table 6.3;	(g leaf biomass/m ²)
		Azzi et. al., 2004)	
EF_{i}	=	Emission factor for substance i (Table 3-74) (Table 6.3; Azzi et. al.,	(g/g leaf
		2004)	biomass/mow)
i	=	Substance (either "VOC", "speciated VOC" or "organic air	(-)
		toxics")	
j	=	Source type (either "residential lawn area" or "public open space	(-)
		lawn area")	
10-3	=	Conversion factor	(kg/g)

The maximum potential leaf biomass has been estimated using Equation 19 (Azzi et. al., 2004):

$B_{m} = D \times f + B_{m}^{o}$	Equation 19

where:			
B _m	=	Maximum potential leaf biomass before lawn mowing	(g leaf biomass/m ²)
		(Table 3-74) (Table 6.3; Azzi et. al., 2004)	
D	=	Leaf biomass removed (Table 3-74) (Table 6.3; Azzi et. al.,	(g leaf biomass/m²/mow)
		2004)	
f	=	Frequency of lawn mowing	(mow/year)
B_m^{o}	=	Basal leaf biomass after lawn mowing (Table 3-74) (Table	(g leaf biomass/m ²)
		6.3; Azzi et. al., 2004)	

Table 3-74 presents lawn attributes used to estimate emissions of VOC from domestic and public open space cut grass (Azzi et. al., 2004).

Table 3-74: Lawn attributes

Parameter	Measure	Units of measure
Maximum potential leaf biomass before lawn mowing (B_m)	936	g leaf biomass/m ²
Basal leaf biomass after lawn mowing (B^{o}_{m})	100	g leaf biomass/m ²
Leaf biomass removed (D)	40	g leaf biomass/m ² /mow
Emission factor for VOC (EF _{VOC})	0.002	g VOC/g leaf biomass/mow

3.5.3 Activity Data

Table 3-75 summarises the activity data used for emissions of VOC from vegetation (i.e. tree canopy, uncut grass and cut grass).

Activity data	Activity data source
Genus specific speciated VOC emission rate (μ g/g leaf biomass/h), leaf area index (LAI) (m ² /m ²), canopy height (m) and leaf biomass (g/m ²) required by the tree canopy and uncut grass models	 Biogenic Emissions in the Greater Sydney Region (Azzi et. al., 2004) Biogenic Emissions Inventory GIS Version 3.02 (Huber, 2005)
Hourly meteorological data (temperature (K)) required by the tree canopy, uncut grass and cut grass models	- The Air Pollution Model (TAPM) Version 3 (Hurley, 2005)
Residential lawn area (m ²) and annual lawn mowing frequency required by the cut grass model	- Domestic Lawn Mowing Pollution Survey (TR, 2009)
Public open space lawn area (m ²) and annual lawn mowing frequency required by the cut grass model	 Public Open Space Lawn Mowing Pollution Survey (DECC, 2007)

Table 3-75: Tree canopy, uncut grass and cut grass activity data

Figure 3-56 shows how activity data are used within *BEI-GIS v3.02* to develop an inventory of tree canopy and uncut grass emissions.

Figure 3-56: Tree canopy and uncut grass models - use of GIS data

Figure 3-57 shows the GIS data for genus specific speciated VOC emission rate, leaf area index, canopy height and leaf biomass within *BEI-GIS v3.02* for the GMR.

Figure 3-57: BEI-GIS v3.02 genus specific speciated VOC emission rate, leaf area index, canopy height and leaf biomass

Hourly average meteorological data including temperature have been generated for the GMR at 2 km by 2 km grid cells with *TAPM* (Hurley, 2005) and used to estimate: leaf temperature as a function of

ambient temperature and flux rate variation with temperature for tree canopy and uncut grass (Azzi et. al., 2004; and Cope et. al., 2009); and flux rate variation with temperature for cut grass (Potter et. al., 2003) at 1 km by 1 km grid cells.

Figure 3-58 shows the monthly average temperature in the GMR by hour of day.

Figure 3-58: Monthly average temperature in the GMR by hour of day

Monthly average temperatures are presented in Table 3-76, while the gridded annual average temperature is shown in Figure 3-59 for the GMR.

Month	Temperature (°C)
January	24.5
February	23.2
March	19.2
April	14.9
May	11.9
June	9.7
July	8.3
August	9.0
September	11.9
October	15.1
November	19.8
December	24.4
Grand Total	16.0

Table 3-76: Monthly average temperature in the GMR

Air Emissions Inventory for the Greater Metropolitan Region of New South Wales 3. *Data Sources and Results*

Figure 3-59: Gridded annual average temperature

Emissions of VOC from tree canopy and uncut grass have been estimated using GIS data for genus specific speciated VOC emission rate, leaf area index, canopy height and leaf biomass (Azzi et. al., 2004) data combined with hourly average temperature data (Hurley, 2005) within *BEI-GIS v3.02* (Azzi et. al., 2004).

Figure 3-60 shows the *BEI-GIS v3.02* model options selected for tree canopy and uncut grass emission estimation simulation.

2008 Calendar Year Biogenic and Geogenic Emissions: Results 3. Data Sources and Results

Biogenic Emissions Inventory Spatial Extent © Greater Metroplitan Air Quality Study Area (MAQS) Lower Left: (20900, 6159000) Image: Comparison of the comparis						
Spatial Data		Value Field		Spatial Data Input Layers Value Field		
VOCs	VOC_GMR	VOC Use this Value	e= 10.52632	VOCs VOC_GMR VOC		
Leaf Area Index	Canopy Height GMR	HEIGHT	e= 20	Canopy Height GRR V HEIGHT Use this Value 20		
Leaf Biomass	Biomass_GMR	BIOMASS_[Vise this Value	e= 400	Leaf Biomass Biomass_GMR BIOMASS_[V Use this Value = 400		
Temperature	Temps_January_GMR	H1 Use this Valu	e= 30	Temperature Temps_January_GMR H1 Use this Value= 30		
I Append Temperature Name to Output I I Time varying temperatures				Append Temperature Name to Output		
Model Run Date	Model Run Date					
G Day	C Day dd 1 mm 1 yyyy 2008 y dd 1 mm 1 yyyy 2008 y					
Emission Species (ou	itput)		Save Performance Data	Emission Species (output)		
Image: Strange interface Image: Strange			V Isoorene V Ethanol V Monoterpene V Methanol V Acetone V Acetolehyde III Import CSV			
TAPM Temperature I	import Import MS Access data	base Run Model	Close	TAPM Temperature Import Import MS Access database Run Model Close		

Figure 3-60: BEI-GIS v3.02 tree canopy and uncut grass model options

A domestic survey of lawn mowing and garden equipment ownership and usage has been conducted, which includes each of the 64 local government areas (LGA) located in the GMR. The survey results include data about: equipment type, number and age; engine type and fuel used; frequency and duration of equipment use by hour, day and season; lawn area; and proportion of private and commercial usage (TR, 2009). Gridded 1 km by 1 km dwelling estimates (TDC, 2009) have been used to scale-up the lawn mowing and garden equipment survey results (TR, 2009). A detailed discussion about the activity data for residential lawn mowing and garden equipment is presented in the *Air Emissions Inventory for the Greater Metropolitan Region in New South Wales, 2008 Calendar Year Domestic-Commercial Emissions: Results* report.

The domestic survey data have been used to determine residential lawn mowing and garden equipment frequency and duration of use on an hourly, daily, monthly and annual basis and the lawn area mowed so that cut grass emissions can be estimated (Azzi et. al., 2004).

A commercial survey of lawn mowing and garden equipment ownership and usage has been conducted, which includes 5 golf courses and 9 LGA located in the GMR. The survey results include data about: equipment type, number and age; engine type and fuel used; and frequency and duration of equipment use by hour, day and season (DECC, 2007b). A detailed discussion about the activity data for public open space lawn mowing and garden equipment is presented in the *Air Emissions Inventory for the Greater Metropolitan Region in New South Wales, 2008 Calendar Year Domestic-Commercial Emissions: Results* report.

The 5 golf courses surveyed include Castle Hill Country Club, Killara Golf Club, Manly Golf Club, Pennant Hills Golf Course and St Michaels Golf Club (DECC, 2007b). The golf course survey results (DECC, 2007b) have been used to scale-up activity data to the 162 golf courses in the GMR (Iseekgolf.com, 2011) using the average activity levels for each golf course.

The 9 LGA surveyed include Auburn, Bankstown, Canada Bay, Great Lakes, Kiama, Ku-ring-gai, Newcastle, Port Stephens and Strathfield (DECC, 2007b). While the GMR includes 64 local

government areas (LGA), plus two areas designated N/A and unincorporated, the LGA survey results (DECC, 2007b) have been used to scale-up activity data to 59 LGA, plus the two areas designated N/A and unincorporated, using a linear regression of activity levels for each LGA.

The commercial survey data have been used to determine public open space lawn mowing and garden equipment frequency and duration of use on an hourly, daily, monthly and annual basis and the lawn area mowed so that cut grass emissions can be estimated (Azzi et. al., 2004).

Table 3-77 presents the residential and public open space lawn area and annual mowing frequency used to estimate emissions of VOC from cut grass.

Activity	Lawn ar	ea	
Attivity	m^2	ha	Lawn mowing frequency (mow/year)
Residential cut-grass	1,014,914,751	101,491	20.89
Public open space cut-grass	201,942,433	20,194	20.89
Grand Total	1,216,857,184	121,686	20.89

Table 3-77: Residential and public open space lawn area and annual lawn mowing frequency

3.5.4 *Emission and Speciation Factors*

Table 3-78 summarises the emission and speciation factors used for VOC from vegetation (i.e. tree canopy, uncut grass and cut grass).

Emission source	Substance	Estimation and speciation factor source		
Emissions of VOC	Criteria pollutants: VOC	 Biogenic Emissions in the Greater Sydney Region (Azzi et. al., 2004) Biogenic Emissions Inventory GIS Version 3.02 (Huber, 2005) 		
from tree canopy	Speciated VOC	 Biogenic Emissions in the Greater Sydney Region (Azzi et. al., 2004) Biogenic Emissions Inventory GIS Version 3.02 (Huber, 2005) 		
	Organic air toxics	 Biogenic Emissions in the Greater Sydney Region (Azzi et. al., 2004) Biogenic Emissions Inventory GIS Version 3.02 (Huber, 2005) 		
	Criteria pollutants: VOC	 Biogenic Emissions in the Greater Sydney Region (Azzi et. al., 2004) Biogenic Emissions Inventory GIS Version 3.02 (Huber, 2005) 		
from uncut grass	Speciated VOC	 Biogenic Emissions in the Greater Sydney Region (Azzi et. al., 2004) Biogenic Emissions Inventory GIS Version 3.02 (Huber, 2005) 		
	Organic air toxics	 Biogenic Emissions in the Greater Sydney Region (Azzi et. al., 2004) Biogenic Emissions Inventory GIS Version 3.02 (Huber, 2005) 		
Emissions of VOC from cut grass	Criteria pollutants: VOC	- Biogenic Emissions in the Greater Sydney Region (Azzi et. al., 2004)		
	Speciated VOC	- Emissions of Volatile Organic Compounds (Primarily Oxygenated Species) from Pasture (Kirstine et. al., 1998)		
	Organic air toxics	- Emissions of Volatile Organic Compounds (Primarily Oxygenated Species) from Pasture (Kirstine et. al., 1998)		

Table 3-78: Tree canopy, uncut grass and cut grass emission and speciation factors

Figure 3-61 shows the estimated annual emission of VOC, speciated VOC and organic air toxics for tree canopy and uncut grass in the GMR using BEI-GIS v3.02.

Figure 3-61: BEI-GIS v3.02 tree canopy and uncut grass annual emission of VOC, speciated VOC and organic air toxics in the GMR

Table 3-79 presents the cut grass VOC emission factor (Kirstine et al., 1998).

Table 3-79: Cut grass VOC emission factor		
Emission factor Units of measure		
0.0020	g VOC/g leaf biomass/mow	

Table 3-80 presents the cut grass VOC and organic air toxic speciation factors (Kirstine et al., 1998).

Substance	Carbon (%)	VOC (%)
(E)-2-Hexenal	7.50	6.51
(Z)-2-Hexen-1-ol	0.50	0.44
(Z)-2-Hexenyl acetate	0.80	0.75
(Z)-3-Hexen-1-ol	8.90	7.88
(Z)-3-Hexenal	12.70	11.02
(Z)-3-Hexenyl acetate	39.50	37.26
1-Octen-3-ol	1.20	1.02
1-Penten-3-ol	1.20	1.10
3-Pentanone	0.10	0.09
Acetaldehyde	3.60	4.21
Acetone	1.50	1.54
Butanone	0.60	0.57
Ethanol	0.50	0.61
Hexanal	1.60	1.42
Methanol	9.40	15.98
Nonanal	0.80	0.67
Propanol	0.90	0.96
Unidentified	8.70	7.96
Total	100.00	100.00

Table 3-80: Cut grass VOC and organic air toxic speciation factors

3.5.5 Spatial Distribution of Emissions

Table 3-68 summarises the data used for spatially allocating emissions of VOC from vegetation (i.e. tree canopy, uncut grass and cut grass).

Emission source	Spatial data	Spatial data source
Emissions of VOC from tree canopy	GIS layer for genus specific speciated VOC emission rate, leaf area index, canopy height and leaf biomass combined with gridded 1 km x 1 km temperature estimates	 Biogenic Emissions in the Greater Sydney Region (Azzi et. al., 2004) Biogenic Emissions Inventory GIS Version 3.02 (Huber, 2005) The Air Pollution Model (TAPM) Version 3 (Hurley, 2005)
Emissions of VOC from uncut grass	GIS layer for genus specific speciated VOC emission rate, leaf area index and leaf biomass combined with gridded 1 km x 1 km temperature estimates	 Biogenic Emissions in the Greater Sydney Region (Azzi et. al., 2004) Biogenic Emissions Inventory GIS Version 3.02 (Huber, 2005) The Air Pollution Model (TAPM) Version 3 (Hurley, 2005)
Emissions of VOC from cut grass	Gridded 1 km x 1 km free standing dwelling estimates for residential lawn mowing	 Forecasts for Free Standing Dwelling from 2006 to 2036 (TDC, 2009)
	Gridded 1 km x 1 km population estimates (≥ 50 per grid cell) for public open space lawn mowing	- Forecasts for Population from 2006 to 2036 (TDC, 2009)

Table 3-81: Tree canopy, uncut grass and cut grass spatial data

Emissions of VOC from tree canopy and uncut grass have been spatially distributed using GIS layers for genus specific speciated VOC emission rate, leaf area index, canopy height and leaf biomass combined with gridded 1 km x 1 km temperature estimates.

