The health impacts of PM_{2.5} in the NSW GMR

Dr Richard Broome

Public Health Observatory Sydney Local Health District

Overview

Why the focus on $PM_{2.5}$?

The evidence of health effects

Health impacts in NSW

Harm related to current levels of anthropogenic PM_{2.5}

Harm related to emissions from specific sources

The benefit of reducing PM_{2.5}

Conclusions

Why the focus on PM_{2.5}?

Why the focus on $PM_{2.5}$?

- There are very well established links between PM_{2.5} and health effects
- Based on current knowledge, it is the air pollutant that does most harm
- The new national PM_{2.5} standard means PM_{2.5} is a major focus of governments.

The evidence of health effects

Health effects

- There's very strong evidence that PM_{2.5}:
 - Shortens lives
 - Hastens the development of cardiovascular and respiratory disease
- There are also associations with a range of other outcomes. For example:
 - · Neurological conditions
 - · Low birth weight
 - Diabetes
- Around 85% of the social cost of PM_{2.5} is attributable to loss of life

Studying the effects of PM_{2.5}

Different types of study have been used to investigate the effects of PM_{2.5}:

- Toxicological studies that look at effects on animals
- · Clinical studies that look at effects in individual humans
- Observational studies that look at effects on populations :
 - · Time series studies
 - Cohort studies

Health impacts in NSW

Health Impact Assessment

- HIA is a process for translating evidence into information about the local effects of PM_{2.5}
- · Why is it necessary?
 - Generally speaking, local studies that directly assess the impacts of PM_{2.5} aren't feasible
 - Without impact assessment, the effects of PM_{2.5} are largely invisible (and hence unlikely to be managed efficiently).
- · HIA can answer questions like:
 - How much harm is caused by current levels of PM_{2.5}?
 - What would be the benefit of doing something to reduce PM_{2.5} concentrations?

How much harm occurred in 2011 as a result of long-term exposure to $PM_{2.5}$?

How much harm occurred in 2011 as a result of long-term exposure to $PM_{2.5}$?

Results

Population-weighted concentration	2μg/m
Loss of life expectancy	53 day
Years of life lost	5,800
Attributable number of deaths	420

Interpretation

- If everyone is exposed to the same level of PM_{2.5} for a life time we would loose, on average, 2 months of life
 - \cdot But PM_{2.5} does not affect everyone equally
 - If only half the population were susceptible, this half would lose 4 months
- Each year, around 5,800 years are lost by those whose lives were shortened by PM_{2.5}
- If PM_{2.5} was the 'sole' cause of certain deaths then it would cause 420 deaths at typical ages (ie predominantly among the elderly).
 - But PM_{2.5} is one of many risk factors that affect the timing of people's deaths
 - PM_{2.5} likely affects the timing of death of a much larger number than 420

Exposure related to specific sources

PM_{2.5} concentrations in 2011

How much harm was caused by PM_{2.5} in 2011?

Source	Loss of life	Years of	Attributable
	expectancy	Life Lost	number of
	(days)		deaths
Anthropogenic	53	5,800	420
Wood heaters	13	1,400	100
Power stations	5	550	40
Ships	-	220*	17*

What would be the benefit of reducing PM_{2.5}?

The effect of reducing exposure to PM_{2.5}

- · People live longer
- · The population increases in size
- · But ultimately you get the same number of deaths
- We model the life-extending effects to estimate the number of life-years produced

Specifically, we have looked at:

- Ships use low-sulphur fuel at berth
- Implementation of more stringent wood heater standards
- Elimination of precursors to PM_{2.5} from power station emissions

Results

Action	Life-years produced†	Present monetary value (milions AUD)‡
Low-sulphur fuel in ships	6,240*	251*
2.5g/kg emissions standard for wood heaters	58,600	2,600
1.5g/kg emissions standard for wood heaters	88,400	3,900
Elimination of NO_{X} emissions from power stations	37,600	1,700
Elimination of SO _X emissions from power stations	13,600	630

‡Assuming VSLY of \$187,000 and 3% discount rate

[†] These are the life-years produced among people who were alive in 2011. There would also be benefits to people born in the future

Conclusions

Conclusions

- PM_{2.5} related to human activity is reducing life expectancy by about 2 months and causing 5,800 YLL each year
- Actions that reduce in PM_{2.5} emissions are likely to produce a substantial social benefit.

Acknowledgements

- · CSIRO Martin Cope, Jennifer Powell, Kathryn Emmerson
- University of Sydney Geoff Morgan, Edward Jegasothy, Joshua Horsley
- · University of Tasmania Laurie and Brett Goldsworthy
- The work was supported by NSW EPA and NSW Health