Figure 3-62 and Figure 3-63 show the spatial distribution of VOC emissions from tree canopy and uncut grass, respectively.

Air Emissions Inventory for the Greater Metropolitan Region of New South Wales 3. *Data Sources and Results*

Figure 3-62: Tree canopy spatial distribution of emissions

Figure 3-63: Uncut grass spatial distribution of emissions

Emissions of cut grass VOC from residential lawn mowing have been spatially distributed according to lawn area, which is proportional to free standing dwellings in each 1 km by 1 km grid cell (TDC, 2009). The lawn area by LGA and region is presented in Table 3-82 and shown in Figure 3-64.

	2008 proportion of lawn area (%)				
LGA	Newcastle	Non Urban	Sydney	Wollongong	Grand Total
Ashfield	-	-	0.72	-	0.72
Auburn	-	-	0.94	-	0.94
Bankstown	-	-	3.37	-	3.37
Bathurst Regional	-	2.78×10^{-3}	-	-	2.78×10^{-3}
Baulkham Hills	-	2.50×10^{-3}	3.50	-	3.50
Blacktown	-	-	5.92	-	5.92
Blue Mountains	-	0.70	1.28	-	1.97
Botany Bay	-	-	0.53	-	0.53
Burwood	-	-	0.47	-	0.47
Camden	-	-	1.19	-	1.19
Campbelltown	-	-	3.26	-	3.26
Canada Bay	-	-	1.06	-	1.06
Canterbury	-	-	2.08	-	2.08
Cessnock	4.90 × 10-2	1.11	-	-	1.15
Dungog	-	0.18	-	-	0.18
Fairfield	-	-	3.39	-	3.39
Gosford	-	1.06	2.87	-	3.93
Goulburn Mulwaree	-	5.41×10^{-3}	-	-	5.41×10^{-3}
Great Lakes	-	8.49×10^{-2}	-	-	8.49×10^{-2}
Hawkesbury	-	2.90×10^{-2}	1.34	-	1.37
Holroyd	-	-	1.77	-	1.77
Hornsby	-	4.26×10^{-3}	3.07	-	3.08
Hunters Hill	-	-	0.15	-	0.15
Hurstville	-	-	1.50	-	1.50
Kiama	-	0.32	-	-	0.32
Kogarah	-	-	0.92	-	0.92
Ku-ring-gai	-	-	2.14	-	2.14
Lake Macquarie	2.46	2.21	-	-	4.66
Lane Cove	-	-	0.43	-	0.43
Leichhardt	-	-	0.83	-	0.83
Lithgow	-	0.45	-	-	0.45
Liverpool	-	-	3.26	-	3.26
Maitland	0.12	1.39	-	-	1.51
Manly	-	-	0.49	-	0.49
Marrickville	-	-	1.51	-	1.51
Mid-western Regional	-	6.41 × 10 ⁻²	-	-	6.41 × 10 ⁻²
Mosman	-	-	0.42	-	0.42
Muswellbrook	-	0.31	-	-	0.31
N/A	1.46 × 10 ⁻²	6.58×10^{-2}	0.27	3.05×10^{-2}	0.38
Newcastle	3.48	-	-	-	3.48
North Sydney	-	-	0.55	-	0.55
Oberon	-	2.87×10^{-2}	-	-	2.87×10^{-2}
Parramatta	-	-	2.50	-	2.50
Penrith	-	-	3.81	-	3.81
Pittwater	-	-	1.16	-	1.16

Table 3-82: Residential cut grass spatial distribution of lawn area by LGA and region

2008 Calendar Year Biogenic and Geogenic Emissions: Results 3. Data Sources and Results

ICA	2008 proportion of lawn area (%)					
	Newcastle	Non Urban	Sydney	Wollongong	Grand Total	
Port Stephens	$7.89\times10^{\text{-}2}$	1.31	-	-	1.39	
Randwick	-	-	1.69	-	1.69	
Rockdale	-	-	1.39	-	1.39	
Ryde	-	-	1.90	-	1.90	
Shellharbour	-	1.10	-	0.34	1.44	
Shoalhaven	-	2.06 × 10 ⁻³	-	-	2.06 × 10 ⁻³	
Singleton	-	0.44	-	-	0.44	
Strathfield	-	-	0.50	-	0.50	
Sutherland	-	-	4.15	-	4.15	
Sydney	-	-	1.53	-	1.53	
Unincorporated	-	-	0.54	-	0.54	
Upper Lachlan	-	$8.65 imes 10^{-4}$	-	-	8.65×10^{-4}	
Warringah	-	-	2.39	-	2.39	
Waverley	-	-	0.64	-	0.64	
Willoughby	-	-	0.99	-	0.99	
Wingecarribee	-	1.10	$6.02 imes 10^{-3}$	1.94×10^{-3}	1.11	
Wollondilly	-	$1.49\times10^{\text{-}2}$	0.93	4.83×10^{-4}	0.95	
Wollongong	-	-	0.33	3.72	4.05	
Woollahra	-	-	0.50	-	0.50	
Wyong	-	3.57	-	-	3.57	
Grand Total	6.20	15.55	74.16	4.09	100.00	

Figure 3-65 shows the spatial distribution of residential cut grass emissions.

Air Emissions Inventory for the Greater Metropolitan Region of New South Wales 3. *Data Sources and Results*

Figure 3-65: Residential cut grass spatial distribution of emissions

Emissions of cut grass VOC from public open space lawn mowing have been spatially distributed according to lawn area, which is proportional to population \geq 50 persons in each 1 km by 1 km grid cell (TDC, 2009). The lawn area by LGA and region is presented in Table 3-83 and shown in Figure 3-66.

Table 3-83: Public open space cut grass spatial distribution of lawn area by LGA and region

	2008 proportion of lawn area (%)				
LGA	Newcastle	Non Urban	Sydney	Wollongong	Grand Total
Ashfield	-	-	0.92	-	0.92
Auburn	-	-	1.34	-	1.34
Bankstown	-	-	3.36	-	3.36
Baulkham Hills	-	-	3.23	-	3.23
Blacktown	-	-	5.51	-	5.51
Blue Mountains	-	0.48	1.00	-	1.48
Botany Bay	-	-	0.64	-	0.64
Burwood	-	-	0.58	-	0.58
Camden	-	-	1.04	-	1.04
Campbelltown	-	-	2.88	-	2.88
Canada Bay	-	-	1.14	-	1.14
Canterbury	-	-	2.67	-	2.67
Cessnock	3.36 × 10 ⁻²	0.79	-	-	0.83
Dungog	-	6.63 × 10 ⁻²	-	-	6.63 × 10 ⁻²
Fairfield	-	-	3.64	-	3.64
Gosford	-	0.85	2.22	-	3.06
Great Lakes	-	3.15×10^{-2}	-	-	3.15 × 10-2
Hawkesbury	-	5.14×10^{-3}	1.04	-	1.04
Holroyd	-	-	1.84	-	1.84
Hornsby	-	-	3.06	-	3.06
Hunters Hill	-	-	0.18	-	0.18
Hurstville	-	-	1.58	-	1.58
Kiama	-	0.26	-	-	0.26
Kogarah	-	-	1.11	-	1.11
Ku-ring-gai	-	-	2.06	-	2.06
Lake Macquarie	1.98	1.72	-	-	3.70
Lane Cove	-	-	0.55	-	0.55
Leichhardt	-	-	0.77	-	0.77
Lithgow	-	0.29	-	-	0.29
Liverpool	-	-	3.40	-	3.40
Maitland	0.10	1.11	-	-	1.21
Manly	-	-	0.65	-	0.65
Marrickville	-	-	1.68	-	1.68
Mid-western Regional	-	3.67×10^{-2}	-	-	3.67×10^{-2}
Mosman	-	-	0.60	-	0.60
Muswellbrook	-	0.23	-	-	0.23
N/A	2.48×10^{-2}	5.06×10^{-2}	0.36	6.08 × 10-2	0.49
Newcastle	2.90	-	-	-	2.90
North Sydney	-	-	1.04	-	1.04
Oberon	-	1.64×10^{-2}	-	-	1.64×10^{-2}
Parramatta	-	-	2.94	-	2.94
Penrith	-	-	3.36	-	3.36
Pittwater	-	-	1.05	-	1.05
Port Stephens	3.70×10^{-2}	0.98	-	-	1.02
Randwick	-	-	2.53	-	2.53

Air Emissions Inventory for the Greater Metropolitan Region of New South Wales 3. *Data Sources and Results*

LGA	2008 proportion of lawn area (%)				
LON	Newcastle	Non Urban	Sydney	Wollongong	Grand Total
Rockdale	-	-	1.73	-	1.73
Ryde	-	-	2.03	-	2.03
Shellharbour	-	0.94	-	0.30	1.24
Singleton	-	0.30	-	-	0.30
Strathfield	-	-	0.75	-	0.75
Sutherland	-	-	4.10	-	4.10
Sydney	-	-	3.23	-	3.23
Unincorporated	-	-	0.82	-	0.82
Warringah	-	-	2.72	-	2.72
Waverley	-	-	1.10	-	1.10
Willoughby	-	-	1.34	-	1.34
Wingecarribee	-	0.73	$1.48 imes 10^{-3}$	-	0.73
Wollondilly	-	$1.10\times10^{\text{-}2}$	0.60	-	0.61
Wollongong	-	-	0.29	3.41	3.70
Woollahra	-	-	0.86	-	0.86
Wyong	-	2.72	-	-	2.72
Grand Total	5.08	11.62	79.53	3.77	100.00

Figure 3-66: Public open space cut grass spatial distribution of lawn area by LGA

Figure 3-67 shows the spatial distribution of public open space cut grass emissions.

Figure 3-67: Public open space cut grass spatial distribution of emissions

3.5.6 Temporal Variation of Emissions

Table 3-84 summarises the data used to estimate the temporal variation in emissions of VOC from vegetation (i.e. tree canopy, uncut grass and cut grass).

Emission source	Temporal data	Temporal data source
Emissions of VOC from tree canopy	Monthly, daily and hourly: Gridded 1 km x 1 km leaf temperature as a function of ambient temperature estimates	 Biogenic Emissions in the Greater Sydney Region (Azzi et. al., 2004) Biogenic Emissions Inventory GIS Version 3.02 (Huber, 2005) The Air Pollution Model (TAPM) Version 3 (Hurley, 2005)
Emissions of VOC from uncut grass	Monthly, daily and hourly: Gridded 1 km x 1 km leaf temperature as a function of ambient temperature estimates	 Biogenic Emissions in the Greater Sydney Region (Azzi et. al., 2004) Biogenic Emissions Inventory GIS Version 3.02 (Huber, 2005) The Air Pollution Model (TAPM) Version 3 (Hurley, 2005)
	Monthly: Lawn mowing frequency combined with gridded 1 km x 1 km temperature correction factor estimates	 Domestic lawn mowing: Domestic Lawn Mowing Pollution Survey (TR, 2009) Public open space lawn mowing: Public Open Space Lawn Mowing Pollution Survey (DECC, 2007) The Air Pollution Model (TAPM) Version 3 (Hurley, 2005) Modeling Terrestrial Biogenic Sources of Oxygenated Organic Emissions (Potter et. al., 2003)
VOC from cut grass	Daily and hourly: Lawn mowing frequency combined with exponential decay for initial leaf wounding followed by leaf drying emission phases	 Domestic lawn mowing: Domestic Lawn Mowing Pollution Survey (TR, 2009) Public open space lawn mowing: Public Open Space Lawn Mowing Pollution Survey (DECC, 2007) Biogenic Emissions in the Greater Sydney Region (Azzi et. al., 2004) Emissions of Volatile Organic Compounds (Primarily Oxygenated Species) from Pasture (Kirstine et. al., 1998)

Table 3-84: Tree canopy, uncut grass and cut grass temporal data

Hourly average meteorological data including temperature have been generated for the GMR at 2 km by 2 km grid cells with *TAPM* (Hurley, 2005) and used to estimate leaf temperature as a function of ambient temperature and flux rate variation with temperature for tree canopy and uncut grass (Azzi et. al., 2004; and Cope et. al., 2009) at 1 km by 1 km grid cells.

While the temporal variation in emissions is different for each 1 km by 1 km grid cell where there are emissions of VOC from tree canopy and uncut grass, Figure 3-68, Figure 3-69 and Figure 3-70 show the hourly, daily and monthly variation in VOC, speciated VOC and organic air toxics emissions in the GMR for all areas with tree canopy and uncut grass.

Figure 3-68: Tree canopy and uncut grass hourly variation in VOC, speciated VOC and organic air toxics emissions

Figure 3-69: Tree canopy and uncut grass daily variation in VOC, speciated VOC and organic air toxics emissions

■Acetaldehyde ■Acetone □Ethanol □Isoprene ■Methanol ■Monoterpenes ■VOC

weekend

weekday

1,000,000

500,000

0

Figure 3-70: Tree canopy and uncut grass monthly variation in VOC, speciated VOC and organic air toxics emissions

Domestic (TR, 2009) and commercial (DECC, 2007b) survey data have been used to determine lawn mowing and garden equipment frequency and duration of use on an hourly, daily and monthly basis so the temporal variation in cut grass emissions can be estimated.

The hourly and daily temporal variation in emissions from cut grass has been estimated by combining the hourly and daily frequency and duration of lawn mowing and garden equipment use with the cut grass event based model results presented in Table 3-85, Table 3-86 and Table 3-87.

Monthly emissions of VOC, speciated VOC and organic air toxics from residential and public open space cut grass have been estimated by multiplying the results of Equation 18 (Azzi et. al., 2004) with the normalised monthly cut grass temperature correction factor. By summing all of the monthly cut grass temperature correction factors for the year and then dividing each individual month by the sum, the cut grass temperature correction factor has been normalised to 1. These normalised monthly numbers provide the temperature based temporal profile. Annual emissions are calculated first and then multiplied by the normalised monthly cut grass temperature correction factor to estimate monthly emissions.

The monthly temporal variation in emissions from cut grass has been estimated by combining the monthly frequency and duration of lawn mowing and garden equipment use with the cut grass temperature correction factor. The cut grass temperature correction factor for each month has been estimated using ambient temperature within Equation 20 (Potter et. al., 2003):

$$CF_{i,j} = P_{i,j} \times 0.00192 \times \exp\left[0.11(T_{a,i,j} - 303)\right] / \sum_{i=1}^{24} \left(\sum_{j=1}^{12} \left(P_{i,j} \times 0.00192 \times \exp\left[0.11(T_{a,i,j} - 303)\right] \right) \right)$$
Equation 20

where:			
CF _{i,j}	=	Cut grass temperature correction factor for hour i and month j	(-)
$P_{i,j}$	=	Proportion of total VOC emission rate for hour i and month j	(number)
T _{a,i,j}	=	Temperature of ambient air for hour i and month j	(K)
i	=	Hour (from "1" to "24")	(number)
j	=	Month (from "1" to "12")	(number)

During the primary leaf wounding phase (commencing at t = 0 h), VOC emissions from cut grass exponentially decay at the rate of -0.3 h⁻¹ and 0.0 h⁻¹ during day 1 to 2 and day 3 to 7, respectively, while cumulative VOC emissions during this phase make up approximately 33% of the total for both phases (Azzi et. al., 2004; and Kirstine et. al., 1998). The secondary leaf drying phase (commencing at t = 3 h) exhibits exponential decay rates of -0.0438 h⁻¹, -0.1141 h⁻¹ and 0.0 h⁻¹ during day 1, day 2 and day 3 to 7, respectively, while cumulative VOC emissions during this phase make up approximately 67% of the total for both phases (Azzi et. al., 2004; and Kirstine et. al., 1998).

VOC emissions from cut grass have been estimated to be 2×10^{-3} kg/kg leaf biomass/mow, 8×10^{-5} kg/m²/mow or 1.67 x 10⁻³ kg/m² based on an annual mowing frequency of 20.89 (DECC, 2007b; and TR, 2009).

Table 3-85, Table 3-86 and Table 3-87 present key parameters for estimating the hourly and daily temporal variation in VOC emission rate from cut grass, while Figure 3-71 shows the cut grass event based hourly and daily variation in VOC emission rate.

Table 3-85: Cut grass hourly and daily temporal variation in VOC emission rate during primary leaf wounding and secondary drying phase

Grass cutting phase	ass cutting phase Time period (day) Exponential decay rate (h-1)		Proportion of VOC (%)
Locforentia	1 to 2	-0.3000	33.33
Lear wounding	3 to 7	3 to 7 0.0000	
	1	-0.0438	46.69
Leaf drying	2	-0.1141	9.98
	3 to 7	0.0000	10.00

Table 3-86: Cut grass event based hourly temporal variation in VOC emission rate

	Leaf wour	nding	Leaf dry	Leaf drying		Grand Total	
Hour	VOC emission rate (kg/m²/mow/h)	Proportion of VOC (%)	VOC emission rate (kg/m²/mow/h)	Proportion of VOC (%)	VOC emission rate (kg/m²/mow/h)	Proportion of VOC (%) ¹⁸	
1	6.91 × 10 ⁻⁶	10.80	-	-	6.91 × 10 ⁻⁶	10.80	
2	5.12×10^{-6}	8.00	-	-	5.12×10^{-6}	8.00	
3	3.79 × 10-6	5.93	2.59 × 10-6	4.04	6.38 × 10-6	9.97	
4	2.81 × 10-6	4.39	2.48×10^{-6}	3.87	5.29 × 10-6	8.26	
5	2.08×10^{-6}	3.25	2.37×10^{-6}	3.71	$4.45 imes 10^{-6}$	6.96	
6	1.54×10^{-6}	2.41	2.27×10^{-6}	3.55	3.81×10^{-6}	5.96	
7	1.14×10^{-6}	1.79	2.17 × 10-6	3.39	3.31×10^{-6}	5.18	
8	8.46×10^{-7}	1.32	2.08×10^{-6}	3.25	2.93 × 10-6	4.57	
9	6.27 × 10 ⁻⁷	0.98	$1.99\times10^{\text{-}6}$	3.11	2.62×10^{-6}	4.09	
10	4.64×10^{-7}	0.73	$1.90\times10^{\text{-}6}$	2.98	2.37×10^{-6}	3.70	
11	3.44×10^{-7}	0.54	1.82×10^{-6}	2.85	2.17×10^{-6}	3.39	
12	2.55×10^{-7}	0.40	$1.75 imes 10^{-6}$	2.73	2.00×10^{-6}	3.12	
13	1.89×10^{-7}	0.30	1.67×10^{-6}	2.61	1.86×10^{-6}	2.90	
14	1.40×10^{-7}	0.22	1.60×10^{-6}	2.50	$1.74 imes 10^{-6}$	2.72	
15	1.04×10^{-7}	0.16	1.53×10^{-6}	2.39	1.63×10^{-6}	2.55	
16	$7.68\times10^{\text{-8}}$	0.12	$1.46 imes 10^{-6}$	2.29	1.54×10^{-6}	2.41	
17	$5.69 imes 10^{-8}$	$8.89\times10^{\text{-}2}$	$1.40 imes 10^{-6}$	2.19	$1.46 imes 10^{-6}$	2.28	
18	4.21×10^{-8}	$6.58 imes 10^{-2}$	1.34×10^{-6}	2.10	$1.38 imes 10^{-6}$	2.16	
19	3.12×10^{-8}	$4.88\times10^{\text{-}2}$	1.28×10^{-6}	2.01	1.32×10^{-6}	2.06	
20	2.31 × 10 ⁻⁸	$3.61\times10^{\text{-}2}$	1.23 × 10 ⁻⁶	1.92	1.25×10^{-6}	1.96	
21	1.71×10^{-8}	2.68×10^{-2}	$1.18 imes 10^{-6}$	1.84	$1.19 imes 10^{-6}$	1.86	
22	1.27×10^{-8}	$1.98 imes 10^{-2}$	1.13×10^{-6}	1.76	$1.14 imes 10^{-6}$	1.78	
23	9.40 × 10 ⁻⁹	$1.47\times10^{\text{-}2}$	1.08×10^{-6}	1.68	1.09×10^{-6}	1.70	
24	6.97 × 10 ⁻⁹	$1.09\times10^{\text{-}2}$	1.03 × 10 ⁻⁶	1.61	1.04×10^{-6}	1.62	
Grand Total	2.66 × 10 ⁻⁵	41.63	$3.74 imes 10^{-5}$	58.37	6.40× 10-5	100.00	

¹⁸ Proportion of VOC (%) relate to the grand total VOC emission rate integrated over the first 24 hours.

Day	Grand Total VOC emission rate (kg/m²/mow/day) ¹⁹	Proportion of VOC (%)
1	$6.40 imes 10^{-5}$	80.00
2	8.00×10^{-6}	10.00
3	1.60×10^{-6}	2.00
4	1.60×10^{-6}	2.00
5	1.60×10^{-6}	2.00
6	1.60×10^{-6}	2.00
7	1.60×10^{-6}	2.00
Grand Total	8.00×10^{-5}	100.00

Table 3-87: Cut grass event based daily temporal variation in VOC emission rate

 $^{^{19}}$ Grand Total VOC emission rate (kg/m²/mow/day) includes both the leaf wounding and leaf drying phases.

Figure 3-71: Residential and public open space cut grass event based hourly and daily variation in VOC emission rate

While the temporal variation in emissions is different for each 1 km by 1 km grid cell where there are emissions of VOC from cut grass, Figure 3-72, Figure 3-73 and Figure 3-74 show the hourly, daily and monthly variation in lawn mowing rate and VOC emission rate in the GMR for all areas with residential and public open space cut grass.

Air Emissions Inventory for the Greater Metropolitan Region of New South Wales 3. *Data Sources and Results*

Figure 3-72: Residential and public open space cut grass hourly variation in lawn mowing rate and VOC emission rate

Figure 3-73: Residential and public open space cut grass daily variation in lawn mowing rate and VOC emission rate

Air Emissions Inventory for the Greater Metropolitan Region of New South Wales 3. *Data Sources and Results*

Figure 3-74: Residential and public open space cut grass monthly variation in lawn mowing rate and VOC emission rate

3.5.7 *Emission Estimates*

Table 3-88 presents annual emissions of selected substances from vegetation (i.e. tree canopy, uncut grass and cut grass) by activity.

	Table 5-60. The catopy, uncut grass and cut grass emissions by activity					
Activity	Substance	Emissions (kg/year)				
Activity	Substance	Newcastle	Non Urban	Sydney	Wollongong	GMR
	ACETALDEHYDE	15,888	864,530	200,615	13,696	1,094,729
Vegetation	TOTAL VOLATILE ORGANIC COMPOUNDS	3,382,641	128,284,925	32,083,583	3,439,484	167,190,633

Table 3-88: Tree canopy, uncut grass and cut grass emissions by activity

Table 3-89 presents annual emissions of selected substances from vegetation (i.e. tree canopy, uncut grass and cut grass) by source type.

Source type	Substance	Emissions (kg/year)					
oburee type	oubstance	Newcastle	Non Urban	Sydney	Wollongong	GMR	
Tree Canopy	TOTAL VOLATILE ORGANIC COMPOUNDS	3,207,096	123,755,940	29,880,726	3,306,558	160,150,320	
	ACETALDEHYDE	10,745	851,781	136,401	10,240	1,009,167	
Uncut Grass	TOTAL VOLATILE ORGANIC COMPOUNDS	4,225,977	676,735	50,805	5,006,828		
	ACETALDEHYDE	4,422	11,099	52,920	2,920	71,362	
Cut Grass (Domestic)	TOTAL VOLATILE ORGANIC COMPOUNDS	105,100	263,786	1,257,727	69,407	1,696,020	
Cut Grass (Public Open Space)	ACETALDEHYDE	721	1,650	11,293	535	14,199	
	TOTAL VOLATILE ORGANIC COMPOUNDS	17,134	39,221	268,395	12,715	337,465	

Table 3-89: Tree canopy, uncut grass and cut grass emissions by source type

3.6 Marine Aerosol

3.6.1 Emission Source Description

The biogenic and geogenic air emissions inventory includes emissions of sea-salt aerosols from the action of surface wind on the open-ocean.

To estimate emissions from this source, the following have been considered:

> *Generation of sea-salt aerosols*

The generation of sea-salt aerosols has been attributed to various physical processes (Blanchard, 1983). The most significant process is when entrained air bubbles burst during the formation of whitecaps through surface wind action, which ejects jet and film droplets from the sea surface (Monahan et. al., 1986). Most of the bubbles are formed when air is trapped through breaking waves. Since the energy dissipated in breaking waves is derived from surface wind action, the number of breaking waves is proportional to wind speed and the generation of sea-salt aerosols is proportional to whitecap coverage. The generation of sea-salt aerosols by either splash or bubbles, which are produced from precipitation, are of lesser significance than those generated when entrained air bubbles burst during the formation of whitecaps (Gong et. al., 1997). While sea-salt aerosols can be generated in the open-ocean and surf-zone, the inventory includes indirect production by bubbles (i.e. whitecaps) and direct production by spumes (i.e. breaking waves) in open-ocean. Figure 3-75 shows the physical processes involved in the generation of sea-salt aerosols (Monahan et. al., 1986).

Figure 3-75: Physical processes involved in the generation of sea-salt aerosols include (a) indirect production by bubbles and (b) direct production by spumes

> Ocean area

The sea-salt aerosol source functions (Gong, 2003; Monahan et. al., 1986; and Smith et. al., 1998) express the rate of droplet generation per unit area of open-ocean, per increment of droplet radius and per unit of time (i.e. droplet number/ m^2 .µm.s). The open-ocean area in each 1 km by 1 km grid cell (DECCW, 2009c) has been used to estimate the emissions of sea-salt aerosols in the GMR.

> Meteorological data

The sea-salt aerosol source functions (Gong, 2003; Monahan et. al., 1986; and Smith et. al., 1998) are proportional to the wind speed raised to a power (i.e. wind speed ^{(3 to 3.5}).kg/m².s)²⁰. Hourly average meteorological data including wind speed have been generated for the GMR at 2 km by 2 km grid cells with *TAPM* (Hurley, 2005) and used to estimate the emissions of sea-salt aerosols in the GMR at 1 km by 1 km grid cells.

3.6.2 Emission Estimation Methodology

Table 3-90 summarises the emission estimation methodologies used for emissions of sea-salt aerosols from the action of surface wind on the open-ocean.

Emission source	Emission estimation methodology source
	- Initial Applications of Sea Salt Aerosol Emissions and Chemistry
	Algorithms in the CMAQ v4.5 – AERO4 Module (Shankar et. al.,
	2005)
Emissions of sea-salt aerosols from the	- A Parameterization of Sea-Salt Aerosol Source Function for Sub- and
action of surface wind on the open-ocean	Super-Micron Particles (Gong, 2003)
	- A Model of Marine Aerosol Generation via Whitecaps and Wave
	Disruption (Monahan et. al., 1986)
	- The Sea Spray Generation Function (Smith et. al., 1998)

Table 3-90: Marine aerosol emission estimation methodologies

Emissions of sea-salt aerosols have been estimated using the *CMAQ* v4.5 – *AERO4 Module* methodology (Shankar et. al., 2005). The comparison of three sea-salt aerosol flux parameterisations concludes (Shankar et. al., 2005):

- > GM03 (Gong, 2003) performs best for 0.06 μ m \leq r₈₀ < 1 μ m²¹;
- > M86 (Monahan et. al., 1986) performs best for 1 μ m \leq r₈₀ < 10 μ m; and
- > SH98 (Smith et. al., 1998) performs best for $10 \ \mu m \le r_{80} < 150 \ \mu m$.

²⁰ Wet sea-salt droplet number generation is proportional to the wind speed at 10 m raised to a power varying from 3 to 3.5 (Gong, 2003; Monahan et. al., 1986; and Smith et. al., 1998).

 $^{^{21}}$ r₈₀ is the wet sea-salt droplet radius (µm) at a reference relative humidity of 80% (Gong, 2003; Monahan et. al., 1986; and Smith et. al., 1998).

The number of wet sea-salt droplets has been estimated using the GM03, M86 and SH98 flux parameterisations as piecewise functions (i.e. the range over which each parameterisation performs best) within Equation 21 (Gong, 2003; Monahan et. al., 1986; and Smith et. al., 1998):

where:		
$\frac{dF_{N-open-ocean}^{G03,M86 \text{ or } SH98}}{dr_{80}}$	 Wet sea-salt droplet generation per unit area of open- ocean, per increment of droplet radius at a reference relative humidity of 80% and per unit of time 	(droplet number/m².µm.s)
U ₁₀	 Hourly average wind speed at an elevation of 10 m from the water surface 	(m/s)
$\mathbf{A}_{\mathbf{G03}}$	$= 4.7 \left(1 + 30r_{80}\right)^{-0.017r_{80}^{-1.44}}$	(-)
B _{G03}	$= (0.433 - \log_{10} r_{s0}) / 0.433$	(-)
B _{M86}	$= (0.380 - \log_{10} r_{80}) / 0.650$	(-)
$\mathbf{A}_{\mathrm{SH98}}^1$	$= 0.2U_{10}^{3.5}$	(-)
$\mathbf{A}^2_{\mathrm{SH98}}$	$= 6.8 \times 10^{-3} U_{10}^{3}$	(-)
$\mathbf{f_1}$	= 1.5	(-)
f ₂	= 1.0	(-)
r ₀₁	= 3	(µm)
r ₀₂	= 30	(µm)

The mass emissions of dry sea-salt particles with an aerodynamic equivalent diameter up to 2.5 μ m (PM_{2.5}) have been estimated by integrating and summing each of the GM03 and M86 flux parameterisations using Simpson's rule. The limits of integration for wet sea-salt droplet radii (r₈₀) using G03 and M86 are 0.06 to 1.00 μ m and 1.00 to 1.76 μ m, respectively and these include dry sea-salt aerodynamic equivalent particle diameters (d_{dry-aero}) up to 2.5 μ m. The GM03 and M86 integrals have been combined with the open-ocean area (DECCW, 2009c) and hourly average wind speed data (Hurley, 2005) in each 1 km by 1 km grid cell using Equation 22 (Gong, 2003; and Monahan et. al., 1986):

$E_{ss}^{G03} = \frac{4 \times \pi \times \rho_{ss}}{3 \times C_{80}^3} \times 10^{-15} \times \prod_{r_{80,i}=0.06}^{r_{80,i+1}=1.00} \left(r_{80}^3 \times \frac{dF_{N-open-ocean}^{G03}}{dr_{80}} dr_{80} \right)$	F (1 00
$E_{ss}^{M86} = \frac{4 \times \pi \times \rho_{ss}}{3 \times C_{80}^3} \times 10^{-15} \times \int_{r_{s0,i}=1.00}^{r_{s0,i+1}=1.76} \left(r_{80}^3 \times \frac{dF_{N-open-ocean}^{M86}}{dr_{80}} dr_{80} \right)$	Equation 22

where:			
$E_{ss}^{G03} + E_{ss}^{M86}$	=	Mass emissions of dry sea-salt particles with aerodynamic equivalent diameters of $2.5 \ \mu m (PM_{2.5})$	(kg/m².s)
$\frac{dF^{G03orM86}_{N-open-ocean}}{dr_{80}}$	=	Wet sea-salt droplet generation per unit area of open- ocean, per increment of droplet radius at a reference relative humidity of 80% and per unit of time	(droplet number/m².µm.s)
$ ho_{ss}$	=	Density of sea-salt - 2,165 (Lewis et. al., 2006)	(kg/m³)
C ₈₀	=	$r_{ m s0}/r_{ m dry}$	(-)
r ₈₀	=	Wet sea-salt droplet radius at a reference relative humidity of 80%	(μm)
r _{dry}	=	Dry sea-salt particle radius	(µm)

The mass emissions of dry sea-salt particles with an aerodynamic equivalent diameter up to 10 μ m (PM₁₀) have been estimated by integrating and summing each of the GM03 and M86 flux parameterisations using Simpson's rule. The limits of integration for wet sea-salt droplet radii (r₈₀) using G03 and M86 are 0.06 to 1.00 μ m and 1.00 to 7.25 μ m, respectively and these include dry sea-salt aerodynamic equivalent particle diameters (d_{dry-aero}) up to 10 μ m. The GM03 and M86 integrals have been combined with the open-ocean area (DECCW, 2009c) and hourly average wind speed data (Hurley, 2005) in each 1 km by 1 km grid cell using Equation 23 (Gong, 2003; and Monahan et. al., 1986):

$$\begin{split} \mathbf{E}_{ss}^{G03} &= \frac{4 \times \pi \times \rho_{ss}}{3 \times C_{80}^3} \times 10^{-15} \times \prod_{\mathbf{r}_{80,i+1}=0.06}^{\mathbf{r}_{80,i+1}=1.00} \left(\mathbf{r}_{80}^3 \times \frac{d\mathbf{F}_{N-open-ocean}^{G03}}{d\mathbf{r}_{80}} d\mathbf{r}_{80} \right) \\ \mathbf{E}_{ss}^{M86} &= \frac{4 \times \pi \times \rho_{ss}}{3 \times C_{80}^3} \times 10^{-15} \times \prod_{\mathbf{r}_{80,i+1}=7.25}^{\mathbf{r}_{80,i+1}=7.25} \left(\mathbf{r}_{80}^3 \times \frac{d\mathbf{F}_{N-open-ocean}^{M86}}{d\mathbf{r}_{80}} d\mathbf{r}_{80} \right) \end{split}$$
Equation 23

where:			
$E_{ss}^{G03}+E_{ss}^{M86}$	=	Mass emissions of dry sea-salt particles with aerodynamic equivalent diameters of 10 μ m (PM ₁₀)	(kg/m².s)
$\frac{dF^{G03orM86}_{N-open-ocean}}{dr_{80}}$	=	Wet sea-salt droplet generation per unit area of open- ocean, per increment of droplet radius at a reference relative humidity of 80% and per unit of time	(droplet number/m².µm.s)
$ ho_{ss}$	=	Density of sea-salt - 2,165 (Lewis et. al., 2006)	(kg/m³)
C ₈₀	=	$r_{s0}/r_{ m dry}$	(-)
r ₈₀	=	Wet sea-salt droplet radius at a reference relative humidity of 80%	(µm)
r _{dry}	=	Dry sea-salt particle radius	(µm)
The mass emissions of dry sea-salt particles with aerodynamic equivalent diameters up to 30 μ m (TSP)²² have been estimated by integrating and summing each of the GM03, M86 and SH98 flux parameterisations using Simpson's rule. The limits of integration for wet sea-salt droplet radii (r_{80}) using G03, M86 and SH98 are 0.06 to 1.00 μ m, 1.00 to 10.00 μ m and 10.00 to 22.33 μ m, respectively and these include dry sea-salt aerodynamic equivalent particle diameters ($d_{dry-aero}$) up to 30 μ m. The GM03, M86 and SH98 integrals have been combined with the open-ocean area (DECCW, 2009c) and hourly average wind speed data (Hurley, 2005) in each 1 km by 1 km grid cell using Equation 24 (Gong, 2003; Monahan et. al., 1986; and Smith et. al., 1998):

$$\begin{split} \mathbf{E}_{ss}^{G03} &= \frac{4 \times \pi \times \rho_{ss}}{3 \times C_{80}^3} \times 10^{-15} \times \int_{r_{80,i}=0.06}^{r_{80,i+1}=1.00} \left(r_{80}^3 \times \frac{dF_{N-open-ocean}^{G03}}{dr_{80}} dr_{80} \right) \\ \mathbf{E}_{ss}^{M86} &= \frac{4 \times \pi \times \rho_{ss}}{3 \times C_{80}^3} \times 10^{-15} \times \int_{r_{80,i}=1.00}^{r_{80,i+1}=1000} \left(r_{80}^3 \times \frac{dF_{N-open-ocean}^{M86}}{dr_{80}} dr_{80} \right) \end{split}$$

$$\begin{aligned} \mathbf{E}_{ss}^{SH98} &= \frac{4 \times \pi \times \rho_{ss}}{3 \times C_{80}^3} \times 10^{-15} \times \int_{r_{80,i}=1000}^{r_{80,i+1}=2233} \left(r_{80}^3 \times \frac{dF_{N-open-ocean}^{M86}}{dr_{80}} dr_{80} \right) \end{aligned}$$

where:			
$E_{ss}^{G03} + E_{ss}^{M86} + E_{ss}^{SH98}$	=	Mass emissions of dry sea-salt particles with aerodynamic equivalent diameters of 30 µm (TSP)	(kg/m².s)
$\frac{dF_{N-open-ocean}^{\rm G03,M86~or~SH98}}{dr_{80}}$	=	Wet sea-salt droplet generation per unit area of open-ocean, per increment of droplet radius at a reference relative humidity of 80% and per unit of time	(droplet number/m².µm.s)
$ ho_{ss}$	=	Density of sea-salt - 2,165 (Lewis et. al., 2006)	(kg/m³)
C ₈₀	=	$r_{80}/r_{ m dry}$	(-)
r ₈₀	=	Wet sea-salt droplet radius at a reference relative humidity of 80%	(μm)
r _{dry}	=	Dry sea-salt particle radius	(µm)

The integration between $r_{80,i}$ and $r_{80,i+1}$ has been performed over 2N + 1 points (i.e. 1001) with Simpson's rule²³ using Equation 25:

²² Particles ranging in size from 0.1 micrometer to about 30 micrometer in diameter are referred to as total suspended particulate matter (TSP). TSP includes a broad range of particle sizes including fine, coarse, and supercoarse particles (USEPA, 2010b).

²³ Technique adapted from 4.2.7. Emissions, Integration, pp 97 – 98 (Sportisse, et. al., 2006). Original formulation by Johannes Keppler in 1615 (1571 – 1630). Additional people involved include Roger Cotes (1682 – 1716), Isaac Newton (1642 – 1726) and Thomas Simpson (1710 – 1761).

$$\int_{r_{80,1}}^{r_{80,1+1}} \left(r_{80}^3 \times \frac{dF_N}{dr_{80}} dr_{80} \right) = \frac{h}{3} \left(a_0^3 \times \frac{dF_N}{dr_{80}} (a_0) + 4a_1^3 \times \frac{dF_N}{dr_{80}} (a_1) + 2a_2^3 \times \frac{dF_N}{dr_{80}} (a_2) + \dots + 2a_{2N-2}^3 \times \frac{dF_N}{dr_{80}} (a_{2N-2}) + 4a_{2N-1}^3 \times \frac{dF_N}{dr_{80}} (a_{2N-1}) + a_N^3 \times \frac{dF_N}{dr_{80}} (a_N) \right)$$
Equation 25

where:			
$\frac{dF_{_{N}}}{dr_{_{80}}}$	=	Wet sea-salt droplet generation per unit area of open-ocean, per increment of droplet radius at a reference relative humidity of 80% and per unit of time	(droplet number/m².µm.s)
r ₈₀	=	Wet sea-salt droplet radius at a reference relative humidity of 80%	(µm)
a _j	=	$r_{s0,i} + (r_{s0,i+1} - r_{s0,i}) \times \frac{j}{2N}$	(µm³)
i	=	(0, 1,, 2N - 1, 2N)	(-)

The ratio (C_{80}) of dry sea-salt particle radius (r_{dry}) to wet sea-salt droplet radius (r_{80}) is approximately 0.5 to within 1% (Lewis et. al., 2006). However, for each point over the interval of integration for wet sea-salt droplet radii ($r_{80,i}$ to $r_{80,i+1}$), the corresponding dry sea-salt particle radii ($r_{dry,i}$ to $r_{dry,i+1}$) have been iteratively estimated using an empirical relationship (Gerber, 1985) in order to calculate the ratio C_{80} ($C_{80,i}$ to $C_{80,i+1}$). The dry sea-salt particle radius (r_{dry}) has been estimated from wet sea-salt droplet radius (r_{80}) using Equation 26:

$$\mathbf{r}_{80} = \left(\frac{C_1 \times \mathbf{r}_{dry}^{C_2}}{C_3 \times \mathbf{r}_{dry}^{C_4} - \log_{10}(\mathbf{RH}/100)} + \mathbf{r}_{dry}^3\right)^{1/3}$$
Equation 26

where:			
r ₈₀	=	Wet sea-salt droplet radius at a reference relative humidity of 80%	(µm)
r _{dry}	=	Dry sea-salt particle radius	(µm)
C ₁	=	0.7674	(-)
C ₂	=	3.079	(-)
C ₃	=	2.5730 x 10 ⁻¹¹	(-)
C ₄	=	-1.4240	(-)
RH	=	Relative humidity	(%)

Figure 3-76 shows a scatter plot of the modelled relationship and line of best fit between dry sea-salt particle radius (r_{dry}) and wet sea-salt droplet radius (r_{80}) . The ratio (C_{80}) of dry sea-salt particle radius (r_{dry}) to wet sea-salt droplet radius (r_{80}) is approximately 0.46, with a coefficient of determination (R^2) of approximately 0.99. For wet sea-salt droplet radii (r_{80}) ranging from 0.06 to 22.33 µm, the corresponding dry sea-salt particle radii (r_{dry}) range from 0.03 to 10.19 µm. This corresponds with dry sea-salt aerodynamic equivalent particle diameters $(d_{dry-aero})$ ranging from to 0.09 to 30 µm.

Figure 3-76: Modelled relationship and line of best fit between dry sea-salt particle radius (r_{dry}) and wet sea-salt droplet radius (r₈₀)

The GM03, M86 and SH98 flux parameterisations are expressed as functions of the wet sea-salt droplet radius (r_{80}), which is then converted to dry sea-salt particle radius (r_{dry}) using Equation 26. The dry sea-salt particle radius (r_{dry}) is then converted to dry sea-salt aerodynamic equivalent particle diameter ($d_{dry-aero}$) using Equation 27 in order to estimate emissions of PM_{2.5}, PM₁₀ and TSP (USEPA, 2010c):

Table 3-91 presents the limits of integration for the G03, M86 and SH98 flux parameterisations for dry sea-salt PM_{2.5}, PM₁₀ and TSP, which have been used within Equation 22, Equation 23 and Equation 24.

Particlo sizo	Flux managemeterics tion	Limits of integration (µm)				
I atticle size	Flux parameterisation	r ₈₀	d _{80-aero}	r _{dry}	d _{dry-aero}	
DM	G03	0.06 to 1.00	0.13 to 2.17	0.03 to 0.49	0.09 to 1.44	
P1N1 _{2.5}	M86	1.00 to 1.76	2.17 to 3.82	0.49 to 0.85	1.44 to 2.50	
PM ₁₀	G03	0.06 to 1.00	0.13 to 2.17	0.03 to 0.49	0.09 to 1.44	
	M86	1.00 to 7.25	2.17 to 15.77	0.49 to 3.40	1.44 to 10.00	
TSP	G03	0.06 to 1.00	0.13 to 2.17	0.03 to 0.49	0.09 to 1.44	
	M86	1.00 to 10.00	2.17 to 21.75	0.49 to 4.65	1.44 to 13.69	
	SH98	10.00 to 22.33	21.75 to 48.56	4.65 to 10.19	13.69 to 30.00	

Table 3-91: Limits of integration for the G03, M86 and SH98 flux parameterisations for dry sea-saltPM2.5, PM10 and TSP

Figure 3-77 shows predicted particle number and mass using the G03, M86 and SH98 flux parameterisations for dry sea-salt $PM_{2.5}$, PM_{10} and TSP at a wind speed of 1 m/s using Equation 22, Equation 23 and Equation 24. Total particle mass and particle number are calculated by summing the area under each curve.

Figure 3-77: Predicted particle mass and particle number using the G03, M86 and SH98 flux parameterisations for dry sea-salt PM_{2.5}, PM₁₀ and TSP at a wind speed of 1 m/s

3.6.3 Activity Data

Table 3-92 summarises the activity data used for emissions of sea-salt aerosols from the action of surface wind on the open-ocean.

Tuble 5 92. Marine acrosof activity data						
Activity data	Activity data source					
Ocean area (m²)	- Gridded Ocean Area in the GMR (DECCW, 2009c)					
Hourly meteorological data (wind speed (m/s)) required by the open ocean marine aerosol model	- The Air Pollution Model (TAPM) Version 3 (Hurley, 2005)					

Table 3-92: Marine aerosol activity data

The sea-salt aerosol source functions (Gong, 2003; Monahan et. al., 1986; and Smith et. al., 1998) express the rate of droplet generation per unit area of open-ocean, per increment of droplet radius and per unit of time (droplet number/ m^2 .µm.s). The open-ocean area in each 1 km by 1 km grid cell (DECCW, 2009c) has been used to estimate the sea-salt aerosol flux rate in the GMR. Figure 3-78 shows the open-ocean area in the GMR, which covers an area of 1,677,752 ha (DECCW, 2009c).

Figure 3-78: Open-ocean area in the GMR

The sea-salt aerosol source functions (Gong, 2003; Monahan et. al., 1986; and Smith et. al., 1998) are proportional to the wind speed raised to a power (wind speed^(3 to 3.5).kg/m².s)²⁴. Hourly average meteorological data including wind speed have been generated for the GMR at 2 km by 2 km grid cells with *TAPM* (Hurley, 2005) and used to estimate the sea-salt aerosol flux rate in the GMR at 1 km by 1 km grid cells. Figure 3-79 shows the monthly average wind speed in the GMR by hour of day.

²⁴ Wet sea-salt droplet number generation is proportional to the wind speed at 10 m raised to a power varying from 3 to 3.5 (Gong, 2003; Monahan et. al., 1986; and Smith et. al., 1998).

Figure 3-79: Monthly average wind speed in the GMR by hour of day

Monthly average wind speed is presented in Table 3-93, while the gridded annual average wind speed is shown in Figure 3-80 for the GMR.

Month	Wind speed (m/s)
January	6.26
February	5.71
March	4.73
April	5.67
May	5.94
June	5.46
July	5.81
August	6.02
September	6.35
October	6.22
November	6.21
December	5.90
Grand Total	5.86

Table 3-93: Monthly average wind speed in the GMR

Air Emissions Inventory for the Greater Metropolitan Region of New South Wales 3. *Data Sources and Results*

Figure 3-80: Gridded annual average wind speed

3.6.4 Emission and Speciation Factors

Table 3-94 summarises the emission and speciation factors used for sea-salt aerosols from the action of surface wind on the open-ocean.

Emission source	Substance	Emission and speciation factor source
Emissions of sea-salt aerosols from the action of surface wind on the open- ocean	Criteria pollutants: PM _{2.5} and PM ₁₀ Criteria	 A Parameterization of Sea-Salt Aerosol Source Function for Sub- and Super-Micron Particles (Gong, 2003) A Model of Marine Aerosol Generation via Whitecaps and Wave Disruption (Monahan et. al., 1986) A Parameterization of Sea-Salt Aerosol Source Function for Sub- and Super-Micron Particles (Gong, 2003)
	pollutants: TSP	 A Model of Marine Aerosol Generation via Whitecaps and Wave Disruption (Monahan et. al., 1986) The Sea Spray Generation Function (Smith et. al., 1998)

Table 3-94: Marine aerosol emission and speciation factors

Table 3-95 presents emission factors for sea-salt aerosols by wet droplet radius and dry particle diameter.

Table 3-95: Dry sea-salt PM_{2.5}, PM₁₀ and TSP emission factors by wet droplet radius and dry particle diameter

Particle size	Flux parameterisation	Wet droplet (r ₈₀)	Dry particle (d _{dry-aero})	Emission factors (kg/m².s) ²⁵
DM	G03	0.06 to 1.00	0.09 to 1.44	$3.31 \times 10^{-15} U^{3.41}$
I ⁻ IV12.5	M86	1.00 to 1.76	1.44 to 2.50	$1.26 \times 10^{-14} U^{3.41}$
PM _{2.5} Tota	1	0.06 to 1.76	0.09 to 2.50	$1.59 imes 10^{-14} U^{3.41}$
G03		0.06 to 1.00	0.09 to 1.44	$3.31 \times 10^{-15} U^{3.41}$
$PIVI_{10}$	M86	1.00 to 7.25	1.44 to 10.00	$1.06 \times 10^{-13} U^{3.41}$
PM ₁₀ Total		0.06 to 7.25	0.09 to 1.44	$1.10 \times 10^{-13} U^{3.41}$
	G03	0.06 to 1.00	0.09 to 1.44	$3.31 \times 10^{-15} U^{3.41}$
TSP	M86	1.00 to 10.00	1.44 to 13.69	$1.27 imes 10^{-13} U^{3.41}$
	SH98	10.00 to 22.33	13.69 to 30.00	$1.40 \times 10^{-13} U^{3.5}$ + $2.70 \times 10^{-13} U^3$
TSP Total		0.06 to 22.33	0.09 to 30.00	$1.30 \times 10^{-13} U^{3.41} + 1.40 \times 10^{-13} U^{3.5} + 2.70 \times 10^{-13} U^3$

Figure 3-81 shows the variation in emission factors for sea-salt aerosols as a function of wind speed.

²⁵ U is the hourly average wind speed at an elevation of 10 m from the water surface (Gong, 2003; Monahan et. al., 1986; and Smith et. al., 1998).

Figure 3-81: Dry sea-salt PM_{2.5}, PM₁₀ and TSP emission factors by wind speed

3.6.5 Spatial Distribution of Emissions

Table 3-96 summarises the data used for spatially allocating emissions of sea-salt aerosols from the action of surface wind on the open-ocean.

Emission source	Spatial data		Spatial data source
Emissions of sea-salt aerosols from the action of surface wind on the open-ocean	Gridded 1 km x 1 km ocean proportion combined with gridded 1 km x 1 km wind speed estimates	-	Gridded Ocean Area in the GMR (DECCW, 2009c) The Air Pollution Model (TAPM) Version 3 (Hurley, 2005)

Emissions of sea-salt aerosols from the action of surface wind on the open-ocean have been spatially distributed according to the proportion of open-ocean area in each 1 km by 1 km grid cell (DECCW, 2009c). The open-ocean area and proportion by region are presented in Table 3-97.

Region	Open-ocean area statistics		
Region	Open-ocean area (ha)	Proportion of open-ocean area (%)	
Newcastle	45,509	2.71	
Non Urban	1,348,422	80.37	

Table 3-97: Open-ocean area spatial distribution by region

Region	Open-ocean area statistics		
Region	Open-ocean area (ha)	Proportion of open-ocean area (%)	
Sydney	252,568	15.05	
Wollongong	31,252	1.86	
Grand Total	1,677,752	100.00	

Figure 3-82 shows the spatial distribution of sea-salt aerosol emissions from the action of surface wind on the open-ocean.

Figure 3-82: Marine aerosol spatial distribution of emissions

3.6.6 Temporal Variation of Emissions

Table 3-98 summarises the data used to estimate the temporal variation in emissions of sea-salt aerosols from the action of surface wind on the open-ocean.

	· · · · · · · · · · · · · · · · · · ·	
Emission source	Temporal data	Temporal data source
Emissions of sea-salt aerosols from the action of surface wind on the open- ocean	Monthly, daily and hourly: Gridded 1 km x 1 km wind speed estimates	- The Air Pollution Model (TAPM) Version 3 (Hurley, 2005)

Table 3-98: Marine aerosol temporal data

Hourly average meteorological data including wind speed have been generated for the GMR at 2 km by 2 km grid cells with *TAPM* (Hurley, 2005) and used to estimate the sea-salt aerosol flux rate variation with wind speed (Gong, 2003; Monahan et. al., 1986; and Smith et. al., 1998) at 1 km by 1 km grid cells.

Annual emissions of PM_{2.5}, PM₁₀ and TSP have been estimated using hourly average wind speed within Equation 22, Equation 23 and Equation 24 (Gong, 2003; Monahan et. al., 1986; and Smith et. al., 1998). Hourly emissions are calculated first and then summed to estimate annual, monthly and daily emissions.

While the temporal variation in emissions is different for each 1 km by 1 km grid cell where there are emissions of sea-salt aerosols from the action of surface wind on the open-ocean, Figure 3-83, Figure 3-84 and Figure 3-85 show the hourly, daily and monthly variation in $PM_{2.5}$, PM_{10} and TSP emissions, respectively in the GMR for all open-ocean areas.

Figure 3-83: Marine aerosol hourly variation in PM_{2.5}, PM₁₀ and TSP emissions

■ PM2.5 ■ PM10 □ TSP

3.6.7 *Emission Estimates*

Table 3-99 presents annual sea-salt aerosol emissions of selected substances from the action of surface wind on the open-ocean by activity.

	10010 0 99.101	unne uerose	or emissions	by activity								
Activity	Substance	Emissions (kg/year)										
	Substance	Newcastle	Non Urban	Sydney	Wollongong	GMR						
Marine Aerosol	PARTICULATE MATTER ≤ 2.5 μm	84,741	3,546,495	444,783	38,215	4,114,234						
	PARTICULATE MATTER ≤ 10 μm	585,671	24,510,801	3,074,017	264,111	28,434,601						
	TOTAL SUSPENDED PARTICULATE	2,264,165	94,187,920	11,911,676	1,030,846	109,394,607						

Table 3-99: Marine aerosol emissions by activity

4 EMISSIONS SUMMARY

The biogenic and geogenic air emissions inventory has been developed for the 2008 calendar year, which incorporates an area covering the greater Sydney, Newcastle and Wollongong regions, known collectively as the Greater Metropolitan Region (GMR).

The biogenic and geogenic air emissions inventory includes emissions from the following sources:

- Agricultural burning;
- Bushfires;
- Prescribed burning;
- > Fugitive/windborne from agricultural lands and unpaved roads;
- > Microbial activity and chemical processes of nitrification and denitrification in soil;
- > Fertiliser application to agricultural land;
- > Tree canopy and grass (i.e. cut and uncut); and
- > Marine aerosol.

The pollutants inventoried include criteria pollutants specified in the Ambient Air Quality NEPM (NEPC, 2003), air toxics associated with the National Pollutant Inventory NEPM (NEPC, 2008) and the Air Toxics NEPM (NEPC, 2004) and any other pollutants associated with state-specific programs, i.e. Load Based Licensing (Protection of the Environment Operations (General) Regulation 2009 (PCO, 2010)) and Protection of the Environment Operations (Clean Air) Regulation 2010 (PCO, 2011).

Table 4-1 presents total estimated annual emissions (for selected substances) from all biogenic and geogenic sources in the whole GMR and the Sydney, Newcastle, Wollongong and Non Urban regions.

Figure 4-1 shows the proportions of total estimated annual emissions (for selected substances) from all biogenic and geogenic sources in the whole GMR and the Sydney, Newcastle, Wollongong and Non Urban regions.

		<u> </u>	<u> </u>		<u> </u>					
Substance	Emissions (tonne/year)									
oubsurec	Newcastle	Non Urban	Sydney	Wollongong	GMR					
1,3-BUTADIENE	0.24	23	4.39	0.48	28					
ACETALDEHYDE	16	865	201	14	1,095					
CARBON MONOXIDE	301	28,545	5,484	603	34,934					
LEAD & COMPOUNDS	0.10	2.16	0.46	8.89 × 10 ⁻³	2.73					
OXIDES OF NITROGEN	126	8,319	1,296	71	9,811					
PARTICULATE MATTER ≤ 10 µm	689	28,719	3,901	327	33,635					
PARTICULATE MATTER ≤ 2.5 μm	121	6,176	951	90	7,338					
POLYCYCLIC AROMATIC HYDROCARBONS	$8.44\times10^{\text{-2}}$	7.41	1.37	0.14	9.00					
SULFUR DIOXIDE	2.72	259	50	5.49	317					
TOTAL SUSPENDED PARTICULATE	2,422	99,401	12,940	1,096	115,859					
TOTAL VOLATILE ORGANIC COMPOUNDS	3,404	130,284	32,468	3,482	169,637					

Table 4-1: Total estimated annual emissions from biogenic and geogenic sources in each region

2008 Calendar Year Biogenic and Geogenic Emissions: Results 4. Emissions Summary

Figure 4-1: Proportions of total estimated annual emissions from biogenic and geogenic sources in each region

Table 4-2, Table 4-3, Table 4-4, Table 4-5 and Table 4-6 present total estimated annual emissions (for selected substances) from each biogenic and geogenic source type in the whole GMR and the Sydney, Newcastle, Wollongong and Non Urban regions, respectively.

Figure 4-2, Figure 4-3, Figure 4-4, Figure 4-5 and Figure 4-6 show the proportions of total estimated annual emissions (for selected substances) from each biogenic and geogenic source type in the whole GMR and the Sydney, Newcastle, Wollongong and Non Urban regions, respectively.

4. Emissions Summary

	Emissions (tonne/year)												
Substance	Agricultural burning	Bushfires	Prescribed burning	Agricultural lands (fugitive/ windborne)	Unpaved roads (fugitive/ windborne)	Soil nitrification and denitrification	Tree canopy	Uncut grass	Cut grass	Marine aerosol	Biogenic and Geogenic Total		
1,3-BUTADIENE	0.28	5.87	22	-	-	-	-	-	-	-	28		
ACETALDEHYDE	-	-	-	-	-	-	-	1,009	86	-	1,095		
CARBON MONOXIDE	325	7,338	27,271	-	-	-	-	-	-	-	34,934		
LEAD & COMPOUNDS	$5.11 imes 10^{-4}$	7.37×10^{-2}	0.27	$1.55\times10^{\text{-}2}$	2.36	-	-	-	-	-	2.73		
OXIDES OF NITROGEN	12	217	806	-	-	8,778	-	-	-	-	9,811		
PARTICULATE MATTER ≤ 10µm	42	739	2,747	114	1,559	-	-	-	-	28,435	33,635		
PARTICULATE MATTER ≤ 2.5µm	40	627	2,331	20	206	-	-	-	-	4,114	7,338		
POLYCYCLIC AROMATIC HYDROCARBONS	0.73	1.75	6.52	-	-	-	-	-	-	-	9.00		
SULFUR DIOXIDE	1.79	67	248	-	-	-	-	-	-	-	317		
TOTAL SUSPENDED PARTICULATE	43	752	2,796	250	2,624	-	-	-	-	109,395	115,859		
TOTAL VOLATILE ORGANIC COMPOUNDS	24	514	1,909	-	-	-	160,150	5,007	2,033	-	169,637		

Table 4-2: Total estimated annual emissions by biogenic and geogenic source type in the GMR

Air Emissions Inventory for the Greater Metropolitan Region of New South Wales

4. Emissions Summary

Figure 4-2: Proportions of total estimated annual emissions by biogenic and geogenic source type in the GMR

4. Emissions Summary

	Emissions (tonne/year)												
Substance	Agricultural burning	Bushfires	Prescribed burning	Agricultural lands (fugitive/ windborne)	Unpaved roads (fugitive/ windborne)	Soil nitrification and denitrification	Tree canopy	Uncut grass	Cut grass	Marine aerosol	Biogenic and Geogenic Total		
1,3-BUTADIENE	$2.40 imes 10^{-2}$	0.64	3.72	-	-	-	-	-	-	-	4.39		
ACETALDEHYDE	-	-	-	-	-	-	-	136	64	-	201		
CARBON MONOXIDE	28	806	4,650	-	-	-	-	-	-	-	5,484		
LEAD & COMPOUNDS	$4.43 imes 10^{-5}$	$8.10\times10^{\text{-}3}$	$4.67\times10^{\text{-}2}$	1.40×10^{-3}	0.40	-	-	-	-	-	0.46		
OXIDES OF NITROGEN	1.00	24	137	-	-	1,133	-	-	-	-	1,296		
PARTICULATE MATTER ≤ 10 μm	3.63	81	468	10	263	-	-	-	-	3,074	3,901		
PARTICULATE MATTER ≤ 2.5 µm	3.46	69	397	1.77	35	-	-	-	-	445	951		
POLYCYCLIC AROMATIC HYDROCARBONS	6.37 × 10-2	0.19	1.11	-	-	-	-	-	-	-	1.37		
SULFUR DIOXIDE	0.16	7.34	42	-	-	-	-	-	-	-	50		
TOTAL SUSPENDED PARTICULATE	3.69	83	477	23	443	-	-	-	-	11,912	12,940		
TOTAL VOLATILE ORGANIC COMPOUNDS	2.10	56	326	-	-	-	29,881	677	1,526	-	32,468		

Table 4-3: Total estimated annual emissions by biogenic and geogenic source type in the Sydney region

Air Emissions Inventory for the Greater Metropolitan Region of New South Wales

4. Emissions Summary

Figure 4-3: Proportions of total estimated annual emissions by biogenic and geogenic source type in the Sydney region

4. Emissions Summary

	Emissions (tonne/year)													
Substance	Agricultural burning	Bushfires	Prescribed burning	Agricultural lands (fugitive/ windborne)	Unpaved roads (fugitive/ windborne)	Soil nitrification and denitrification	Tree canopy	Uncut grass	Cut grass	Marine aerosol	Biogenic and Geogenic Total			
1,3-BUTADIENE	5.21×10^{-3}	$6.0 imes 10^{-2}$	0.18	-	-	-	-	-	-	-	0.24			
ACETALDEHYDE	-	-	-	-	-	-	-	11	5.14	-	16			
CARBON MONOXIDE	6.13	75	220	-	-	-	-	-	-	-	301			
LEAD & COMPOUNDS	9.62 × 10-6	$7.54\times10^{\text{-}4}$	2.21×10^{-3}	1.17 × 10 ⁻³	9.70 × 10 ⁻²	-	-	-	-	-	0.10			
OXIDES OF NITROGEN	0.22	2.22	6.50	-	-	117	-	-	-	-	126			
PARTICULATE MATTER ≤ 10 μm	0.79	7.56	22	8.54	64	-	-	-	-	586	689			
PARTICULATE MATTER ≤ 2.5 µm	0.75	6.42	19	1.48	8.46	-	-	-	-	85	121			
POLYCYCLIC AROMATIC HYDROCARBONS	1.38×10^{-2}	$1.79\times10^{\text{-}2}$	$5.26 imes 10^{-2}$	-	-	-	-	-	-	-	$8.44\times10^{\text{-}2}$			
SULFUR DIOXIDE	3.37×10^{-2}	0.68	2.00	-	-	-	-	-	-	-	2.72			
TOTAL SUSPENDED PARTICULATE	0.80	7.70	23	19	108	-	-	-	-	2,264	2,422			
TOTAL VOLATILE ORGANIC COMPOUNDS	0.46	5.26	15	-	-	-	3,207	53	122	-	3,404			

Table 4-4: Total estimated annual emissions by biogenic and geogenic source type in the Newcastle region

Air Emissions Inventory for the Greater Metropolitan Region of New South Wales

4. Emissions Summary

Figure 4-4: Proportions of total estimated annual emissions by biogenic and geogenic source type in the Newcastle region

4. Emissions Summary

Table 1-3. Total comfaced annual emissions by progenic and geogenic source type in the wonongoing region												
	Emissions (tonne/year)											
Substance	Bushfires	Prescribed burning	Unpaved roads (fugitive/ windborne)	Soil nitrification and denitrification	Tree canopy	Uncut grass	Cut grass	Marine aerosol	Biogenic and Geogenic Total			
1,3-BUTADIENE	5.22×10^{-3}	0.48	-	-	-	-	-	-	0.48			
ACETALDEHYDE	-	-	-	-	-	10	3.46	-	14			
CARBON MONOXIDE	6.53	597	_	-	-	-	-	-	603			
LEAD & COMPOUNDS	6.56×10^{-5}	$5.99 imes 10^{-3}$	2.83×10^{-3}	-	-	-	-	-	8.89 × 10 ⁻³			
OXIDES OF NITROGEN	0.19	18	-	53	-	-	-	-	71			
PARTICULATE MATTER ≤ 10 µm	0.66	60	1.86	-	-	-	-	264	327			
PARTICULATE MATTER ≤ 2.5 µm	0.56	51	0.25	-	-	-	-	38	90			
POLYCYCLIC AROMATIC HYDROCARBONS	$1.56\times10^{\text{-}3}$	0.14	-	-	-	-	-	-	0.14			
SULFUR DIOXIDE	$5.94\times10^{\text{-}2}$	5.43	-	-	-	-	-	-	5.49			
TOTAL SUSPENDED PARTICULATE	0.67	61	3.14	-	-	-	-	1,031	1,096			
TOTAL VOLATILE ORGANIC COMPOUNDS	0.46	42	_	-	3,307	51	82	-	3,482			

Table 4-5: Total estimated annual emissions by biogenic and geogenic source type in the Wollongong region

Air Emissions Inventory for the Greater Metropolitan Region of New South Wales

4. Emissions Summary

Figure 4-5: Proportions of total estimated annual emissions by biogenic and geogenic source type in the Wollongong region

4. Emissions Summary

	Emissions (tonne/year)												
Substance	Agricultural burning	Bushfires	Prescribed burning	Agricultural lands (fugitive/ windborne)	Unpaved roads (fugitive/ windborne)	Soil nitrification and denitrification	Tree canopy	Uncut grass	Cut grass	Marine aerosol	Biogenic and Geogenic Total		
1,3-BUTADIENE	0.25	5.16	17	-	-	-	-	-	-	-	23		
ACETALDEHYDE	-	-	-	-	-	-	-	852	13	-	865		
CARBON MONOXIDE	291	6,451	21,803	-	-	-	-	-	-	-	28,545		
LEAD & COMPOUNDS	$4.57\times10^{\text{-}4}$	$6.48 imes 10^{-2}$	0.22	1.29×10^{-2}	1.87	-	-	-	-	-	2.16		
OXIDES OF NITROGEN	10	191	644	-	-	7,474	-	-	-	-	8,319		
PARTICULATE MATTER ≤ 10 µm	37	650	2,196	95	1,230	-	-	-	-	24,511	28,719		
PARTICULATE MATTER ≤ 2.5 µm	36	551	1,864	16	163	-	-	-	-	3,546	6,176		
POLYCYCLIC AROMATIC HYDROCARBONS	0.66	1.54	5.21	-	-	-	-	-	-	-	7.41		
SULFUR DIOXIDE	1.60	59	198	-	-	-	-	-	-	-	259		
TOTAL SUSPENDED PARTICULATE	38	661	2,235	209	2,070	-	-	-	-	94,188	99,401		
TOTAL VOLATILE ORGANIC COMPOUNDS	22	452	1,526	-	-	-	123,756	4,226	303	-	130,284		

Table 4-6: Total estimated annual emissions by biogenic and geogenic source type in the Non Urban region

Air Emissions Inventory for the Greater Metropolitan Region of New South Wales

4. Emissions Summary

Figure 4-6: Proportions of total estimated annual emissions by biogenic and geogenic source type in the Non Urban region

5 **REFERENCES**

ABARE (2006), Australian Energy, National and State Projections to 2029-30, ABARE Research Report 06.26, Australian Bureau of Agricultural and Resource Economics, GPO Box 1563, Canberra 2601, Australia. http://www.abare.gov.au/publications_html/energy_energy_06/nrg_projections06.pdf http://www.abareconomics.com/interactive/energy_dec06/excel/TFEC_06.xls http://www.abareconomics.com/interactive/energy_dec06/excel/TFEC_06.xls

Azzi, M., Bently, S., Carras, J., Cope, M., Day, S., Gallbally, I., Gillet, R., Halliburton, B., Huber, G., Kirstine, W., Lawson, S., Meyer, M., Nelson, P., Selleck, P., Tibbet, A. and Weeks, I (2004), *Biogenic Emissions in the Greater Sydney Region, Final Report to the NSW Environment Trust Environmental Research Program Grant 2000/RD/G0004*, CSIRO Energy Technology, Lucas Heights Laboratory, PMB 7, Bangor, NSW 2233, Australia.

Battye, W. and Barrows, R (2004), *Review of Ammonia Emission Modeling Techniques for Natural Landscapes and Fertilized Soils, EPA Contract No. 68-D-02-064, Work Assignment No. 2-09, EC/R Project No. PRD-209, EC/R Incorporated, 6330 Quadrangle Drive, Suite 325, Chapel Hill, NC 27517, USA. http://www.epa.gov/ttn/chief/eiip/techreport/volume03/nh3_report_0504.pdf*

Bawden, K., Ormerod, R., Starke, G. and Zeise, K (2004), *Australian Inventory of Dioxin Emissions 2004, National Dioxins Program Technical Report No. 3*, Prepared by: Pacific Air and Environment, Level 1, 59 Melbourne Street, South Brisbane, QLD, 4101, Prepared for: Australian Government Department of the Environment and Heritage, GPO Box 787, Canberra, ACT 2601, Australia.

http://www.environment.gov.au/settlements/publications/chemicals/dioxins/report-3/index.html#downloadpubs/report-3.pdf

Blanchard, D.C (1983), *The Production, Distribution, and Bacterial Enrichment of the Sea-Salt Aerosol, Air-Sea Exchange of Gases and Particles, Editors P.S. Liss & W. G. N. Slinn,* pp 407 - 454, D. Riedel Publishing Company, PO Box 17, 3300 AA Dordrecht, Holland.

BRS (1991), *Digital Atlas of Australian Soils*, Bureau of Rural Sciences, GPO Box 858, Canberra, ACT 2601, Australia. http://www.asris.csiro.au/themes/Atlas.html#Atlas_Digital

BRS (2001), *Mean Annual Nitrogen Fertilisation (kgN ha-1 y-1)*, Bureau of Rural Sciences, GPO Box 858 Canberra, ACT 2601, Australia. http://adl.brs.gov.au/anrdl/metadata_files/pa_manf_r9clw_01711a00.xml

BRS (2006), *Land Use of Australia, Version 3 - 1996/1997*, Bureau of Rural Sciences, GPO Box 858, Canberra, ACT 2601, Australia.

http://adl.brs.gov.au/anrdl/metadata_files/pa_luav3g9abl_03012a03.xml

Air Emissions Inventory for the Greater Metropolitan Region of New South Wales 5. References

CARB (1996a), Atmospheric Pollutant Emissions Factors from Open Burning of Agricultural and Forest Biomass by Wind Tunnel Simulations Volume 1, Prepared by: B.M. Jenkins, I.M. Kennedy, D.P.Y. Chang, O.G. Raabe, S.Q. Turn, E.B. Williams, S.G. Hall and S. Teague, Californian Air Resources Board, 1001 "I" Street P.O. Box 2815 Sacramento, CA 95812, USA.

http://www.arb.ca.gov/ei/see/see.htm http://www.arb.ca.gov/research/apr/past/a932-126a_1.pdf

CARB (1996b), Atmospheric Pollutant Emissions Factors from Open Burning of Agricultural and Forest Biomass by Wind Tunnel Simulations Volume 2, Prepared by: B.M. Jenkins, I.M. Kennedy, D.P.Y. Chang, O.G. Raabe, S.Q. Turn, E.B. Williams, S.G. Hall and S. Teague, Californian Air Resources Board, 1001 "I" Street P.O. Box 2815 Sacramento, CA 95812, USA.

http://www.arb.ca.gov/ei/see/see.htm http://www.arb.ca.gov/research/apr/past/a932-126b_1.pdf

CARB (1997a), Area-Wide Source Methodologies, Section 7.12 Windblown Dust - Agricultural Lands, Californian Air Resources Board, 1001 "I" Street P.O. Box 2815 Sacramento, CA 95812, USA. http://www.arb.ca.gov/ei/areasrc/fullpdf/full7-12.pdf http://www.arb.ca.gov/ei/areasrc/wbagdust_supp.pdf

CARB (1997b), Area-Wide Source Methodologies, Section 7.13 Windblown Dust - Unpaved Roads, Californian Air Resources Board, 1001 "I" Street P.O. Box 2815 Sacramento, CA 95812, USA. http://www.arb.ca.gov/ei/areasrc/fullpdf/full7-13.pdf

CARB (2004), Area-Wide Source Methodologies, Section 9.3 Wildfires, Californian Air Resources Board, 1001 "I" Street P.O. Box 2815 Sacramento, CA 95812, USA. <u>http://www.arb.ca.gov/ei/see/see.htm</u> <u>http://www.arb.ca.gov/ei/areasrc/fullpdf/full9-3.pdf</u>

CARB (2005a), Area-Wide Source Methodologies, Section 7.17 Agricultural Burning and Other Burning Methodology, Californian Air Resources Board, 1001 "I" Street P.O. Box 2815 Sacramento, CA 95812, USA.

http://www.arb.ca.gov/ei/see/see.htm http://www.arb.ca.gov/ei/areasrc/fullpdf/full7-17.pdf http://www.arb.ca.gov/ei/see/mngdburnemissionfactors.xls

CARB (2005b), *California Emission Inventory and Reporting System (CEIDARS), Organic Gas Speciation Profiles*, Californian Air Resources Board, 1001 "I" Street P.O. Box 2815 Sacramento, CA 95812, USA. http://www.arb.ca.gov/ei/speciate/orgprof_10_03_05.xls

CARB (2006), *Area-Wide Source Methodologies, Section 7.16 Forest Management*, Californian Air Resources Board, 1001 "I" Street P.O. Box 2815 Sacramento, CA 95812, USA. <u>http://www.arb.ca.gov/ei/see/see.htm</u> <u>http://www.arb.ca.gov/ei/areasrc/fullpdf/full7-16.pdf</u> CARB (2007), California Emission Inventory and Reporting System (CEIDARS), Particulate Matter (PM) Speciation Profiles, Californian Air Resources Board, 1001 "I" Street P.O. Box 2815 Sacramento, CA 95812, USA.

http://www.arb.ca.gov/ei/speciate/pmprof_07_19_07.xls

CARB (2008a), ARB's Emissions Inventory, Area-Wide Source Methodologies, Index of Methodologies by Major Category, California Air Resources Board, 1001 "I" Street, P.O. Box 2815 Sacramento, CA 95812, USA.

http://www.arb.ca.gov/ei/areasrc/index0.htm

CARB (2008b), California Emission Inventory and Reporting System (CEIDARS), Particulate Matter (PM) Speciation Profiles, Californian Air Resources Board, 1001 "I" Street P.O. Box 2815 Sacramento, CA 95812, USA.

http://www.arb.ca.gov/ei/speciate/pmsize_07242008.xls

CARB (2009a), *California's* 1990-2004 *Greenhouse Gas Emissions Inventory and* 1990 *Emissions Level Technical Support Document*, Californian Air Resources Board, 1001 "I" Street P.O. Box 2815 Sacramento, CA 95812, USA.

<u>http://www.arb.ca.gov/cc/inventory/doc/methods_v1/ghg_inventory_technical_support_docume</u> <u>nt.pdf</u>

CARB (2009b), Annex 3D. Agricultural Residue Burning (IPCC 3C1B) to the Technical Support Document for California's Greenhouse Gas Emissions Inventory and the 1990 Emissions Level, Californian Air Resources Board, 1001 "I" Street P.O. Box 2815 Sacramento, CA 95812, USA.

http://www.arb.ca.gov/cc/inventory/doc/methods_v1/annex_3d_agricultural_residue_burning.pd <u>f</u>

CARB (2011), *Consolidated Table of OEHHA / ARB Approved Risk Assessment Health Values*, California Air Resources Board, 1001 "I" Street, P.O. Box 2815 Sacramento, CA 95812, USA. http://www.arb.ca.gov/toxics/healthval/contable.pdf

Carter, W (2010), *Development of the SAPRC-07 Chemical Mechanism and Updated Ozone Reactivity Scales, Report to the California Air Resources Board Contracts No.* 03-318, 06-408, and 07-730, College of Engineering, Center for Environmental Research and Technology (CE-CERT), University of California, Riverside, CA 92521, USA.

http://www.engr.ucr.edu/~carter/SAPRC/saprc07.pdf

Cope, M., Lee, S., Noonan, J., Lilley, B., Hess, D., and Azzi, M (2009), *Chemical Transport Model -Technical Description, CAWCR Technical Report No. 015*, The Centre for Australian Weather and Climate Research, A partnership between CSIRO and the Bureau of Meteorology, CSIRO Marine and Atmospheric Research, Private Bag No 1, Aspendale, VIC 3195, Australia.

http://www.cawcr.gov.au/publications/technicalreports/CTR_015.pdf

DCC (2007), Australian Methodology for the Estimation of Greenhouse Gas Emissions and Sinks 2006, Agriculture, Australian Government Department of Climate Change, GPO Box 854, Canberra, ACT 2601, Australia.

http://greenregistry.org/media/Documents/Australian%20Methodology%20-%20Agriculture.pdf

DCC (2008), Australian Methodology for the Estimation of Greenhouse Gas Emissions and Sinks 2006, Land Use, Land Use Change and Forestry, Australian Government Department of Climate Change, GPO Box 854, Canberra, ACT 2601, Australia.

http://greenregistry.org/media/Documents/Australian%20Methodology%20-%20Land%20Use,%20Land%20Use%20Change%20and%20Forestry.pdf

DCC (2009), *Australia's National Greenhouse Accounts, National Inventory Report 2007 Volume 1*, Australian Government Department of Climate Change, GPO Box 854, Canberra, ACT 2601, Australia. <u>http://www.climatechange.gov.au/publications/greenhouse-acctg/~/media/publications/greenhouse-acctg/national-industry-report-vol-1-complete.ashx</u>

DCCEE (2010), National Greenhouse Accounts (NGA) Factors, Department of Climate Change and Energy Efficiency, GPO Box 854, Canberra, ACT 2601, Australia.

http://www.climatechange.gov.au/~/media/publications/greenhouse-acctg/national-greenhousefactors-july-2010-pdf.pdf

DEC (2004a), Pers. Comm. 12/10/2004, Sally McEwan, Unsealed Roads from the dtdb Cultural Lines - Arc/Info Export Format, Department of Environment and Conservation, PO Box A290, Sydney South, NSW 1232, Australia.

DEC (2004b), Pers. Comm. 12/10/2004, Sally McEwan, Greater Metropolitan Region Definition - Arc/Info Export Format, Department of Environment and Conservation, PO Box A290, Sydney South, NSW 1232, Australia.

DEC (2005), Approved Methods For the Modelling and Assessment of Air Pollutants in New South Wales, Department of Environment and Conservation, PO Box A290, Sydney South, NSW 1232, Australia. http://www.environment.nsw.gov.au/resources/air/ammodelling05361.pdf

DECC (2007), Air Emissions Inventory for the Greater Metropolitan Region in NSW, Domestic-Commercial Emissions Module: Results, Department of Environment and Climate Change, PO Box A290, Sydney South, NSW 1232, Australia.

http://www.environment.nsw.gov.au/resources/air/tr5aei079.pdf

DECCW (2009a), Pers. Comm. 18/03/2009, Lorraine Durston - Fire Management Unit, Wildfires 2008 Calendar Year, Department of Environment, Climate Change and Water, PO Box A290, Sydney South, NSW 1232, Australia.

DECCW (2009b), Pers. Comm. 09/06/2009, Lorraine Durston - Fire Management Unit, Prescribed Burns Entered into BRIMS for the 2008 Calendar Year, Department of Environment, Climate Change and Water, PO Box A290, Sydney South, NSW 1232, Australia.

DECCW (2009c), *Pers. Comm. 30/09/2009, Mark Roberts - Spatial Data Programs, Gridded Ocean Area in the GMR,* Department of Environment, Climate Change and Water, PO Box A290, Sydney South, NSW 1232, Australia.

EA (2001), *State of Knowledge Report: Air Toxics and Indoor Air Quality in Australia*, Environment Australia, GPO Box 787, Canberra, ACT 2601, Australia. http://www.environment.gov.au/atmosphere/airquality/publications/sok/index.html

EEA (2009), EMEP/EEA Air Pollutant Emission Inventory Guidebook 2009, European Environment Agency, Kongens Nytorv 6, 1050 Copenhagen K, Denmark. http://www.eea.europa.eu/publications/emep-eea-emission-inventory-guidebook-2009/#

EPAV (1999), *Hazardous Air Pollutants - A Review of Studies Performed in Australia and New Zealand*, Environment Protection Authority of Victoria, GPO Box 4395QQ, Melbourne, Victoria 3001 Australia.

EPAV (2002), *Biogenic and Biomass Burning Emissions Inventory, South-East Queensland Region*, Environment Protection Authority of Victoria, GPO Box 4395QQ, Melbourne, Victoria 3001, Australia. Gerber, H (1985), *Relative-Humidity Parameterization of the Navy Aerosol Model (NAM), Technical Report 8956*, National Resources Laboratory, Washington D.C, 20375-5000, USA. http://www.dtic.mil/cgi-bin/GetTRDoc?Location=U2&doc=GetTRDoc.pdf&AD=ADA163209

Geron, C. and Pierce, T (2002), Biogenic Trace Gas Emissions in the United States, United States Environment Protection Agency, Office of Research and Development, National Exposure Research Laboratory, Mail Code: D343-2, 4930 Page Road, Research Triangle Park, NC 27711, USA. http://www.epa.gov/asmdnerl/pdf/Geronposter2002.pdf

Gong, S., Barrie, L.A. and Blanchet, J.P (1997), *Modeling Sea Salt Aerosols in the Atmosphere. 1: Model Development,* Journal of Geophysical Research, Volume 102, Number D3, pp 3805 - 3818, American Geophysical Union, 2000 Florida Avenue N.W. Washington, DC 20009-1277, USA.

http://www.agu.org/pubs/crossref/1997/96JD02953.shtml http://www.see.ed.ac.uk/~shs/Climate%20change/Data%20sources/GONG%20salt%20injection.pd f

Gong, S.L (2003), A Parameterization of Sea-Salt Aerosol Source Function for Sub- and Super-Micron Particles, Global Biogeochemical Cycles, Volume 17, Number 4, pp 1097 - 1103, American Geophysical Union, 2000 Florida Avenue N.W. Washington, DC 20009-1277, USA. http://www.agu.org/pubs/crossref/2003/2003GB002079.shtml

Huber, G (2005), *Biogenic Emissions Inventory GIS Version* 3.02, Hi-Light Lasers, 9 Betola Street, Ryde, NSW 2112, Australia.

Hurley, P.J (2005), *The Air Pollution Model (TAPM) Version 3, User Manual, Internal Paper No. 31*, CSIRO Atmospheric Research, PB 1, Aspendale, Victoria 3195, Australia.

ICSM (2006), *Geocentric Datum of Australia Technical Manual Version* 2.3, Intergovernmental Committee on Surveying and Mapping, GPO Box 378, Canberra, ACT 2601, Australia. <u>http://www.icsm.gov.au/icsm/gda/gdatm/gdav2.3.pdf</u> <u>http://www.icsm.gov.au/gda/gdatm/redfearn.xls</u> *Air Emissions Inventory for the Greater Metropolitan Region of New South Wales 5. References*

IFA (2004), *Soil and Plant Nitrogen by G. Hofman and O. van Cleemput*, International Fertilizer Industry Association, 28 Rue Marbeuf, 75008 Paris, France.

http://www.fertilizer.org/ifa/HomePage/LIBRARY/Publication-database.html/Soil-and-Plant-Nitrogen.html

IFA (2011), *IFADATA*, *Consumption of Nitrogen Fertilizers in Australia in 2008*, International Fertilizer Industry Association, 28 Rue Marbeuf, 75008 Paris, France. <u>http://www.fertilizer.org/ifa/ifadata/search</u>

Iseekgolf.com (2011), *Australian Course Directory*, 17 Guthrie St, Paddington, QLD 4064, Australia. <u>http://www.iseekgolf.com/courses/</u>

Keith, L.H. and Telliard, W.A (1979), *Priority Pollutants Part 1. A Perspective View*. Environmental Science and Technology, Volume 13, Number 4, April 1979, pp 416 – 424, American Chemical Society, 1155 Sixteenth Street N.W., Washington, DC 2003.

Kirstine, W., Gallbally, I., Ye, Y. and Hooper, M (1998), *Emissions of Volatile Organic Compounds* (*Primarily Oxygenated Species*) from Pasture, Journal of Geophysical Research, Volume 103, Number D9, pp 10,615 - 10,619, May 20, 1998, American Geophysical Union, 2000 Florida Avenue N.W. Washington, DC 20009-1277, USA.

http://www.agu.org/journals/ABS/1998/97JD03753.shtml

Lewis, E. and Schwartz, S (2006), *Comment on "Size Distribution of Sea-Salt Emissions as a Function of Relative Humidity"*, Atmospheric Environment, 40, pp 588 – 590, Science Direct, 3251 Riverport Lane Maryland Heights, MO 63043, USA.

http://www.ecd.bnl.gov/pubs/BNL-75215-2005-JA.pdf

Monahan, E. C., Spiel, D. E. and Davidson, K. L (1986), A Model of Marine Aerosol Generation via Whitecaps and Wave Disruption, Oceanic Whitecaps and their Role in Air-Sea Exchange Processes, Editors E. C. Monahan & Gearóid Mac Niocaill, pp 167–174, D. Riedel Publishing Company, PO Box 17, 3300 AA Dordrecht, Holland.

http://books.google.com.au/books?id=xuwFz1bPTHgC&pg=PA174&lpg=PA174&dq=Monahan,+E. +C.,+Spiel,+D.+E.+%26+Davidson,+K.+L.,+(1986),&source=bl&ots=WNIf5KpvIq&sig=_4KinMG6IVR d-

uBmHOaUc_7UVoo&hl=en&ei=mAK5TYvtK8TqrAfMrdzdBA&sa=X&oi=book_result&ct=result&res num=1&ved=0CBcQ6AEwAA#v=onepage&q=Monahan%2C%20E.%20C.%2C%20Spiel%2C%20D.%2 0E.%20%26%20Davidson%2C%20K.%20L.%2C%20(1986)%2C&f=false

NEPC (2003), National Environment Protection (Ambient Air Quality) Measure – As varied 7 July 2003 Environment Protection & Heritage Council, Level 5, 81 Flinders Street, Adelaide, SA 5000, Australia. http://www.ephc.gov.au/sites/default/files/AAQ_NEPM_Ambient_Air_Quality_NEPM_Varied_s caleplus_Final_200305_1.pdf

NEPC (2004), *National Environment Protection (Air Toxics) Measure* – As made 3 December 2004, Environment Protection & Heritage Council, Level 5, 81 Flinders Street, Adelaide, SA 5000, Australia. http://www.ephc.gov.au/sites/default/files/AT_NEPM_Air_Toxics_NEPM_20041203.pdf NEPC (2006), National Environment Protection (Air Toxics) Measure, Air Toxics Tier 2 Prioritisation Methodology, Environment Protection & Heritage Council, Level 5, 81 Flinders Street, Adelaide, SA 5000, Australia.

http://www.ephc.gov.au/sites/default/files/AT_T2__Tier_2_Prioritisation_Methodology_200606.pd <u>f</u>

NEPC (2008), National Environment Protection (National Pollutant Inventory) Measure – As varied 13 November 2008, Environment Protection & Heritage Council, Level 5, 81 Flinders Street, Adelaide, SA 5000, Australia.

http://www.ephc.gov.au/sites/default/files/NPI_NEPM_NPI_NEPM_as_Varied_200811.pdf

NLWRA (2001), Australian Agriculture Assessment 2001, Nutrient Balance in Regional Farming Systems and Soil Nutrient Status, National Land and Water Resources Audit c/o Land & Water Australia, Level 1 Phoenix Building, 86 Northbourne Avenue, Braddon ACT 2612.

http://www.anra.gov.au/topics/agriculture/pubs/national/agriculture_contents.html http://www.anra.gov.au/topics/land/nutrients/index.html

NSW DPI (2008), *NSW Grains Report 2008*, NSW Department of Primary Industries, Locked Bag 21, Orange, NSW 2800, Australia.

http://www.dpi.nsw.gov.au/aboutus/resources/periodicals/newsletters/grains-report-nsw

NTC (2007), *Performance Based Standards Scheme Network Classification Guidelines*, National Transport Commission, Level 15, 628 Bourke Street, Melbourne, 3000 Victoria, Australia. <u>http://www.ntc.gov.au/filemedia/Reports/PBSSchemeNetwkClassifGLinesOct07.pdf</u>

OEH (2011), *Wind Erosion*, Office of Environment and Heritage, PO Box A290, Sydney South, NSW 1232, Australia.

http://www.environment.nsw.gov.au/soildegradation/winder.htm

PCO (2010), Protection of the Environment Operations (General) Regulation 2009, New South Wales Parliamentary Counsel's Office, GPO Box 4191, Sydney NSW 2001, Australia. http://www.legislation.nsw.gov.au/scanview/inforce/s/1/?SRTITLE=%22Protection%20of%20the% 20Environment%20Operations%20(General)%20Regulation%202009%22&nohits=y

PCO (2011), Protection of the Environment Operations (Clean Air) Regulation 2010, New South Wales Parliamentary Counsel's Office, GPO Box 4191, Sydney NSW 2001, Australia. http://www.legislation.nsw.gov.au/maintop/view/inforce/subordleg+428+2010+cd+0+N

Potter, C., Klooster, S., Bubenheim, D., Singh, H.B., and Myneni, R (2003), *Modeling Terrestrial Biogenic Sources of Oxygenated Organic Emissions*, Earth Interactions., Volume 7, Paper Number 7, pp 1 - 15, American Meteorological Society, 45 Beacon Street Boston, MA 02108-3693, USA. http://journals.ametsoc.org/doi/pdf/10.1175/1087-3562%282003%29007%3C0001%3AMTBSOO%3E2.0.CO%3B2 Radian (1996), Biogenic Sources Preferred Methods, EIIP Technical Report Series Volume V, Emission Inventory Improvement Program, Radian Corporation, Post Office Box 13000, Research Triangle Park, NC 27709, USA.

http://www.epa.gov/ttn/chief/eiip/techreport/volume05/v01.pdf

RFS (2009a), Pers. Comm. 08/09/2009, Melissa O'Halloran - Community Planning, Wildfires 2008 Calendar Year, NSW Rural Fire Service, Locked Bag 17, Granville NSW 2142, Australia.

RFS (2009b), Pers. Comm. 29/07/2009, Melissa O'Halloran - Community Planning, Prescribed Burns Entered into BRIMS for the 2008 Calendar Year, NSW Rural Fire Service, Locked Bag 17, Granville NSW 2142, Australia.

Shankar, U., Bhave, P. V., Vukovich, J. M. and Roselle, S. J (2005), *Initial Applications of Sea Salt Aerosol Emissions and Chemistry Algorithms in the CMAQ v4.5 – AERO4 Module*, Community Modeling and Analysis System, c/o Institute for the Environment, Campus Box 6116, 137 E. Franklin Street Chapel Hill, NC 27599-6116, USA.

http://www.cmascenter.org/conference/2005/ppt/p6.pdf

Smith, M.H. and Harrison, N.M (1998), *The Sea Spray Generation Function*, Journal of Aerosol Science, Volume 29, Supplement 1, pp 189 – 190, Elsevier Science Ltd, The Boulevard, Langford Lane, Kidlington, Oxford OX5 1GB, UK.

Sportisse, B., Sartelet, K., Debry, E., Fahey, K., Roustanm Y. and Tombette, M (2006), *The SIze REsolved Aerosol Model (SIREAM) and the Modal Aerosol Model (MAM), Technical Documentation,* CEREA, Joint Laboratory ENPC-EDF R&D, Ecole Nationale des Ponts et Chauss´ees, 6-8 Avenue Blaise Pascal, Cit´e Descartes 77455 Champs sur Marne or EDF R&D, 6 quai Watier 78401 Chatou, France. http://cerea.enpc.fr/common/ref/siream-mam_doc.pdf

Tang, I.N., Tridico, A.C., Fung, K.H (1997), *Thermodynamic and Optical Properties of Sea Salt Aerosols*, Journal of Geophysical Research—Atmospheres, Volume 102, pp 23,269 – 23,275, American Geophysical Union, 2000 Florida Avenue N.W. Washington, DC 20009-1277, USA. <u>http://www.ecd.bnl.gov/pubs/BNL64283R2.pdf</u>

TDC (2009), *TDC Forecasts for Population and VKT 2006 to 2036 Ref: 09/088*, Transport Data Centre, GPO Box 1620, Sydney, NSW 2001, Australia.

Thornthwaite, C.W (1931), *The Climates of North America: According to a New Classification*, Geographical Review, Volume 21, Number 4, pp 633 - 655. http://www.jstor.org/pss/209372

TR (2009), *Domestic Pollution Survey, Project Reference: 3388*, Taverner Research, Level 2, 88 Foveaux St, Surry Hills, NSW, 2010, Australia.

USDA (2003), *Australia State Crop Calendars*, U.S. Department of Agriculture, Foreign Agricultural Service. 1400 Independence Ave., S.W. Washington, DC 20250, USA. http://www.fas.usda.gov/remote/aus_sas/crop_information/calendars/index_of_clndrs.htm USEPA (1974), *Development of Emission Factors for Fugitive Dust Sources, EPA-450/3-74-37*, United States Environment Protection Agency, Office of Air Quality Planning and Standards, Research Triangle Park, NC 27711, USA.

http://www.epa.gov/nscep/2000MC6B.pdf

USEPA (1992), AP 42, Fifth Edition, Volume I, Chapter 2: Solid Waste Disposal, 2.5 Open Burning, Technology Transfer Network, Clearinghouse for Inventories & Emission Factors, United States Environmental Protection Agency, Office of Air Quality Planning and Standards, Research Triangle Park, NC 27711, USA.

http://www.epa.gov/ttn/chief/ap42/ch02/final/c02s05.pdf

USEPA (1995a), AP 42, Fifth Edition, Compilation of Air Pollutant Emission Factors, Volume 1: Stationary Point and Area Sources, Technology Transfer Network, Clearinghouse for Inventories & Emissions Factors, United States Environmental Protection Agency, Office of Air Quality Planning and Standards, Research Triangle Park, NC 27711, USA.

http://www.epa.gov/ttn/chief/ap42/index.html

USEPA (1995b), User's Guide to the Personal Computer Version of the Biogenic Emissions Inventory System (PC-BEIS), Version 2 by Terri L. Birth, Computer Sciences Corporation, Research Triangle Park, NC 27709 and Chris D. Geron, Emissions Modeling Division, Air and Energy Engineering Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711, EPA 600/SR-95/091, United States Environmental Protection Agency, National Risk Management Research Laboratory, Research Triangle Park, NC 27711, USA.

http://nepis.epa.gov/Exe/ZyNET.exe/30003X66.TXT?ZyActionD=ZyDocument&Client=EPA&Inde x=1995+Thru+1999&Docs=&Query=&Time=&EndTime=&SearchMethod=1&TocRestrict=n&Toc=&T ocEntry=&QField=&QFieldYear=&QFieldMonth=&QFieldDay=&IntQFieldOp=0&ExtQFieldOp=0&X mlQuery=&File=D%3A%5Czyfiles%5CIndex%20Data%5C95thru99%5CTxt%5C0000003%5C30003X6 6.txt&User=ANONYMOUS&Password=anonymous&SortMethod=h%7C-

&MaximumDocuments=1&FuzzyDegree=0&ImageQuality=r75g8/r75g8/x150y150g16/i425&Display =p%7Cf&DefSeekPage=x&SearchBack=ZyActionL&Back=ZyActionS&BackDesc=Results%20page&M aximumPages=1&ZyEntry=1&SeekPage=x&ZyPURL

USEPA (2003a), *Technology Transfer Network - Clearinghouse for Inventories & Emissions Factors*, United States Environmental Protection Agency, Office of Air Quality Planning and Standards, Research Triangle Park, NC 27711, USA.

http://www.epa.gov/ttn/chief/eidocs/eipreparationmodeling_april2003.pdf

USEPA (2003b), *AP* 42, *Fifth Edition, Volume I, Chapter 14: Greenhouse Gas Biogenic Sources, 14.1 Emission from Soils - Greenhouse Gases,* Technology Transfer Network, Clearinghouse for Inventories & Emission Factors, United States Environmental Protection Agency, Office of Air Quality Planning and Standards, Research Triangle Park, NC 27711, USA.

http://www.epa.gov/ttn/chief/ap42/ch14/final/c14s01.pdf
USEPA (2007), *Emission Inventory Improvement Program, EIIP Technical Report Series, Volumes* 1-10, Technology Transfer Network, Clearinghouse for Inventories & Emissions Factors, United States Environmental Protection Agency, Office of Air Quality Planning and Standards, Research Triangle Park, NC 27711, USA.

http://www.epa.gov/ttn/chief/eiip/techreport/

USEPA (2010a), *The Clean Air Act Amendments of 1990 List of Hazardous Air Pollutants*, Technology Transfer Network, Air Toxics Website, United States Environmental Protection Agency, Office of Air Quality Planning and Standards, Research Triangle Park, NC 27711, USA. http://www.epa.gov/ttnatw01/orig189.html

USEPA, (2010b), *Module 3: Characteristics of Particles – Particle Size Categories*, United States Environmental Protection Agency, Office of Air Quality Planning & Standards, Information Transfer and Program Integration Division, Education & Outreach Group, Mailcode E 143-01, Research Triangle Park, NC 27711, USA.

http://www.epa.gov/apti/bces/module3/category/category.htm#total

USEPA, (2010c), *Module 3: Characteristics of Particles – Aerodynamic Diameter*, United States Environmental Protection Agency, Office of Air Quality Planning & Standards, Information Transfer and Program Integration Division, Education & Outreach Group, Mailcode E 143-01, Research Triangle Park, NC 27711, USA.

http://www.epa.gov/apti/bces/module3/diameter/diameter.htm

USEPA (2011), 2008 National Emissions Inventory Data, Technology Transfer Network, Clearinghouse for Inventories & Emissions Factors, United States Environmental Protection Agency, Office of Air Quality Planning and Standards, Research Triangle Park, NC 27711, USA. http://www.epa.gov/ttn/chief/net/2008inventory.html#inventorydoc

Van den Berg, M., Birnbaum, L., Bosveld, A., Brunström, B., Cook, P., Feeley, M., Giesy, J., Hanberg, A., Hasegawa, R., Kennedy, S., Kubiak, T., Larsen, J., van Leeuwen, F., Liem, A., Nolt, C., Peterson, R., Poellinger, L. Safe, S., Schrenk, D., Tillitt, D., Tysklind, M., Younes, M., Wærn, F. and Zacharewski, T (1998), *Toxic Equivalency Factors (TEFs) for PCBs, PCDDs, PCDFs for Humans and Wildlife*, Environmental Health Perspectives, Volume 106, Number 12, December 1998, pp 775 – 792, c/o Brogan & Partners, 14600 Weston Parkway, Cary, NC 27513, USA.

VESTRA (2003), Wildland Fire Emissions Estimation System, Version 4, Vestra Resources Inc., 962 Maraglia Street, Redding, CA 96002, USA. http://www.arb.ca.gov/ei/see/see.htm

Zhang, K.M., Knipping, E.M., Wexler, A.S., Bhave, P.V., Tonnesen, G.S (2005), Size Distribution of Sea-
Salt Emissions as a Function of Relative Humidity, Atmospheric Environment, Volume 39, pp 3,373 –
3,379,ScienceDirect,3251RiverportLaneMaryland Heights, MO 63043, USA.

http://www.mae.cornell.edu/zhang/PDF/Size%20distribution%20of%20sea%20salt%20emissions%2 0as%20a%20function%20of%20relative%20humidity.pdf